Fixed and tested circular and spherical rands

This commit is contained in:
Christophe Riccio 2011-09-24 23:36:42 +01:00
parent a1789110e7
commit 695b058096
2 changed files with 25 additions and 23 deletions

View File

@ -194,8 +194,8 @@ GLM_FUNC_QUALIFIER detail::tvec3<T> sphericalRand
T const & Radius T const & Radius
) )
{ {
T z = compRand1(T(-1), T(1)); T z = linearRand(T(-1), T(1));
T a = compRand1(T(0), T(6.283185307179586476925286766559f)); T a = linearRand(T(0), T(6.283185307179586476925286766559f));
T r = sqrt(T(1) - z * z); T r = sqrt(T(1) - z * z);

View File

@ -32,8 +32,8 @@ int test_linearRand()
return Error; return Error;
} }
/*
int test_normalizedRand2() int test_circularRand()
{ {
int Error = 0; int Error = 0;
@ -41,21 +41,23 @@ int test_normalizedRand2()
std::size_t Max = 100000; std::size_t Max = 100000;
float ResultFloat = 0.0f; float ResultFloat = 0.0f;
double ResultDouble = 0.0f; double ResultDouble = 0.0f;
double Radius = 2.0f;
for(std::size_t i = 0; i < Max; ++i) for(std::size_t i = 0; i < Max; ++i)
{ {
ResultFloat += glm::length(glm::normalizedRand2(1.0f, 1.0f)); ResultFloat += glm::length(glm::circularRand(1.0f));
ResultDouble += glm::length(glm::normalizedRand2(1.0f, 1.0f)); ResultDouble += glm::length(glm::circularRand(Radius));
} }
Error += glm::equalEpsilon(ResultFloat, float(Max), 0.01f) ? 0 : 1; Error += glm::equalEpsilon(ResultFloat, float(Max), 0.01f) ? 0 : 1;
Error += glm::equalEpsilon(ResultDouble, double(Max), 0.01) ? 0 : 1; Error += glm::equalEpsilon(ResultDouble, double(Max) * double(Radius), 0.01) ? 0 : 1;
assert(!Error); assert(!Error);
} }
return Error; return Error;
} }
int test_normalizedRand3() int test_sphericalRand()
{ {
int Error = 0; int Error = 0;
@ -69,33 +71,33 @@ int test_normalizedRand3()
double ResultDoubleC = 0.0f; double ResultDoubleC = 0.0f;
for(std::size_t i = 0; i < Max; ++i) for(std::size_t i = 0; i < Max; ++i)
{ {
ResultFloatA += glm::length(glm::normalizedRand3(1.0f, 1.0f)); ResultFloatA += glm::length(glm::sphericalRand(1.0f));
ResultDoubleA += glm::length(glm::normalizedRand3(1.0f, 1.0f)); ResultDoubleA += glm::length(glm::sphericalRand(1.0));
ResultFloatB += glm::length(glm::normalizedRand3(2.0f, 2.0f)); ResultFloatB += glm::length(glm::sphericalRand(2.0f));
ResultDoubleB += glm::length(glm::normalizedRand3(2.0, 2.0)); ResultDoubleB += glm::length(glm::sphericalRand(2.0));
ResultFloatC += glm::length(glm::normalizedRand3(1.0f, 3.0f)); ResultFloatC += glm::length(glm::sphericalRand(3.0f));
ResultDoubleC += glm::length(glm::normalizedRand3(1.0, 3.0)); ResultDoubleC += glm::length(glm::sphericalRand(3.0));
} }
Error += glm::equalEpsilon(ResultFloatA, float(Max), 100.0f) ? 0 : 1; Error += glm::equalEpsilon(ResultFloatA, float(Max), 0.01f) ? 0 : 1;
Error += glm::equalEpsilon(ResultDoubleA, double(Max), 100.0) ? 0 : 1; Error += glm::equalEpsilon(ResultDoubleA, double(Max), 0.0001) ? 0 : 1;
Error += glm::equalEpsilon(ResultFloatB, float(Max * 2), 100.0001f) ? 0 : 1; Error += glm::equalEpsilon(ResultFloatB, float(Max * 2), 0.01f) ? 0 : 1;
Error += glm::equalEpsilon(ResultDoubleB, double(Max * 2), 100.0001) ? 0 : 1; Error += glm::equalEpsilon(ResultDoubleB, double(Max * 2), 0.0001) ? 0 : 1;
Error += (ResultFloatC >= float(Max) && ResultFloatC <= float(Max * 3)) ? 0 : 1; Error += glm::equalEpsilon(ResultFloatC, float(Max * 3), 0.01f) ? 0 : 1;
Error += (ResultDoubleC >= double(Max) && ResultDoubleC <= double(Max * 3)) ? 0 : 1; Error += glm::equalEpsilon(ResultDoubleC, double(Max * 3), 0.01) ? 0 : 1;
assert(!Error); assert(!Error);
} }
return Error; return Error;
} }
*/
int main() int main()
{ {
int Error = 0; int Error = 0;
Error += test_linearRand(); Error += test_linearRand();
//Error += test_normalizedRand2(); Error += test_circularRand();
//Error += test_normalizedRand3(); Error += test_sphericalRand();
return Error; return Error;
} }