Merge remote-tracking branch 'upstream/master'

This commit is contained in:
jan p springer 2015-12-02 20:13:33 +00:00
commit 71f2b2f422
10 changed files with 322 additions and 97 deletions

View File

@ -123,7 +123,7 @@ namespace glm
template <typename T, precision P, template <typename, precision> class vecType> template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> atan(vecType<T, P> const & a, vecType<T, P> const & b) GLM_FUNC_QUALIFIER vecType<T, P> atan(vecType<T, P> const & a, vecType<T, P> const & b)
{ {
return detail::functor2<T, P, vecType>::call(atan2, a, b); return detail::functor2<T, P, vecType>::call(::std::atan2, a, b);
} }
using std::atan; using std::atan;

View File

@ -579,25 +579,20 @@
# endif # endif
# elif GLM_COMPILER & GLM_COMPILER_INTEL # elif GLM_COMPILER & GLM_COMPILER_INTEL
# ifdef _MSC_EXTENSIONS # ifdef _MSC_EXTENSIONS
# define GLM_MSC_EXT GLM_LANG_CXXMS_FLAG
# else
# define GLM_MSC_EXT
# endif
# if __INTEL_CXX11_MODE__
# if __cplusplus >= 201402L # if __cplusplus >= 201402L
# define GLM_LANG (GLM_LANG_CXX14 | GLM_LANG_CXXMS_FLAG) # define GLM_LANG (GLM_LANG_CXX14 | GLM_LANG_CXXMS_FLAG)
# elif __cplusplus >= 201103L # elif __cplusplus >= 201103L
# define GLM_LANG (GLM_LANG_CXX11 | GLM_LANG_CXXMS_FLAG) # define GLM_LANG (GLM_LANG_CXX11 | GLM_LANG_CXXMS_FLAG)
# elif GLM_COMPILER >= GLM_COMPILER_INTEL13
# define GLM_LANG (GLM_LANG_CXX0X | GLM_LANG_CXXMS_FLAG)
# elif __cplusplus >= 199711L
# define GLM_LANG (GLM_LANG_CXX98 | GLM_LANG_CXXMS_FLAG)
# else # else
# define GLM_LANG (GLM_LANG_CXX | GLM_LANG_CXXMS_FLAG) # define GLM_LANG (GLM_LANG_CXX0X | GLM_LANG_CXXMS_FLAG)
# endif # endif
# else # else
# if __cplusplus >= 201402L # if __cplusplus >= 199711L
# define GLM_LANG (GLM_LANG_CXX14 | GLM_LANG_CXXMS_FLAG)
# elif __cplusplus >= 201103L
# define GLM_LANG (GLM_LANG_CXX11 | GLM_LANG_CXXMS_FLAG)
# elif GLM_COMPILER >= GLM_COMPILER_INTEL13
# define GLM_LANG (GLM_LANG_CXX0X | GLM_LANG_CXXMS_FLAG)
# elif __cplusplus >= 199711L
# define GLM_LANG (GLM_LANG_CXX98 | GLM_LANG_CXXMS_FLAG) # define GLM_LANG (GLM_LANG_CXX98 | GLM_LANG_CXXMS_FLAG)
# else # else
# define GLM_LANG (GLM_LANG_CXX | GLM_LANG_CXXMS_FLAG) # define GLM_LANG (GLM_LANG_CXX | GLM_LANG_CXXMS_FLAG)
@ -669,7 +664,7 @@
# define GLM_HAS_CXX11_STL ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && \ # define GLM_HAS_CXX11_STL ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && \
((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC48)) || \ ((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC48)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC2013)) || \ ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC2013)) || \
((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL15))) ((GLM_PLATFORM != GLM_PLATFORM_WINDOWS) && (GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL15)))
#endif #endif
// N1720 // N1720

View File

@ -116,7 +116,7 @@ namespace glm
tmat4x4<T, P> const & m, tmat4x4<T, P> const & m,
tvec3<T, P> const & v); tvec3<T, P> const & v);
/// Creates a matrix for an orthographic parallel viewing volume. /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness.
/// ///
/// @param left /// @param left
/// @param right /// @param right
@ -136,6 +136,46 @@ namespace glm
T zNear, T zNear,
T zFar); T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using left-handedness.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param zNear
/// @param zFar
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top)
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> orthoLH(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using right-handedness.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param zNear
/// @param zFar
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top)
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> orthoRH(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar);
/// Creates a matrix for projecting two-dimensional coordinates onto the screen. /// Creates a matrix for projecting two-dimensional coordinates onto the screen.
/// ///
/// @param left /// @param left
@ -152,7 +192,7 @@ namespace glm
T bottom, T bottom,
T top); T top);
/// Creates a frustum matrix. /// Creates a frustum matrix with default handedness.
/// ///
/// @param left /// @param left
/// @param right /// @param right
@ -171,6 +211,44 @@ namespace glm
T near, T near,
T far); T far);
/// Creates a left handed frustum matrix.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param near
/// @param far
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> frustumLH(
T left,
T right,
T bottom,
T top,
T near,
T far);
/// Creates a right handed frustum matrix.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param near
/// @param far
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> frustumRH(
T left,
T right,
T bottom,
T top,
T near,
T far);
/// Creates a matrix for a symetric perspective-view frustum based on the default handedness. /// Creates a matrix for a symetric perspective-view frustum based on the default handedness.
/// ///
/// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians.
@ -267,7 +345,7 @@ namespace glm
T near, T near,
T far); T far);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite. /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness.
/// ///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
@ -278,6 +356,28 @@ namespace glm
GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspective( GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspective(
T fovy, T aspect, T near); T fovy, T aspect, T near);
/// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveLH(
T fovy, T aspect, T near);
/// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveRH(
T fovy, T aspect, T near);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
/// ///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.

View File

@ -157,14 +157,65 @@ namespace glm
T zNear, T zNear,
T zFar T zFar
) )
{
#ifdef GLM_LEFT_HANDED
return orthoLH(left, right, bottom, top, zNear, zFar);
#else
return orthoRH(left, right, bottom, top, zNear, zFar);
#endif
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoLH
(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar
)
{ {
tmat4x4<T, defaultp> Result(1); tmat4x4<T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left); Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom); Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left); Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom); Result[3][1] = - (top + bottom) / (top - bottom);
#ifdef GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = static_cast<T>(1) / (zFar - zNear);
Result[3][2] = - zNear / (zFar - zNear);
#else
Result[2][2] = static_cast<T>(2) / (zFar - zNear);
Result[3][2] = - (zFar + zNear) / (zFar - zNear); Result[3][2] = - (zFar + zNear) / (zFar - zNear);
#endif
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoRH
(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar
)
{
tmat4x4<T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
#ifdef GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
Result[3][2] = - zNear / (zFar - zNear);
#else
Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
#endif
return Result; return Result;
} }
@ -196,15 +247,67 @@ namespace glm
T nearVal, T nearVal,
T farVal T farVal
) )
{
#ifdef GLM_LEFT_HANDED
return frustumLH(left, right, bottom, top, nearVal, farVal);
#else
return frustumRH(left, right, bottom, top, nearVal, farVal);
#endif
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumLH
(
T left,
T right,
T bottom,
T top,
T nearVal,
T farVal
)
{ {
tmat4x4<T, defaultp> Result(0); tmat4x4<T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left); Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom); Result[2][1] = (top + bottom) / (top - bottom);
Result[2][2] = -(farVal + nearVal) / (farVal - nearVal); Result[2][3] = static_cast<T>(1);
Result[2][3] = static_cast<T>(-1);
#ifdef GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = farVal / (zFar - nearVal);
Result[3][2] = -(farVal * nearVal) / (zFar - nearVal);
#else
Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
#endif
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumRH
(
T left,
T right,
T bottom,
T top,
T nearVal,
T farVal
)
{
tmat4x4<T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][3] = static_cast<T>(-1);
#ifdef GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = farVal / (nearVal - farVal);
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
#else
Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
#endif
return Result; return Result;
} }
@ -240,9 +343,15 @@ namespace glm
tmat4x4<T, defaultp> Result(static_cast<T>(0)); tmat4x4<T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy); Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[2][3] = - static_cast<T>(1); Result[2][3] = - static_cast<T>(1);
#ifdef GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zNear - zFar);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
#else
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
#endif
return Result; return Result;
} }
@ -262,9 +371,15 @@ namespace glm
tmat4x4<T, defaultp> Result(static_cast<T>(0)); tmat4x4<T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy); Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[2][3] = static_cast<T>(1); Result[2][3] = static_cast<T>(1);
#ifdef GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zFar - zNear);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
#else
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
#endif
return Result; return Result;
} }
@ -306,9 +421,15 @@ namespace glm
tmat4x4<T, defaultp> Result(static_cast<T>(0)); tmat4x4<T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w; Result[0][0] = w;
Result[1][1] = h; Result[1][1] = h;
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[2][3] = - static_cast<T>(1); Result[2][3] = - static_cast<T>(1);
#ifdef GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zNear - zFar);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
#else
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
#endif
return Result; return Result;
} }
@ -333,9 +454,16 @@ namespace glm
tmat4x4<T, defaultp> Result(static_cast<T>(0)); tmat4x4<T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w; Result[0][0] = w;
Result[1][1] = h; Result[1][1] = h;
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[2][3] = static_cast<T>(1); Result[2][3] = static_cast<T>(1);
#ifdef GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zFar - zNear);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
#else
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
#endif
return Result; return Result;
} }
@ -346,6 +474,21 @@ namespace glm
T aspect, T aspect,
T zNear T zNear
) )
{
#ifdef GLM_LEFT_HANDED
return infinitePerspectiveLH(fovy, aspect, zNear);
#else
return infinitePerspectiveRH(fovy, aspect, zNear);
#endif
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveRH
(
T fovy,
T aspect,
T zNear
)
{ {
T const range = tan(fovy / T(2)) * zNear; T const range = tan(fovy / T(2)) * zNear;
T const left = -range * aspect; T const left = -range * aspect;
@ -362,6 +505,29 @@ namespace glm
return Result; return Result;
} }
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveLH
(
T fovy,
T aspect,
T zNear
)
{
T const range = tan(fovy / T(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;
tmat4x4<T, defaultp> Result(T(0));
Result[0][0] = (T(2) * zNear) / (right - left);
Result[1][1] = (T(2) * zNear) / (top - bottom);
Result[2][2] = T(1);
Result[2][3] = T(1);
Result[3][2] = - T(2) * zNear;
return Result;
}
// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
template <typename T> template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective

View File

@ -161,7 +161,7 @@ namespace glm
/// Extracts the (X * Y * Z) Euler angles from the rotation matrix M /// Extracts the (X * Y * Z) Euler angles from the rotation matrix M
/// @see gtx_euler_angles /// @see gtx_euler_angles
template <typename T> template <typename T>
GLM_FUNC_DECL void extractEulerAngleXYZ(tmat4x4<T, defaultp> & M, GLM_FUNC_DECL void extractEulerAngleXYZ(tmat4x4<T, defaultp> const & M,
T & t1, T & t1,
T & t2, T & t2,
T & t3); T & t3);

View File

@ -323,7 +323,7 @@ namespace glm
} }
template <typename T> template <typename T>
GLM_FUNC_DECL void extractEulerAngleXYZ(tmat4x4<T, defaultp> & M, GLM_FUNC_DECL void extractEulerAngleXYZ(tmat4x4<T, defaultp> const & M,
T & t1, T & t1,
T & t2, T & t2,
T & t3) T & t3)

View File

@ -49,7 +49,7 @@ namespace glm
typename genType::value_type a = glm::dot(e1, p); typename genType::value_type a = glm::dot(e1, p);
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon(); typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
if(a < Epsilon) if(a < Epsilon && a > -Epsilon)
return false; return false;
typename genType::value_type f = typename genType::value_type(1.0f) / a; typename genType::value_type f = typename genType::value_type(1.0f) / a;
@ -73,43 +73,6 @@ namespace glm
return baryPosition.z >= typename genType::value_type(0.0f); return baryPosition.z >= typename genType::value_type(0.0f);
} }
//template <typename genType>
//GLM_FUNC_QUALIFIER bool intersectRayTriangle
//(
// genType const & orig, genType const & dir,
// genType const & vert0, genType const & vert1, genType const & vert2,
// genType & position
//)
//{
// typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
//
// genType edge1 = vert1 - vert0;
// genType edge2 = vert2 - vert0;
//
// genType pvec = cross(dir, edge2);
//
// float det = dot(edge1, pvec);
// if(det < Epsilon)
// return false;
//
// genType tvec = orig - vert0;
//
// position.y = dot(tvec, pvec);
// if (position.y < typename genType::value_type(0) || position.y > det)
// return typename genType::value_type(0);
//
// genType qvec = cross(tvec, edge1);
//
// position.z = dot(dir, qvec);
// if (position.z < typename genType::value_type(0) || position.y + position.z > det)
// return typename genType::value_type(0);
//
// position.x = dot(edge2, qvec);
// position *= typename genType::value_type(1) / det;
//
// return typename genType::value_type(1);
//}
template <typename genType> template <typename genType>
GLM_FUNC_QUALIFIER bool intersectLineTriangle GLM_FUNC_QUALIFIER bool intersectLineTriangle
( (

View File

@ -58,15 +58,15 @@ namespace glm
/// @addtogroup gtx_vector_angle /// @addtogroup gtx_vector_angle
/// @{ /// @{
//! Returns the absolute angle between two vectors //! Returns the absolute angle between two vectors.
//! Parameters need to be normalized. //! Parameters need to be normalized.
/// @see gtx_vector_angle extension /// @see gtx_vector_angle extension.
template <typename vecType> template <typename vecType>
GLM_FUNC_DECL typename vecType::value_type angle( GLM_FUNC_DECL typename vecType::value_type angle(
vecType const & x, vecType const & x,
vecType const & y); vecType const & y);
//! Returns the oriented angle between two 2d vectors //! Returns the oriented angle between two 2d vectors.
//! Parameters need to be normalized. //! Parameters need to be normalized.
/// @see gtx_vector_angle extension. /// @see gtx_vector_angle extension.
template <typename T, precision P> template <typename T, precision P>

View File

@ -68,6 +68,7 @@ glm::mat4 camera(float Translate, glm::vec2 const & Rotate)
##### Fixes: ##### Fixes:
- Fixed GTX_extended_min_max filename typo #386 - Fixed GTX_extended_min_max filename typo #386
- Fixed intersectRayTriangle to not do any unintentional backface culling
#### [GLM 0.9.7.2](https://github.com/g-truc/glm/tree/0.9.7) - 2015-XX-XX #### [GLM 0.9.7.2](https://github.com/g-truc/glm/tree/0.9.7) - 2015-XX-XX
##### Fixes: ##### Fixes:

View File

@ -63,10 +63,10 @@ int test_log2()
Error += glm::abs(double(A) - B) <= 24 ? 0 : 1; Error += glm::abs(double(A) - B) <= 24 ? 0 : 1;
assert(!Error); assert(!Error);
printf("Log2(%d) Error: %d, %d\n", 1 << i, A, B); printf("Log2(%d) error A=%d, B=%d\n", 1 << i, A, B);
} }
printf("log2 error: %d\n", Error); printf("log2 error=%d\n", Error);
return Error; return Error;
} }