Added post 73 for GLM 0.9.3.A release

This commit is contained in:
Christophe Riccio 2011-11-14 12:28:33 +00:00
parent 993cba7cca
commit 5b7717b7b0

View File

@ -164,6 +164,50 @@
</todo>
<page_news>
<news index="0073" date="11/11/2011" title="GLM 0.9.3 alpha released" image="goodies/logo.png" image-mini="image/logo-mini.png">
<paragraph>
GLM 0.9.3 is making progress which is illustrated by the release of this first alpha.
</paragraph>
<list name="Changelog:">
<list-element>
Improved doxygen documentation
</list-element>
<list-element>
Added new swizzle operators for C++11 compilers
</list-element>
<list-element>
Added new swizzle operators declared as functions
</list-element>
<list-element>
Added GLSL 4.20 length for vector and matrix types
</list-element>
<list-element>
Added GLSL core noise functions
</list-element>
<list-element>
Promoted GLM_GTC_noise extension: simplex, perlin, periodic noise functions
</list-element>
<list-element>
Promoted GLM_GTC_random extension: linear, gaussian and various random number generation distribution
</list-element>
<list-element>
Added GLM_GTX_constants: provides usefull constants
</list-element>
<list-element>
Fixed half based type contructors
</list-element>
</list>
<paragraph>
</paragraph>
<source type="Download" href="https://sourceforge.net/projects/ogl-math/files/glm-0.9.3.A/glm-0.9.3.A.zip/download">GLM 0.9.3.A (zip)</source>
<source type="Download" href="https://sourceforge.net/projects/ogl-math/files/glm-0.9.3.A/glm-0.9.3.A.7z/download">GLM 0.9.3.A (7z)</source>
<source type="Link" href="https://sourceforge.net/apps/trac/ogl-math/newticket">Submit a bug report</source>
<source type="Link" href="http://glm.g-truc.net/glm-0.9.3.pdf">GLM 0.9.3 Manual</source>
<source type="Link" href="http://glm.g-truc.net/api-0.9.3/index.html">GLM 0.9.3 API</source>
</news>
<news index="0072" date="24/10/2011" title="GLM 0.9.2.7 released" image="goodies/logo.png" image-mini="image/logo-mini.png">
<paragraph>
This revision fixes two problems: First, it adds all matrix products for all possible combinations of none-squared matrices. Thanks to <a href="http://www.zeuscmd.com">Grant James</a> who has provide the code for that.