Added left handed functions for perspective, perspectiveFov, and lookAt.

This commit is contained in:
Aaron Cooper 2015-02-21 14:39:45 -05:00
parent dc86af5d29
commit 490cfbea3a
2 changed files with 220 additions and 4 deletions

View File

@ -171,7 +171,7 @@ namespace glm
T near,
T far);
/// Creates a matrix for a symetric perspective-view frustum.
/// Creates a matrix for a symetric perspective-view frustum based on the default handedness.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
@ -186,7 +186,38 @@ namespace glm
T near,
T far);
/// Builds a perspective projection matrix based on a field of view.
/// Creates a matrix for a right handed, symetric perspective-view frustum.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveRH(
T fovy,
T aspect,
T near,
T far);
/// Creates a matrix for a left handed, symetric perspective-view frustum.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveLH(
T fovy,
T aspect,
T near,
T far);
/// Builds a perspective projection matrix based on a field of view and the default handedness.
///
/// @param fov Expressed in radians.
/// @param width
@ -203,6 +234,40 @@ namespace glm
T near,
T far);
/// Builds a right handed perspective projection matrix based on a field of view.
///
/// @param fov Expressed in radians.
/// @param width
/// @param height
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovRH(
T fov,
T width,
T height,
T near,
T far);
/// Builds a left handed perspective projection matrix based on a field of view.
///
/// @param fov Expressed in radians.
/// @param width
/// @param height
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovLH(
T fov,
T width,
T height,
T near,
T far);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
@ -285,7 +350,7 @@ namespace glm
tvec2<T, P> const & delta,
tvec4<U, P> const & viewport);
/// Build a look at view matrix.
/// Build a look at view matrix based on the default handedness.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
@ -298,6 +363,32 @@ namespace glm
tvec3<T, P> const & center,
tvec3<T, P> const & up);
/// Build a right handed look at view matrix.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal)
template <typename T, precision P>
GLM_FUNC_DECL tmat4x4<T, P> lookAtRH(
tvec3<T, P> const & eye,
tvec3<T, P> const & center,
tvec3<T, P> const & up);
/// Build a left handed look at view matrix.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal)
template <typename T, precision P>
GLM_FUNC_DECL tmat4x4<T, P> lookAtLH(
tvec3<T, P> const & eye,
tvec3<T, P> const & center,
tvec3<T, P> const & up);
/// @}
}//namespace glm

View File

@ -99,7 +99,7 @@ namespace glm
tvec3<T, P> axis = normalize(v);
Result[0][0] = c + (1 - c) * axis.x * axis.x;
Result[0][0] = c + (1 - c) * axis.x * axis.x;
Result[0][1] = (1 - c) * axis.x * axis.y + s * axis.z;
Result[0][2] = (1 - c) * axis.x * axis.z - s * axis.y;
Result[0][3] = 0;
@ -216,6 +216,22 @@ namespace glm
T zNear,
T zFar
)
{
#ifdef GLM_LEFT_HANDED
return perspectiveLH(fovy, aspect, zNear, zFar);
#else
return perspectiveRH(fovy, aspect, zNear, zFar);
#endif
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveRH
(
T fovy,
T aspect,
T zNear,
T zFar
)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
@ -230,6 +246,28 @@ namespace glm
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveLH
(
T fovy,
T aspect,
T zNear,
T zFar
)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
tmat4x4<T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = -(static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov
(
@ -239,6 +277,23 @@ namespace glm
T zNear,
T zFar
)
{
#ifdef GLM_LEFT_HANDED
return perspectiveFovLH(fov, width, height, zNear, zFar);
#else
return perspectiveFovRH(fov, width, height, zNear, zFar);
#endif
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovRH
(
T fov,
T width,
T height,
T zNear,
T zFar
)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
@ -257,6 +312,33 @@ namespace glm
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovLH
(
T fov,
T width,
T height,
T zNear,
T zFar
)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
tmat4x4<T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective
(
@ -390,6 +472,21 @@ namespace glm
tvec3<T, P> const & center,
tvec3<T, P> const & up
)
{
#ifdef GLM_LEFT_HANDED
return lookAtLH(eye, center, up);
#else
return lookAtRH(eye, center, up);
#endif
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH
(
tvec3<T, P> const & eye,
tvec3<T, P> const & center,
tvec3<T, P> const & up
)
{
tvec3<T, P> const f(normalize(center - eye));
tvec3<T, P> const s(normalize(cross(f, up)));
@ -410,4 +507,32 @@ namespace glm
Result[3][2] = dot(f, eye);
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtLH
(
tvec3<T, P> const & eye,
tvec3<T, P> const & center,
tvec3<T, P> const & up
)
{
tvec3<T, P> const f(normalize(center - eye));
tvec3<T, P> const s(normalize(cross(up, f)));
tvec3<T, P> const u(cross(f, s));
tmat4x4<T, P> Result(1);
Result[0][0] = s.x;
Result[1][0] = s.y;
Result[2][0] = s.z;
Result[0][1] = u.x;
Result[1][1] = u.y;
Result[2][1] = u.z;
Result[0][2] = f.x;
Result[1][2] = f.y;
Result[2][2] = f.z;
Result[3][0] = -dot(s, eye);
Result[3][1] = -dot(u, eye);
Result[3][2] = -dot(f, eye);
return Result;
}
}//namespace glm