mirror of
https://github.com/g-truc/glm.git
synced 2024-11-26 02:04:35 +00:00
Fixed GTX_matrix_factorisation tests to return the number of errors #654
This commit is contained in:
parent
64cfbc0451
commit
566d20e8cf
@ -73,7 +73,7 @@ namespace glm
|
||||
|
||||
matType<R, (C < R ? C : R), T, P> tr;
|
||||
matType<(C < R ? C : R), C, T, P> tq;
|
||||
qr_decompose(tq, tr, tin);
|
||||
qr_decompose(tin, tq, tr);
|
||||
|
||||
tr = fliplr(tr);
|
||||
r = transpose(tr);
|
||||
|
@ -1,103 +1,101 @@
|
||||
#define GLM_ENABLE_EXPERIMENTAL
|
||||
#include <glm/gtx/matrix_factorisation.hpp>
|
||||
|
||||
const double epsilon = 1e-10f;
|
||||
float const epsilon = 1e-10f;
|
||||
|
||||
template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
|
||||
int test_qr(matType<C, R, T, P> m) {
|
||||
int test_qr(matType<C, R, T, P> m)
|
||||
{
|
||||
int Error = 0;
|
||||
|
||||
matType<(C < R ? C : R), R, T, P> q(-999);
|
||||
matType<C, (C < R ? C : R), T, P> r(-999);
|
||||
|
||||
glm::qr_decompose(q, r, m);
|
||||
glm::qr_decompose(m, q, r);
|
||||
|
||||
//Test if q*r really equals the input matrix
|
||||
matType<C, R, T, P> tm = q*r;
|
||||
matType<C, R, T, P> err = tm - m;
|
||||
|
||||
for (glm::length_t i = 0; i < C; i++) {
|
||||
for (glm::length_t j = 0; j < R; j++) {
|
||||
if (std::abs(err[i][j]) > epsilon) return 1;
|
||||
}
|
||||
}
|
||||
for (glm::length_t i = 0; i < C; i++)
|
||||
for (glm::length_t j = 0; j < R; j++)
|
||||
Error += std::abs(err[i][j]) > epsilon ? 1 : 0;
|
||||
|
||||
//Test if the columns of q are orthonormal
|
||||
for (glm::length_t i = 0; i < (C < R ? C : R); i++) {
|
||||
if ((length(q[i]) - 1) > epsilon) return 2;
|
||||
for (glm::length_t i = 0; i < (C < R ? C : R); i++)
|
||||
{
|
||||
Error += (length(q[i]) - 1) > epsilon ? 1 : 0;
|
||||
|
||||
for (glm::length_t j = 0; j<i; j++) {
|
||||
if (std::abs(dot(q[i], q[j])) > epsilon) return 3;
|
||||
}
|
||||
for (glm::length_t j = 0; j<i; j++)
|
||||
Error += std::abs(dot(q[i], q[j])) > epsilon ? 1 : 0;
|
||||
}
|
||||
|
||||
//Test if the matrix r is upper triangular
|
||||
for (glm::length_t i = 0; i < C; i++) {
|
||||
for (glm::length_t j = i + 1; j < (C < R ? C : R); j++) {
|
||||
if (r[i][j] != 0) return 4;
|
||||
}
|
||||
}
|
||||
for (glm::length_t i = 0; i < C; i++)
|
||||
for (glm::length_t j = i + 1; j < (C < R ? C : R); j++)
|
||||
Error += r[i][j] != 0 ? 1 : 0;
|
||||
|
||||
return 0;
|
||||
return Error;
|
||||
}
|
||||
|
||||
template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
|
||||
int test_rq(matType<C, R, T, P> m) {
|
||||
int test_rq(matType<C, R, T, P> m)
|
||||
{
|
||||
int Error = 0;
|
||||
|
||||
matType<C, (C < R ? C : R), T, P> q(-999);
|
||||
matType<(C < R ? C : R), R, T, P> r(-999);
|
||||
|
||||
glm::rq_decompose(r, q, m);
|
||||
glm::rq_decompose(m, r, q);
|
||||
|
||||
//Test if q*r really equals the input matrix
|
||||
matType<C, R, T, P> tm = r*q;
|
||||
matType<C, R, T, P> err = tm - m;
|
||||
|
||||
for (glm::length_t i = 0; i < C; i++) {
|
||||
for (glm::length_t j = 0; j < R; j++) {
|
||||
if (std::abs(err[i][j]) > epsilon) return 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
for (glm::length_t i = 0; i < C; i++)
|
||||
for (glm::length_t j = 0; j < R; j++)
|
||||
Error += std::abs(err[i][j]) > epsilon ? 1 : 0;
|
||||
|
||||
//Test if the rows of q are orthonormal
|
||||
matType<(C < R ? C : R), C, T, P> tq = transpose(q);
|
||||
|
||||
for (glm::length_t i = 0; i < (C < R ? C : R); i++) {
|
||||
if ((length(tq[i]) - 1) > epsilon) return 2;
|
||||
for (glm::length_t i = 0; i < (C < R ? C : R); i++)
|
||||
{
|
||||
Error += (length(tq[i]) - 1) > epsilon ? 1 : 0;
|
||||
|
||||
for (glm::length_t j = 0; j<i; j++) {
|
||||
if (std::abs(dot(tq[i], tq[j])) > epsilon) return 3;
|
||||
}
|
||||
for (glm::length_t j = 0; j<i; j++)
|
||||
Error += std::abs(dot(tq[i], tq[j])) > epsilon ? 1 : 0;
|
||||
}
|
||||
|
||||
|
||||
//Test if the matrix r is upper triangular
|
||||
for (glm::length_t i = 0; i < (C < R ? C : R); i++) {
|
||||
for (glm::length_t j = R - (C < R ? C : R) + i + 1; j < R; j++) {
|
||||
if (r[i][j] != 0) return 4;
|
||||
}
|
||||
}
|
||||
for (glm::length_t i = 0; i < (C < R ? C : R); i++)
|
||||
for (glm::length_t j = R - (C < R ? C : R) + i + 1; j < R; j++)
|
||||
Error += r[i][j] != 0 ? 1 : 0;
|
||||
|
||||
return 0;
|
||||
return Error;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
|
||||
int Error = 0;
|
||||
|
||||
//Test QR square
|
||||
if(test_qr(glm::dmat3(12, 6, -4, -51, 167, 24, 4, -68, -41))) return 1;
|
||||
Error += test_qr(glm::dmat3(12, 6, -4, -51, 167, 24, 4, -68, -41)) ? 1 : 0;
|
||||
|
||||
//Test RQ square
|
||||
if (test_rq(glm::dmat3(12, 6, -4, -51, 167, 24, 4, -68, -41))) return 2;
|
||||
Error += test_rq(glm::dmat3(12, 6, -4, -51, 167, 24, 4, -68, -41)) ? 1 : 0;
|
||||
|
||||
//Test QR triangular 1
|
||||
if (test_qr(glm::dmat3x4(12, 6, -4, -51, 167, 24, 4, -68, -41, 7, 2, 15))) return 3;
|
||||
Error += test_qr(glm::dmat3x4(12, 6, -4, -51, 167, 24, 4, -68, -41, 7, 2, 15)) ? 1 : 0;
|
||||
|
||||
//Test QR triangular 2
|
||||
if (test_qr(glm::dmat4x3(12, 6, -4, -51, 167, 24, 4, -68, -41, 7, 2, 15))) return 4;
|
||||
Error += test_qr(glm::dmat4x3(12, 6, -4, -51, 167, 24, 4, -68, -41, 7, 2, 15)) ? 1 : 0;
|
||||
|
||||
//Test RQ triangular 1 : Fails at the triangular test
|
||||
if (test_rq(glm::dmat3x4(12, 6, -4, -51, 167, 24, 4, -68, -41, 7, 2, 15))) return 5;
|
||||
Error += test_rq(glm::dmat3x4(12, 6, -4, -51, 167, 24, 4, -68, -41, 7, 2, 15)) ? 1 : 0;
|
||||
|
||||
//Test QR triangular 2
|
||||
if (test_rq(glm::dmat4x3(12, 6, -4, -51, 167, 24, 4, -68, -41, 7, 2, 15))) return 6;
|
||||
Error += test_rq(glm::dmat4x3(12, 6, -4, -51, 167, 24, 4, -68, -41, 7, 2, 15)) ? 1 : 0;
|
||||
|
||||
return 0;
|
||||
return Error;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user