mirror of
https://github.com/g-truc/glm.git
synced 2024-11-10 04:31:47 +00:00
Added further details on the comparison issue with covariance matrices on some VMs.
Also corrected some code style guide, and changed `nullptr` to `GLM_NULLPTR` for better compatibility. Tests are now executed in blocks of related tests, and only inbetween blocks the tests will exit.
This commit is contained in:
parent
d0d7945141
commit
a0ccbcc63d
119
glm/gtx/pca.inl
119
glm/gtx/pca.inl
@ -29,15 +29,16 @@ namespace glm {
|
|||||||
glm::mat<D, D, T, Q> m(0);
|
glm::mat<D, D, T, Q> m(0);
|
||||||
|
|
||||||
size_t cnt = 0;
|
size_t cnt = 0;
|
||||||
for (I i = b; i != e; i++)
|
for(I i = b; i != e; i++)
|
||||||
{
|
{
|
||||||
vec<D, T, Q> const& v = *i;
|
vec<D, T, Q> const& v = *i;
|
||||||
for (length_t x = 0; x < D; ++x)
|
for(length_t x = 0; x < D; ++x)
|
||||||
for (length_t y = 0; y < D; ++y)
|
for(length_t y = 0; y < D; ++y)
|
||||||
m[x][y] += static_cast<T>(v[x] * v[y]);
|
m[x][y] += static_cast<T>(v[x] * v[y]);
|
||||||
cnt++;
|
cnt++;
|
||||||
}
|
}
|
||||||
if (cnt > 0) m /= static_cast<T>(cnt);
|
if(cnt > 0)
|
||||||
|
m /= static_cast<T>(cnt);
|
||||||
|
|
||||||
return m;
|
return m;
|
||||||
}
|
}
|
||||||
@ -50,15 +51,16 @@ namespace glm {
|
|||||||
glm::vec<D, T, Q> v;
|
glm::vec<D, T, Q> v;
|
||||||
|
|
||||||
size_t cnt = 0;
|
size_t cnt = 0;
|
||||||
for (I i = b; i != e; i++)
|
for(I i = b; i != e; i++)
|
||||||
{
|
{
|
||||||
v = *i - c;
|
v = *i - c;
|
||||||
for (length_t x = 0; x < D; ++x)
|
for(length_t x = 0; x < D; ++x)
|
||||||
for (length_t y = 0; y < D; ++y)
|
for(length_t y = 0; y < D; ++y)
|
||||||
m[x][y] += static_cast<T>(v[x] * v[y]);
|
m[x][y] += static_cast<T>(v[x] * v[y]);
|
||||||
cnt++;
|
cnt++;
|
||||||
}
|
}
|
||||||
if (cnt > 0) m /= static_cast<T>(cnt);
|
if(cnt > 0)
|
||||||
|
m /= static_cast<T>(cnt);
|
||||||
|
|
||||||
return m;
|
return m;
|
||||||
}
|
}
|
||||||
@ -77,12 +79,12 @@ namespace glm {
|
|||||||
static const T epsilon = static_cast<T>(0.0000001);
|
static const T epsilon = static_cast<T>(0.0000001);
|
||||||
T absa = glm::abs(a);
|
T absa = glm::abs(a);
|
||||||
T absb = glm::abs(b);
|
T absb = glm::abs(b);
|
||||||
if (absa > absb) {
|
if(absa > absb) {
|
||||||
absb /= absa;
|
absb /= absa;
|
||||||
absb *= absb;
|
absb *= absb;
|
||||||
return absa * glm::sqrt(static_cast<T>(1) + absb);
|
return absa * glm::sqrt(static_cast<T>(1) + absb);
|
||||||
}
|
}
|
||||||
if (glm::equal<T>(absb, 0, epsilon)) return static_cast<T>(0);
|
if(glm::equal<T>(absb, 0, epsilon)) return static_cast<T>(0);
|
||||||
absa /= absb;
|
absa /= absb;
|
||||||
absa *= absa;
|
absa *= absa;
|
||||||
return absb * glm::sqrt(static_cast<T>(1) + absa);
|
return absb * glm::sqrt(static_cast<T>(1) + absa);
|
||||||
@ -105,28 +107,33 @@ namespace glm {
|
|||||||
T d[D]; // diagonal elements
|
T d[D]; // diagonal elements
|
||||||
T e[D]; // off-diagonal elements
|
T e[D]; // off-diagonal elements
|
||||||
|
|
||||||
for (length_t r = 0; r < D; r++) {
|
for(length_t r = 0; r < D; r++)
|
||||||
for (length_t c = 0; c < D; c++) {
|
for(length_t c = 0; c < D; c++)
|
||||||
a[(r) * D + (c)] = covarMat[c][r];
|
a[(r) * D + (c)] = covarMat[c][r];
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// 1. Householder reduction.
|
// 1. Householder reduction.
|
||||||
length_t l, k, j, i;
|
length_t l, k, j, i;
|
||||||
T scale, hh, h, g, f;
|
T scale, hh, h, g, f;
|
||||||
static const T epsilon = static_cast<T>(0.0000001);
|
static const T epsilon = static_cast<T>(0.0000001);
|
||||||
|
|
||||||
for (i = D; i >= 2; i--) {
|
for(i = D; i >= 2; i--)
|
||||||
|
{
|
||||||
l = i - 1;
|
l = i - 1;
|
||||||
h = scale = 0;
|
h = scale = 0;
|
||||||
if (l > 1) {
|
if(l > 1)
|
||||||
for (k = 1; k <= l; k++) {
|
{
|
||||||
|
for(k = 1; k <= l; k++)
|
||||||
|
{
|
||||||
scale += glm::abs(a[(i - 1) * D + (k - 1)]);
|
scale += glm::abs(a[(i - 1) * D + (k - 1)]);
|
||||||
}
|
}
|
||||||
if (glm::equal<T>(scale, 0, epsilon)) {
|
if(glm::equal<T>(scale, 0, epsilon))
|
||||||
|
{
|
||||||
e[i - 1] = a[(i - 1) * D + (l - 1)];
|
e[i - 1] = a[(i - 1) * D + (l - 1)];
|
||||||
} else {
|
}
|
||||||
for (k = 1; k <= l; k++) {
|
else
|
||||||
|
{
|
||||||
|
for(k = 1; k <= l; k++)
|
||||||
|
{
|
||||||
a[(i - 1) * D + (k - 1)] /= scale;
|
a[(i - 1) * D + (k - 1)] /= scale;
|
||||||
h += a[(i - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)];
|
h += a[(i - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)];
|
||||||
}
|
}
|
||||||
@ -136,50 +143,63 @@ namespace glm {
|
|||||||
h -= f * g;
|
h -= f * g;
|
||||||
a[(i - 1) * D + (l - 1)] = f - g;
|
a[(i - 1) * D + (l - 1)] = f - g;
|
||||||
f = 0;
|
f = 0;
|
||||||
for (j = 1; j <= l; j++) {
|
for(j = 1; j <= l; j++)
|
||||||
|
{
|
||||||
a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] / h;
|
a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] / h;
|
||||||
g = 0;
|
g = 0;
|
||||||
for (k = 1; k <= j; k++) {
|
for(k = 1; k <= j; k++)
|
||||||
|
{
|
||||||
g += a[(j - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)];
|
g += a[(j - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)];
|
||||||
}
|
}
|
||||||
for (k = j + 1; k <= l; k++) {
|
for(k = j + 1; k <= l; k++)
|
||||||
|
{
|
||||||
g += a[(k - 1) * D + (j - 1)] * a[(i - 1) * D + (k - 1)];
|
g += a[(k - 1) * D + (j - 1)] * a[(i - 1) * D + (k - 1)];
|
||||||
}
|
}
|
||||||
e[j - 1] = g / h;
|
e[j - 1] = g / h;
|
||||||
f += e[j - 1] * a[(i - 1) * D + (j - 1)];
|
f += e[j - 1] * a[(i - 1) * D + (j - 1)];
|
||||||
}
|
}
|
||||||
hh = f / (h + h);
|
hh = f / (h + h);
|
||||||
for (j = 1; j <= l; j++) {
|
for(j = 1; j <= l; j++)
|
||||||
|
{
|
||||||
f = a[(i - 1) * D + (j - 1)];
|
f = a[(i - 1) * D + (j - 1)];
|
||||||
e[j - 1] = g = e[j - 1] - hh * f;
|
e[j - 1] = g = e[j - 1] - hh * f;
|
||||||
for (k = 1; k <= j; k++) {
|
for(k = 1; k <= j; k++)
|
||||||
|
{
|
||||||
a[(j - 1) * D + (k - 1)] -= (f * e[k - 1] + g * a[(i - 1) * D + (k - 1)]);
|
a[(j - 1) * D + (k - 1)] -= (f * e[k - 1] + g * a[(i - 1) * D + (k - 1)]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else {
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
e[i - 1] = a[(i - 1) * D + (l - 1)];
|
e[i - 1] = a[(i - 1) * D + (l - 1)];
|
||||||
}
|
}
|
||||||
d[i - 1] = h;
|
d[i - 1] = h;
|
||||||
}
|
}
|
||||||
d[0] = 0;
|
d[0] = 0;
|
||||||
e[0] = 0;
|
e[0] = 0;
|
||||||
for (i = 1; i <= D; i++) {
|
for(i = 1; i <= D; i++)
|
||||||
|
{
|
||||||
l = i - 1;
|
l = i - 1;
|
||||||
if (!glm::equal<T>(d[i - 1], 0, epsilon)) {
|
if(!glm::equal<T>(d[i - 1], 0, epsilon))
|
||||||
for (j = 1; j <= l; j++) {
|
{
|
||||||
|
for(j = 1; j <= l; j++)
|
||||||
|
{
|
||||||
g = 0;
|
g = 0;
|
||||||
for (k = 1; k <= l; k++) {
|
for(k = 1; k <= l; k++)
|
||||||
|
{
|
||||||
g += a[(i - 1) * D + (k - 1)] * a[(k - 1) * D + (j - 1)];
|
g += a[(i - 1) * D + (k - 1)] * a[(k - 1) * D + (j - 1)];
|
||||||
}
|
}
|
||||||
for (k = 1; k <= l; k++) {
|
for(k = 1; k <= l; k++)
|
||||||
|
{
|
||||||
a[(k - 1) * D + (j - 1)] -= g * a[(k - 1) * D + (i - 1)];
|
a[(k - 1) * D + (j - 1)] -= g * a[(k - 1) * D + (i - 1)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
d[i - 1] = a[(i - 1) * D + (i - 1)];
|
d[i - 1] = a[(i - 1) * D + (i - 1)];
|
||||||
a[(i - 1) * D + (i - 1)] = 1;
|
a[(i - 1) * D + (i - 1)] = 1;
|
||||||
for (j = 1; j <= l; j++) {
|
for(j = 1; j <= l; j++)
|
||||||
|
{
|
||||||
a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] = 0;
|
a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -189,20 +209,27 @@ namespace glm {
|
|||||||
T s, r, p, dd, c, b;
|
T s, r, p, dd, c, b;
|
||||||
const length_t MAX_ITER = 30;
|
const length_t MAX_ITER = 30;
|
||||||
|
|
||||||
for (i = 2; i <= D; i++) {
|
for(i = 2; i <= D; i++)
|
||||||
|
{
|
||||||
e[i - 2] = e[i - 1];
|
e[i - 2] = e[i - 1];
|
||||||
}
|
}
|
||||||
e[D - 1] = 0;
|
e[D - 1] = 0;
|
||||||
|
|
||||||
for (l = 1; l <= D; l++) {
|
for(l = 1; l <= D; l++)
|
||||||
|
{
|
||||||
iter = 0;
|
iter = 0;
|
||||||
do {
|
do
|
||||||
for (m = l; m <= D - 1; m++) {
|
{
|
||||||
|
for(m = l; m <= D - 1; m++)
|
||||||
|
{
|
||||||
dd = glm::abs(d[m - 1]) + glm::abs(d[m - 1 + 1]);
|
dd = glm::abs(d[m - 1]) + glm::abs(d[m - 1 + 1]);
|
||||||
if (glm::equal<T>(glm::abs(e[m - 1]) + dd, dd, epsilon)) break;
|
if(glm::equal<T>(glm::abs(e[m - 1]) + dd, dd, epsilon))
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
if (m != l) {
|
if(m != l)
|
||||||
if (iter++ == MAX_ITER) {
|
{
|
||||||
|
if(iter++ == MAX_ITER)
|
||||||
|
{
|
||||||
return 0; // Too many iterations in FindEigenvalues
|
return 0; // Too many iterations in FindEigenvalues
|
||||||
}
|
}
|
||||||
g = (d[l - 1 + 1] - d[l - 1]) / (2 * e[l - 1]);
|
g = (d[l - 1 + 1] - d[l - 1]) / (2 * e[l - 1]);
|
||||||
@ -210,11 +237,13 @@ namespace glm {
|
|||||||
g = d[m - 1] - d[l - 1] + e[l - 1] / (g + transferSign(r, g));
|
g = d[m - 1] - d[l - 1] + e[l - 1] / (g + transferSign(r, g));
|
||||||
s = c = 1;
|
s = c = 1;
|
||||||
p = 0;
|
p = 0;
|
||||||
for (i = m - 1; i >= l; i--) {
|
for(i = m - 1; i >= l; i--)
|
||||||
|
{
|
||||||
f = s * e[i - 1];
|
f = s * e[i - 1];
|
||||||
b = c * e[i - 1];
|
b = c * e[i - 1];
|
||||||
e[i - 1 + 1] = r = pythag(f, g);
|
e[i - 1 + 1] = r = pythag(f, g);
|
||||||
if (glm::equal<T>(r, 0, epsilon)) {
|
if(glm::equal<T>(r, 0, epsilon))
|
||||||
|
{
|
||||||
d[i - 1 + 1] -= p;
|
d[i - 1 + 1] -= p;
|
||||||
e[m - 1] = 0;
|
e[m - 1] = 0;
|
||||||
break;
|
break;
|
||||||
@ -225,18 +254,20 @@ namespace glm {
|
|||||||
r = (d[i - 1] - g) * s + 2 * c * b;
|
r = (d[i - 1] - g) * s + 2 * c * b;
|
||||||
d[i - 1 + 1] = g + (p = s * r);
|
d[i - 1 + 1] = g + (p = s * r);
|
||||||
g = c * r - b;
|
g = c * r - b;
|
||||||
for (k = 1; k <= D; k++) {
|
for(k = 1; k <= D; k++)
|
||||||
|
{
|
||||||
f = a[(k - 1) * D + (i - 1 + 1)];
|
f = a[(k - 1) * D + (i - 1 + 1)];
|
||||||
a[(k - 1) * D + (i - 1 + 1)] = s * a[(k - 1) * D + (i - 1)] + c * f;
|
a[(k - 1) * D + (i - 1 + 1)] = s * a[(k - 1) * D + (i - 1)] + c * f;
|
||||||
a[(k - 1) * D + (i - 1)] = c * a[(k - 1) * D + (i - 1)] - s * f;
|
a[(k - 1) * D + (i - 1)] = c * a[(k - 1) * D + (i - 1)] - s * f;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (glm::equal<T>(r, 0, epsilon) && (i >= l)) continue;
|
if(glm::equal<T>(r, 0, epsilon) && (i >= l))
|
||||||
|
continue;
|
||||||
d[l - 1] -= p;
|
d[l - 1] -= p;
|
||||||
e[l - 1] = g;
|
e[l - 1] = g;
|
||||||
e[m - 1] = 0;
|
e[m - 1] = 0;
|
||||||
}
|
}
|
||||||
} while (m != l);
|
} while(m != l);
|
||||||
}
|
}
|
||||||
|
|
||||||
// 3. output
|
// 3. output
|
||||||
|
@ -32,8 +32,7 @@ bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> cons
|
|||||||
template<typename T>
|
template<typename T>
|
||||||
T failReport(T line)
|
T failReport(T line)
|
||||||
{
|
{
|
||||||
printf("I:Failed in line %d\n", static_cast<int>(line));
|
fprintf(stderr, "Failed in line %d\n", static_cast<int>(line));
|
||||||
fprintf(stderr, "E:Failed in line %d\n", static_cast<int>(line));
|
|
||||||
return line;
|
return line;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -211,12 +210,19 @@ namespace _1aga
|
|||||||
template<glm::length_t D, typename T, glm::qualifier Q>
|
template<glm::length_t D, typename T, glm::qualifier Q>
|
||||||
int checkCovarMat(glm::mat<D, D, T, Q> const& covarMat)
|
int checkCovarMat(glm::mat<D, D, T, Q> const& covarMat)
|
||||||
{
|
{
|
||||||
const T* expectedCovarData = nullptr;
|
const T* expectedCovarData = GLM_NULLPTR;
|
||||||
getExpectedCovarDataPtr(expectedCovarData);
|
getExpectedCovarDataPtr(expectedCovarData);
|
||||||
for(glm::length_t x = 0; x < D; ++x)
|
for(glm::length_t x = 0; x < D; ++x)
|
||||||
for(glm::length_t y = 0; y < D; ++y)
|
for(glm::length_t y = 0; y < D; ++y)
|
||||||
if(!glm::equal(covarMat[y][x], expectedCovarData[x * 4 + y], static_cast<T>(0.000001)))
|
if(!glm::equal(covarMat[y][x], expectedCovarData[x * 4 + y], static_cast<T>(0.000001)))
|
||||||
|
{
|
||||||
|
fprintf(stderr, "E: %.15lf != %.15lf ; diff: %.20lf\n",
|
||||||
|
static_cast<double>(covarMat[y][x]),
|
||||||
|
static_cast<double>(expectedCovarData[x * 4 + y]),
|
||||||
|
static_cast<double>(covarMat[y][x] - expectedCovarData[x * 4 + y])
|
||||||
|
);
|
||||||
return failReport(__LINE__);
|
return failReport(__LINE__);
|
||||||
|
}
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -305,8 +311,8 @@ namespace _1aga
|
|||||||
glm::vec<D, T, Q> const& evals,
|
glm::vec<D, T, Q> const& evals,
|
||||||
glm::mat<D, D, T, Q> const& evecs)
|
glm::mat<D, D, T, Q> const& evecs)
|
||||||
{
|
{
|
||||||
const T* expectedEvals = nullptr;
|
const T* expectedEvals = GLM_NULLPTR;
|
||||||
const T* expectedEvecs = nullptr;
|
const T* expectedEvecs = GLM_NULLPTR;
|
||||||
getExpectedEigenvaluesEigenvectorsDataPtr<D, T>(expectedEvals, expectedEvecs);
|
getExpectedEigenvaluesEigenvectorsDataPtr<D, T>(expectedEvals, expectedEvecs);
|
||||||
|
|
||||||
for(int i = 0; i < D; ++i)
|
for(int i = 0; i < D; ++i)
|
||||||
@ -441,8 +447,7 @@ int testCovar(glm::length_t dataSize, unsigned int randomEngineSeed)
|
|||||||
mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center);
|
mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center);
|
||||||
if(_1aga::checkCovarMat(covarMat))
|
if(_1aga::checkCovarMat(covarMat))
|
||||||
{
|
{
|
||||||
fprintf(stdout, "I:Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str());
|
fprintf(stderr, "Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str());
|
||||||
fprintf(stderr, "E:Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str());
|
|
||||||
return failReport(__LINE__);
|
return failReport(__LINE__);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -636,6 +641,7 @@ int rndTest(unsigned int randomEngineSeed)
|
|||||||
|
|
||||||
int main()
|
int main()
|
||||||
{
|
{
|
||||||
|
int error(0);
|
||||||
|
|
||||||
// A small smoke test to fail early with most problems
|
// A small smoke test to fail early with most problems
|
||||||
if(smokeTest())
|
if(smokeTest())
|
||||||
@ -643,54 +649,62 @@ int main()
|
|||||||
|
|
||||||
// test sorting utility.
|
// test sorting utility.
|
||||||
if(testEigenvalueSort<2, float, glm::defaultp>() != 0)
|
if(testEigenvalueSort<2, float, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testEigenvalueSort<2, double, glm::defaultp>() != 0)
|
if(testEigenvalueSort<2, double, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testEigenvalueSort<3, float, glm::defaultp>() != 0)
|
if(testEigenvalueSort<3, float, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testEigenvalueSort<3, double, glm::defaultp>() != 0)
|
if(testEigenvalueSort<3, double, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testEigenvalueSort<4, float, glm::defaultp>() != 0)
|
if(testEigenvalueSort<4, float, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testEigenvalueSort<4, double, glm::defaultp>() != 0)
|
if(testEigenvalueSort<4, double, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
|
if (error != 0)
|
||||||
|
return error;
|
||||||
|
|
||||||
// Note: the random engine uses a fixed seed to create consistent and reproducible test data
|
// Note: the random engine uses a fixed seed to create consistent and reproducible test data
|
||||||
// test covariance matrix computation from different data sources
|
// test covariance matrix computation from different data sources
|
||||||
if(testCovar<2, float, glm::defaultp>(100, 12345) != 0)
|
if(testCovar<2, float, glm::defaultp>(100, 12345) != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testCovar<2, double, glm::defaultp>(100, 42) != 0)
|
if(testCovar<2, double, glm::defaultp>(100, 42) != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testCovar<3, float, glm::defaultp>(100, 2021) != 0)
|
if(testCovar<3, float, glm::defaultp>(100, 2021) != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testCovar<3, double, glm::defaultp>(100, 815) != 0)
|
if(testCovar<3, double, glm::defaultp>(100, 815) != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testCovar<4, float, glm::defaultp>(100, 3141) != 0)
|
if(testCovar<4, float, glm::defaultp>(100, 3141) != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testCovar<4, double, glm::defaultp>(100, 174) != 0)
|
if(testCovar<4, double, glm::defaultp>(100, 174) != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
|
if (error != 0)
|
||||||
|
return error;
|
||||||
|
|
||||||
// test PCA eigen vector reconstruction
|
// test PCA eigen vector reconstruction
|
||||||
if(testEigenvectors<2, float, glm::defaultp>() != 0)
|
if(testEigenvectors<2, float, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testEigenvectors<2, double, glm::defaultp>() != 0)
|
if(testEigenvectors<2, double, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testEigenvectors<3, float, glm::defaultp>() != 0)
|
if(testEigenvectors<3, float, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(testEigenvectors<3, double, glm::defaultp>() != 0)
|
if(testEigenvectors<3, double, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if (testEigenvectors<4, float, glm::defaultp>() != 0)
|
if(testEigenvectors<4, float, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if (testEigenvectors<4, double, glm::defaultp>() != 0)
|
if(testEigenvectors<4, double, glm::defaultp>() != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
|
if(error != 0)
|
||||||
|
return error;
|
||||||
|
|
||||||
// Final tests with randomized data
|
// Final tests with randomized data
|
||||||
#if GLM_HAS_CXX11_STL == 1
|
#if GLM_HAS_CXX11_STL == 1
|
||||||
if(rndTest(12345) != 0)
|
if(rndTest(12345) != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
if(rndTest(42) != 0)
|
if(rndTest(42) != 0)
|
||||||
return failReport(__LINE__);
|
error = failReport(__LINE__);
|
||||||
|
if (error != 0)
|
||||||
|
return error;
|
||||||
#endif // GLM_HAS_CXX11_STL == 1
|
#endif // GLM_HAS_CXX11_STL == 1
|
||||||
|
|
||||||
return 0;
|
return error;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user