Further swizzle work.

This commit is contained in:
athile 2011-09-22 14:56:39 -04:00
parent 6dee4eabc4
commit a762f19861
6 changed files with 816 additions and 418 deletions

View File

@ -48,7 +48,6 @@ namespace glm
};
}//namespace glm
namespace glm{
namespace detail
{
@ -58,8 +57,8 @@ namespace detail
ValueType = type of scalar values (e.g. float, double)
VecType = class the swizzle is applies to (e.g. vector3f)
N = number of components in the vector (e.g. 3)
E0...3 = what index the n-th element of this swizzle refers to
N = number of components in the vector (e.g. 3)
E0...3 = what index the n-th element of this swizzle refers to in the unswizzled vec
*/
template <typename DerivedType, typename ValueType, typename VecType, int N, int E0, int E1, int E2, int E3, int DUPLICATE_ELEMENTS>
struct swizzle_base
@ -68,20 +67,6 @@ namespace detail
typedef VecType vec_type;
typedef ValueType value_type;
swizzle_base& operator= (const VecType& that)
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
// Make a copy of the data in this == &that
ValueType t[N];
for (int i = 0; i < N; ++i)
t[i] = that[i];
for (int i = 0; i < N; ++i)
elem(offset_dst[i]) = t[i];
return *this;
}
swizzle_base& operator= (const ValueType& t)
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
@ -92,51 +77,61 @@ namespace detail
return *this;
}
swizzle_base& operator= (const VecType& that)
{
struct op {
void operator() (value_type& e, value_type& t) { e = t; }
};
_apply_op(that, op());
return *this;
}
void operator -= (const VecType& that)
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
ValueType t[N];
for (int i = 0; i < N; ++i)
t[i] = that[i];
for (int i = 0; i < N; ++i)
elem(offset_dst[i]) -= t[i];
struct op {
void operator() (value_type& e, value_type& t) { e -= t; }
};
_apply_op(that, op());
}
void operator += (const VecType& that)
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
ValueType t[N];
for (int i = 0; i < N; ++i)
t[i] = that[i];
for (int i = 0; i < N; ++i)
elem(offset_dst[i]) += t[i];
struct op {
void operator() (value_type& e, value_type& t) { e += t; }
};
_apply_op(that, op());
}
void operator *= (const VecType& that)
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
ValueType t[N];
for (int i = 0; i < N; ++i)
t[i] = that[i];
for (int i = 0; i < N; ++i)
elem(offset_dst[i]) *= t[i];
struct op {
void operator() (value_type& e, value_type& t) { e *= t; }
};
_apply_op(that, op());
}
void operator /= (const VecType& that)
{
struct op {
void operator() (value_type& e, value_type& t) { e /= t; }
};
_apply_op(that, op());
}
protected:
template <typename T>
void _apply_op(const VecType& that, T op)
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
// Make a copy of the data in this == &that
ValueType t[N];
for (int i = 0; i < N; ++i)
t[i] = that[i];
for (int i = 0; i < N; ++i)
elem(offset_dst[i]) /= t[i];
op( elem(offset_dst[i]), t[i] );
}
protected:
value_type& elem (size_t i) { return (reinterpret_cast<value_type*>(_buffer))[i]; }
const value_type& elem (size_t i) const { return (reinterpret_cast<const value_type*>(_buffer))[i]; }
@ -169,6 +164,7 @@ namespace detail
{
using swizzle_base<swizzle2<T,P,E0,E1>,T,P,2,E0,E1,0,0,(E0 == E1)>::operator=;
P cast() const { return P(this->elem(E0), this->elem(E1)); }
P operator ()() const { return cast(); }
operator P () const { return cast(); }
};
@ -178,6 +174,7 @@ namespace detail
{
using swizzle_base<swizzle2_3<T,P,E0,E1,E2>,T,P,2,E0,E1,E2,0,1>::operator=;
P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2)); }
P operator ()() const { return cast(); }
operator P () const { return cast(); }
};
@ -187,6 +184,7 @@ namespace detail
{
using swizzle_base<swizzle2_4<T,P,E0,E1,E2,E3>,T,P,2,E0,E1,E2,E3,1>::operator=;
P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2), this->elem(E3)); }
P operator ()() const { return cast(); }
operator P () const { return cast(); }
};
@ -196,6 +194,7 @@ namespace detail
{
using swizzle_base<swizzle3<T,P,E0,E1,E2>,T,P,3,E0,E1,E2,0,(E0==E1||E0==E2||E1==E2)>::operator=;
P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2)); }
P operator ()() const { return cast(); }
operator P () const { return cast(); }
};
@ -205,6 +204,7 @@ namespace detail
{
using swizzle_base<swizzle3_2<T,P,E0,E1>,T,P,2,E0,E1,0,0,(E0==E1)>::operator=;
P cast() const { return P(this->elem(E0), this->elem(E1)); }
P operator ()() const { return cast(); }
operator P () const { return cast(); }
};
@ -214,6 +214,7 @@ namespace detail
{
using swizzle_base<swizzle3_4<T,P,E0,E1,E2,E3>,T,P,3,E0,E1,E2,E3,1>::operator=;
P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2), this->elem(E3)); }
P operator ()() const { return cast(); }
operator P () const { return cast(); }
};
@ -223,6 +224,7 @@ namespace detail
{
using swizzle_base<swizzle4<T,P,E0,E1,E2,E3>,T,P,4,E0,E1,E2,E3,(E0==E1||E0==E2||E0==E3||E1==E2||E1==E3||E2==E3)>::operator=;
P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2), this->elem(E3)); }
P operator ()() const { return cast(); }
operator P () const { return cast(); }
};
@ -232,6 +234,7 @@ namespace detail
{
using swizzle_base<swizzle4_2<T,P,E0,E1>,T,P,2,E0,E1,0,0,(E0==E1)>::operator=;
P cast() const { return P(this->elem(E0), this->elem(E1)); }
P operator ()() const { return cast(); }
operator P () const { return cast(); }
};
@ -242,18 +245,19 @@ namespace detail
{
using swizzle_base<swizzle4_3<T,P,E0,E1,E2>,T,P,4,E0,E1,E2,0,(E0==E1||E0==E2||E1==E2)>::operator=;
P cast() const { return P(this->elem(E0), this->elem(E1), this->elem(E2)); }
P operator ()() const { return cast(); }
operator P () const { return cast(); }
};
//
// To prevent the C++ syntax from getting *completely* overwhelming, define some alias macros
// To prevent the C++ syntax from getting entirely overwhelming, define some alias macros
//
#define _GLM_SWIZZLE_TEMPLATE1 template <typename T, typename P, int N, typename S0, int E0, int E1, int E2, int E3, int D0>
#define _GLM_SWIZZLE_TEMPLATE2 template <typename T, typename P, int N, typename S0, int E0, int E1, int E2, int E3, int D0, typename S1,int F0, int F1, int F2, int F3, int D1>
#define _GLM_SWIZZLE_TYPE1 glm::detail::swizzle_base<S0,T,P,N,E0,E1,E2,E3,D0>
#define _GLM_SWIZZLE_TYPE2 glm::detail::swizzle_base<S1,T,P,N,F0,F1,F2,F3,D1>
#define _GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(OPERAND)\
#define _GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(OPERAND)\
_GLM_SWIZZLE_TEMPLATE2 \
typename P operator OPERAND ( const _GLM_SWIZZLE_TYPE1& a, const _GLM_SWIZZLE_TYPE2& b) \
{ \
@ -282,13 +286,65 @@ namespace detail
return a OPERAND static_cast<const S0&>(b).cast(); \
}
#define _GLM_SWIZZLE_FUNCTION2(RETURN_TYPE,FUNCTION)\
#define _GLM_SWIZZLE_FUNCTION_1_ARGS(RETURN_TYPE,FUNCTION)\
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2<T,P,E0,E1>& a) \
{ \
return FUNCTION(a.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2> \
typename glm::detail::swizzle2_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_3<T,P,E0,E1,E2>& a) \
{ \
return FUNCTION(a.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2, int E3> \
typename glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& a) \
{ \
return FUNCTION(a.cast()); \
} \
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle3_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_2<T,P,E0,E1>& a) \
{ \
return FUNCTION(a.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2> \
typename glm::detail::swizzle3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3<T,P,E0,E1,E2>& a) \
{ \
return FUNCTION(a.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2, int E3> \
typename glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& a) \
{ \
return FUNCTION(a.cast()); \
} \
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle4_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_2<T,P,E0,E1>& a) \
{ \
return FUNCTION(a.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2> \
typename glm::detail::swizzle4_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_3<T,P,E0,E1,E2>& a) \
{ \
return FUNCTION(a.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2, int E3> \
typename glm::detail::swizzle4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& a) \
{ \
return FUNCTION(a.cast()); \
}
#define _GLM_SWIZZLE_FUNCTION_2_ARGS(RETURN_TYPE,FUNCTION)\
_GLM_SWIZZLE_TEMPLATE2\
typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE2& b)\
{\
return FUNCTION(static_cast<const S0&>(a).cast(), static_cast<const S1&>(b).cast());\
}\
_GLM_SWIZZLE_TEMPLATE1\
typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE1& b)\
{\
return FUNCTION(static_cast<const S0&>(a).cast(), static_cast<const S0&>(b).cast());\
}\
_GLM_SWIZZLE_TEMPLATE1\
typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename S0::vec_type& b)\
{\
return FUNCTION(static_cast<const S0&>(a).cast(), b);\
@ -297,26 +353,146 @@ namespace detail
typename S0::RETURN_TYPE FUNCTION(const typename S0::vec_type& a, const typename _GLM_SWIZZLE_TYPE1& b)\
{\
return FUNCTION(a, static_cast<const S0&>(b).cast());\
} \
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2<T,P,E0,E1>& a, const glm::detail::swizzle2<T,P,E0,E1>& b) \
{ \
return FUNCTION(a.cast(), b.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2> \
typename glm::detail::swizzle2_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_3<T,P,E0,E1,E2>& a, const glm::detail::swizzle2_3<T,P,E0,E1,E2>& b) \
{ \
return FUNCTION(a.cast(), b.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2, int E3> \
typename glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& b) \
{ \
return FUNCTION(a.cast(), b.cast()); \
} \
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle3_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_2<T,P,E0,E1>& a, const glm::detail::swizzle3_2<T,P,E0,E1>& b) \
{ \
return FUNCTION(a.cast(), b.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2> \
typename glm::detail::swizzle3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3<T,P,E0,E1,E2>& a, const glm::detail::swizzle3<T,P,E0,E1,E2>& b) \
{ \
return FUNCTION(a.cast(), b.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2, int E3> \
typename glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& b) \
{ \
return FUNCTION(a.cast(), b.cast()); \
} \
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle4_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_2<T,P,E0,E1>& a, const glm::detail::swizzle4_2<T,P,E0,E1>& b) \
{ \
return FUNCTION(a.cast(), b.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2> \
typename glm::detail::swizzle4_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_3<T,P,E0,E1,E2>& a, const glm::detail::swizzle4_3<T,P,E0,E1,E2>& b) \
{ \
return FUNCTION(a.cast(), b.cast()); \
} \
template <typename T, typename P, int E0, int E1, int E2, int E3> \
typename glm::detail::swizzle4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& b) \
{ \
return FUNCTION(a.cast(), b.cast()); \
}
_GLM_SWIZZLE_TEMPLATE1 typename S0::vec_type operator- (typename S0::value_type a, const _GLM_SWIZZLE_TYPE1& b) { return a - b; }
_GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(+)
_GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(-)
_GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(*)
_GLM_SWIZZLE_BINARY_OPERATOR_IMPLEMENTATION(/)
_GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(*)
#define _GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(RETURN_TYPE,FUNCTION)\
_GLM_SWIZZLE_TEMPLATE2\
typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE2& b, const typename S0::value_type& c)\
{\
return FUNCTION(static_cast<const S0&>(a).cast(), static_cast<const S1&>(b).cast(), c);\
}\
_GLM_SWIZZLE_TEMPLATE1\
typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE1& b, const typename S0::value_type& c)\
{\
return FUNCTION(static_cast<const S0&>(a).cast(), static_cast<const S0&>(b).cast(), c);\
}\
_GLM_SWIZZLE_TEMPLATE1\
typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename S0::vec_type& b, const typename S0::value_type& c)\
{\
return FUNCTION(static_cast<const S0&>(a).cast(), b, c);\
}\
_GLM_SWIZZLE_TEMPLATE1\
typename S0::RETURN_TYPE FUNCTION(const typename S0::vec_type& a, const typename _GLM_SWIZZLE_TYPE1& b, const typename S0::value_type& c)\
{\
return FUNCTION(a, static_cast<const S0&>(b).cast(), c);\
} \
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2<T,P,E0,E1>& a, const glm::detail::swizzle2<T,P,E0,E1>& b, const T& c) \
{ \
return FUNCTION(a.cast(), b.cast(), c); \
} \
template <typename T, typename P, int E0, int E1, int E2> \
typename glm::detail::swizzle2_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_3<T,P,E0,E1,E2>& a, const glm::detail::swizzle2_3<T,P,E0,E1,E2>& b, const T& c) \
{ \
return FUNCTION(a.cast(), b.cast(), c); \
} \
template <typename T, typename P, int E0, int E1, int E2, int E3> \
typename glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle2_4<T,P,E0,E1,E2,E3>& b, const T& c) \
{ \
return FUNCTION(a.cast(), b.cast(), c); \
} \
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle3_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_2<T,P,E0,E1>& a, const glm::detail::swizzle3_2<T,P,E0,E1>& b, const T& c) \
{ \
return FUNCTION(a.cast(), b.cast(), c); \
} \
template <typename T, typename P, int E0, int E1, int E2> \
typename glm::detail::swizzle3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3<T,P,E0,E1,E2>& a, const glm::detail::swizzle3<T,P,E0,E1,E2>& b, const T& c) \
{ \
return FUNCTION(a.cast(), b.cast(), c); \
}
template <typename T, typename P, int E0, int E1, int E2, int E3> \
typename glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle3_4<T,P,E0,E1,E2,E3>& b, const T& c) \
{ \
return FUNCTION(a.cast(), b.cast(), c); \
} \
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle4_2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_2<T,P,E0,E1>& a, const glm::detail::swizzle4_2<T,P,E0,E1>& b, const T& c) \
{ \
return FUNCTION(a.cast(), b.cast(), c); \
} \
template <typename T, typename P, int E0, int E1, int E2> \
typename glm::detail::swizzle4_3<T,P,E0,E1,E2>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4_3<T,P,E0,E1,E2>& a, const glm::detail::swizzle4_3<T,P,E0,E1,E2>& b, const T& c) \
{ \
return FUNCTION(a.cast(), b.cast(), c); \
} \
template <typename T, typename P, int E0, int E1, int E2, int E3> \
typename glm::detail::swizzle4<T,P,E0,E1,E2,E3>::RETURN_TYPE FUNCTION(const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& a, const glm::detail::swizzle4<T,P,E0,E1,E2,E3>& b, const T& c) \
{ \
return FUNCTION(a.cast(), b.cast(), c); \
}
}//namespace detail
}//namespace glm
namespace glm
{
namespace detail
{
_GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(-)
_GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(*)
_GLM_SWIZZLE_FUNCTION2(value_type, dot);
_GLM_SWIZZLE_FUNCTION2(vec_type, abs);
_GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(+)
_GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(-)
_GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(*)
_GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(/)
}
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, abs);
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acos);
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acosh);
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, all);
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, any);
_GLM_SWIZZLE_FUNCTION_2_ARGS(value_type, dot);
_GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, cross);
_GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, step);
_GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(vec_type, mix);
}

View File

@ -132,6 +132,7 @@ namespace glm
(
genType const & x,
genType const & y
)
{
GLM_STATIC_ASSERT(detail::type<genType>::is_float, "'dot' only accept floating-point inputs");

View File

@ -114,6 +114,22 @@ namespace detail
tvec2(tref2<T> const & r);
template <int E0, int E1>
GLM_FUNC_DECL tvec2(glm::detail::swizzle2<T,tvec2<T>,E0,E1>& that)
{
*this = that();
}
template <int E0, int E1>
GLM_FUNC_DECL tvec2(glm::detail::swizzle3_2<T,tvec2<T>,E0,E1>& that)
{
*this = that();
}
template <int E0, int E1>
GLM_FUNC_DECL tvec2(glm::detail::swizzle4_2<T,tvec2<T>,E0,E1>& that)
{
*this = that();
}
//////////////////////////////////////
// Convertion constructors

View File

@ -116,6 +116,22 @@ namespace detail
GLM_FUNC_DECL tvec3(tref3<T> const & r);
template <int E0, int E1, int E2>
GLM_FUNC_DECL tvec3(glm::detail::swizzle2_3<T,tvec3<T>,E0,E1,E2>& that)
{
*this = that();
}
template <int E0, int E1, int E2>
GLM_FUNC_DECL tvec3(glm::detail::swizzle3<T,tvec3<T>,E0,E1,E2>& that)
{
*this = that();
}
template <int E0, int E1, int E2>
GLM_FUNC_DECL tvec3(glm::detail::swizzle4_3<T,tvec3<T>,E0,E1,E2>& that)
{
*this = that();
}
//////////////////////////////////////
// Convertion scalar constructors

View File

@ -118,6 +118,22 @@ namespace detail
GLM_FUNC_DECL tvec4(tref4<T> const & r);
template <int E0, int E1, int E2, int E3>
GLM_FUNC_DECL tvec4(glm::detail::swizzle2_4<T,tvec4<T>,E0,E1,E2,E3>& that)
{
*this = that();
}
template <int E0, int E1, int E2, int E3>
GLM_FUNC_DECL tvec4(glm::detail::swizzle3_4<T,tvec4<T>,E0,E1,E2,E3>& that)
{
*this = that();
}
template <int E0, int E1, int E2, int E3>
GLM_FUNC_DECL tvec4(glm::detail::swizzle4<T,tvec4<T>,E0,E1,E2,E3>& that)
{
*this = that();
}
//////////////////////////////////////
// Convertion scalar constructors

View File

@ -1,260 +1,264 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2011 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2008-08-31
// Updated : 2011-09-19
// Licence : This source is under MIT License
// File : test/core/type_vec3.cpp
///////////////////////////////////////////////////////////////////////////////////////////////////
#include <glm/glm.hpp>
#include <glm/gtc/half_float.hpp>
static int test_vec3_operators()
{
glm::vec3 A(1.0f);
glm::vec3 B(1.0f);
bool R = A != B;
bool S = A == B;
return (S && !R) ? 0 : 1;
}
int test_vec3_size()
{
int Error = 0;
Error += sizeof(glm::vec3) == sizeof(glm::mediump_vec3) ? 0 : 1;
Error += 12 == sizeof(glm::mediump_vec3) ? 0 : 1;
Error += sizeof(glm::dvec3) == sizeof(glm::highp_vec3) ? 0 : 1;
Error += 24 == sizeof(glm::highp_vec3) ? 0 : 1;
Error += glm::vec3().length() == 3 ? 0 : 1;
Error += glm::dvec3().length() == 3 ? 0 : 1;
return Error;
}
int test_vec3_swizzle3_2()
{
int Error = 0;
glm::vec3 v(1, 2, 3);
glm::vec2 u;
// Can not assign a vec3 swizzle to a vec2
//u = v.xyz; //Illegal
//u = v.rgb; //Illegal
//u = v.stp; //Illegal
u = v.xx; Error += (u.x == 1.0f && u.y == 1.0f) ? 0 : 1;
u = v.xy; Error += (u.x == 1.0f && u.y == 2.0f) ? 0 : 1;
u = v.xz; Error += (u.x == 1.0f && u.y == 3.0f) ? 0 : 1;
u = v.yx; Error += (u.x == 2.0f && u.y == 1.0f) ? 0 : 1;
u = v.yy; Error += (u.x == 2.0f && u.y == 2.0f) ? 0 : 1;
u = v.yz; Error += (u.x == 2.0f && u.y == 3.0f) ? 0 : 1;
u = v.zx; Error += (u.x == 3.0f && u.y == 1.0f) ? 0 : 1;
u = v.zy; Error += (u.x == 3.0f && u.y == 2.0f) ? 0 : 1;
u = v.zz; Error += (u.x == 3.0f && u.y == 3.0f) ? 0 : 1;
u = v.rr; Error += (u.r == 1.0f && u.g == 1.0f) ? 0 : 1;
u = v.rg; Error += (u.r == 1.0f && u.g == 2.0f) ? 0 : 1;
u = v.rb; Error += (u.r == 1.0f && u.g == 3.0f) ? 0 : 1;
u = v.gr; Error += (u.r == 2.0f && u.g == 1.0f) ? 0 : 1;
u = v.gg; Error += (u.r == 2.0f && u.g == 2.0f) ? 0 : 1;
u = v.gb; Error += (u.r == 2.0f && u.g == 3.0f) ? 0 : 1;
u = v.br; Error += (u.r == 3.0f && u.g == 1.0f) ? 0 : 1;
u = v.bg; Error += (u.r == 3.0f && u.g == 2.0f) ? 0 : 1;
u = v.bb; Error += (u.r == 3.0f && u.g == 3.0f) ? 0 : 1;
u = v.ss; Error += (u.s == 1.0f && u.t == 1.0f) ? 0 : 1;
u = v.st; Error += (u.s == 1.0f && u.t == 2.0f) ? 0 : 1;
u = v.sp; Error += (u.s == 1.0f && u.t == 3.0f) ? 0 : 1;
u = v.ts; Error += (u.s == 2.0f && u.t == 1.0f) ? 0 : 1;
u = v.tt; Error += (u.s == 2.0f && u.t == 2.0f) ? 0 : 1;
u = v.tp; Error += (u.s == 2.0f && u.t == 3.0f) ? 0 : 1;
u = v.ps; Error += (u.s == 3.0f && u.t == 1.0f) ? 0 : 1;
u = v.pt; Error += (u.s == 3.0f && u.t == 2.0f) ? 0 : 1;
u = v.pp; Error += (u.s == 3.0f && u.t == 3.0f) ? 0 : 1;
// Mixed member aliases are not valid
//u = v.rx; //Illegal
//u = v.sy; //Illegal
u = glm::vec2(1, 2);
v = glm::vec3(1, 2, 3);
//v.xx = u; //Illegal
v.xy = u; Error += (v.x == 1.0f && v.y == 2.0f && v.z == 3.0f) ? 0 : 1;
v.xz = u; Error += (v.x == 1.0f && v.y == 2.0f && v.z == 2.0f) ? 0 : 1;
v.yx = u; Error += (v.x == 2.0f && v.y == 1.0f && v.z == 2.0f) ? 0 : 1;
//v.yy = u; //Illegal
v.yz = u; Error += (v.x == 2.0f && v.y == 1.0f && v.z == 2.0f) ? 0 : 1;
v.zx = u; Error += (v.x == 2.0f && v.y == 1.0f && v.z == 1.0f) ? 0 : 1;
v.zy = u; Error += (v.x == 2.0f && v.y == 2.0f && v.z == 1.0f) ? 0 : 1;
//v.zz = u; //Illegal
return Error;
}
int test_vec3_swizzle3_3()
{
int Error = 0;
glm::vec3 v(1, 2, 3);
glm::vec3 u;
u = v; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.xyz; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.zyx; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.zyx = v; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u = v.rgb; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.bgr; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.bgr = v; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u = v.stp; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.pts; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.pts = v; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
return Error;
}
int test_vec3_swizzle_half()
{
int Error = 0;
glm::half a1(1);
glm::half b1(2);
glm::half c1(3);
glm::hvec3 v(a1, b1, c1);
glm::hvec3 u;
u = v;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.xyz;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.zyx;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u.zyx = v;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u = v.rgb;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.bgr;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u.bgr = v;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u = v.stp;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.pts;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u.pts = v;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
return Error;
}
int test_vec3_swizzle_operators()
{
int Error = 0;
glm::vec3 q, u, v;
u = glm::vec3(1, 2, 3);
v = glm::vec3(10, 20, 30);
// Swizzle, swizzle binary operators
q = u.xyz + v.xyz; Error += (q == (u + v)) ? 0 : 1;
q = (u.zyx + v.zyx).zyx; Error += (q == (u + v)) ? 0 : 1;
q = (u.xyz - v.xyz); Error += (q == (u - v)) ? 0 : 1;
q = (u.xyz * v.xyz); Error += (q == (u * v)) ? 0 : 1;
q = (u.xxx * v.xxx); Error += (q == glm::vec3(u.x * v.x)) ? 0 : 1;
q = (u.xyz / v.xyz); Error += (q == (u / v)) ? 0 : 1;
// vec, swizzle binary operators
q = u + v.xyz; Error += (q == (u + v)) ? 0 : 1;
q = (u - v.xyz); Error += (q == (u - v)) ? 0 : 1;
q = (u * v.xyz); Error += (q == (u * v)) ? 0 : 1;
q = (u * v.xxx); Error += (q == v.x * u) ? 0 : 1;
q = (u / v.xyz); Error += (q == (u / v)) ? 0 : 1;
// swizzle,vec binary operators
q = u.xyz + v; Error += (q == (u + v)) ? 0 : 1;
q = (u.xyz - v); Error += (q == (u - v)) ? 0 : 1;
q = (u.xyz * v); Error += (q == (u * v)) ? 0 : 1;
q = (u.xxx * v); Error += (q == u.x * v) ? 0 : 1;
q = (u.xyz / v); Error += (q == (u / v)) ? 0 : 1;
// Compile errors
//q = (u.yz * v.xyz);
//q = (u * v.xy);
return Error;
}
int test_vec3_swizzle_functions()
{
int Error = 0;
// vec3 - working as expected
glm::vec3 q, u, v;
u = glm::vec3(1, 2, 3);
v = glm::vec3(10, 20, 30);
glm::dot(u, v);
glm::dot(u.xyz, v.zyz);
glm::dot(u, v.zyx);
glm::dot(u.xyz, v);
// vec2 - not working! how is vec3 working and not vec2?
glm::vec2 a, b;
glm::dot(a, b);
glm::dot(a.xy, b.xy);
//glm::dot(u.xy, v.xy);
glm::dot(glm::vec4(1,2,3,4).xyz, v);
glm::vec4 r, s, t;
r = glm::vec4(1, 2, 3, 4);
s = glm::vec4(10, 20, 30, 40);
glm::dot(r, s);
//glm::dot(r.xyzw, s.xyzw);
//glm::dot(r.xyz, s.xyz);
return Error;
}
#if 0
using namespace glm;
//
// Description : Array and textureless GLSL 2D/3D/4D simplex
// noise functions.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2011 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2008-08-31
// Updated : 2011-09-19
// Licence : This source is under MIT License
// File : test/core/type_vec3.cpp
///////////////////////////////////////////////////////////////////////////////////////////////////
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0; }
#include <glm/glm.hpp>
#include <glm/gtc/half_float.hpp>
float mod289(float x) {
return x - floor(x * (1.0 / 289.0)) * 289.0; }
static int test_vec3_operators()
{
glm::vec3 A(1.0f);
glm::vec3 B(1.0f);
bool R = A != B;
bool S = A == B;
vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
return (S && !R) ? 0 : 1;
}
float permute(float x) {
return mod289(((x*34.0)+1.0)*x);
int test_vec3_size()
{
int Error = 0;
Error += sizeof(glm::vec3) == sizeof(glm::mediump_vec3) ? 0 : 1;
Error += 12 == sizeof(glm::mediump_vec3) ? 0 : 1;
Error += sizeof(glm::dvec3) == sizeof(glm::highp_vec3) ? 0 : 1;
Error += 24 == sizeof(glm::highp_vec3) ? 0 : 1;
Error += glm::vec3().length() == 3 ? 0 : 1;
Error += glm::dvec3().length() == 3 ? 0 : 1;
return Error;
}
int test_vec3_swizzle3_2()
{
int Error = 0;
glm::vec3 v(1, 2, 3);
glm::vec2 u;
// Can not assign a vec3 swizzle to a vec2
//u = v.xyz; //Illegal
//u = v.rgb; //Illegal
//u = v.stp; //Illegal
u = v.xx; Error += (u.x == 1.0f && u.y == 1.0f) ? 0 : 1;
u = v.xy; Error += (u.x == 1.0f && u.y == 2.0f) ? 0 : 1;
u = v.xz; Error += (u.x == 1.0f && u.y == 3.0f) ? 0 : 1;
u = v.yx; Error += (u.x == 2.0f && u.y == 1.0f) ? 0 : 1;
u = v.yy; Error += (u.x == 2.0f && u.y == 2.0f) ? 0 : 1;
u = v.yz; Error += (u.x == 2.0f && u.y == 3.0f) ? 0 : 1;
u = v.zx; Error += (u.x == 3.0f && u.y == 1.0f) ? 0 : 1;
u = v.zy; Error += (u.x == 3.0f && u.y == 2.0f) ? 0 : 1;
u = v.zz; Error += (u.x == 3.0f && u.y == 3.0f) ? 0 : 1;
u = v.rr; Error += (u.r == 1.0f && u.g == 1.0f) ? 0 : 1;
u = v.rg; Error += (u.r == 1.0f && u.g == 2.0f) ? 0 : 1;
u = v.rb; Error += (u.r == 1.0f && u.g == 3.0f) ? 0 : 1;
u = v.gr; Error += (u.r == 2.0f && u.g == 1.0f) ? 0 : 1;
u = v.gg; Error += (u.r == 2.0f && u.g == 2.0f) ? 0 : 1;
u = v.gb; Error += (u.r == 2.0f && u.g == 3.0f) ? 0 : 1;
u = v.br; Error += (u.r == 3.0f && u.g == 1.0f) ? 0 : 1;
u = v.bg; Error += (u.r == 3.0f && u.g == 2.0f) ? 0 : 1;
u = v.bb; Error += (u.r == 3.0f && u.g == 3.0f) ? 0 : 1;
u = v.ss; Error += (u.s == 1.0f && u.t == 1.0f) ? 0 : 1;
u = v.st; Error += (u.s == 1.0f && u.t == 2.0f) ? 0 : 1;
u = v.sp; Error += (u.s == 1.0f && u.t == 3.0f) ? 0 : 1;
u = v.ts; Error += (u.s == 2.0f && u.t == 1.0f) ? 0 : 1;
u = v.tt; Error += (u.s == 2.0f && u.t == 2.0f) ? 0 : 1;
u = v.tp; Error += (u.s == 2.0f && u.t == 3.0f) ? 0 : 1;
u = v.ps; Error += (u.s == 3.0f && u.t == 1.0f) ? 0 : 1;
u = v.pt; Error += (u.s == 3.0f && u.t == 2.0f) ? 0 : 1;
u = v.pp; Error += (u.s == 3.0f && u.t == 3.0f) ? 0 : 1;
// Mixed member aliases are not valid
//u = v.rx; //Illegal
//u = v.sy; //Illegal
u = glm::vec2(1, 2);
v = glm::vec3(1, 2, 3);
//v.xx = u; //Illegal
v.xy = u; Error += (v.x == 1.0f && v.y == 2.0f && v.z == 3.0f) ? 0 : 1;
v.xz = u; Error += (v.x == 1.0f && v.y == 2.0f && v.z == 2.0f) ? 0 : 1;
v.yx = u; Error += (v.x == 2.0f && v.y == 1.0f && v.z == 2.0f) ? 0 : 1;
//v.yy = u; //Illegal
v.yz = u; Error += (v.x == 2.0f && v.y == 1.0f && v.z == 2.0f) ? 0 : 1;
v.zx = u; Error += (v.x == 2.0f && v.y == 1.0f && v.z == 1.0f) ? 0 : 1;
v.zy = u; Error += (v.x == 2.0f && v.y == 2.0f && v.z == 1.0f) ? 0 : 1;
//v.zz = u; //Illegal
return Error;
}
int test_vec3_swizzle3_3()
{
int Error = 0;
glm::vec3 v(1, 2, 3);
glm::vec3 u;
u = v; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.xyz; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.zyx; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.zyx = v; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u = v.rgb; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.bgr; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.bgr = v; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u = v.stp; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.pts; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.pts = v; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
return Error;
}
int test_vec3_swizzle_half()
{
int Error = 0;
glm::half a1(1);
glm::half b1(2);
glm::half c1(3);
glm::hvec3 v(a1, b1, c1);
glm::hvec3 u;
u = v;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.xyz;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.zyx;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u.zyx = v;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u = v.rgb;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.bgr;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u.bgr = v;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u = v.stp;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.pts;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u.pts = v;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
return Error;
}
int test_vec3_swizzle_operators()
{
int Error = 0;
glm::vec3 q, u, v;
u = glm::vec3(1, 2, 3);
v = glm::vec3(10, 20, 30);
// Swizzle, swizzle binary operators
q = u.xyz + v.xyz; Error += (q == (u + v)) ? 0 : 1;
q = (u.zyx + v.zyx).zyx; Error += (q == (u + v)) ? 0 : 1;
q = (u.xyz - v.xyz); Error += (q == (u - v)) ? 0 : 1;
q = (u.xyz * v.xyz); Error += (q == (u * v)) ? 0 : 1;
q = (u.xxx * v.xxx); Error += (q == glm::vec3(u.x * v.x)) ? 0 : 1;
q = (u.xyz / v.xyz); Error += (q == (u / v)) ? 0 : 1;
// vec, swizzle binary operators
q = u + v.xyz; Error += (q == (u + v)) ? 0 : 1;
q = (u - v.xyz); Error += (q == (u - v)) ? 0 : 1;
q = (u * v.xyz); Error += (q == (u * v)) ? 0 : 1;
q = (u * v.xxx); Error += (q == v.x * u) ? 0 : 1;
q = (u / v.xyz); Error += (q == (u / v)) ? 0 : 1;
// swizzle,vec binary operators
q = u.xyz + v; Error += (q == (u + v)) ? 0 : 1;
q = (u.xyz - v); Error += (q == (u - v)) ? 0 : 1;
q = (u.xyz * v); Error += (q == (u * v)) ? 0 : 1;
q = (u.xxx * v); Error += (q == u.x * v) ? 0 : 1;
q = (u.xyz / v); Error += (q == (u / v)) ? 0 : 1;
// Compile errors
//q = (u.yz * v.xyz);
//q = (u * v.xy);
return Error;
}
int test_vec3_swizzle_functions()
{
int Error = 0;
// vec3 - working as expected
glm::vec3 q, u, v;
u = glm::vec3(1, 2, 3);
v = glm::vec3(10, 20, 30);
glm::dot(u, v);
glm::dot(u.xyz, v.zyz);
glm::dot(u, v.zyx);
glm::dot(u.xyz, v);
// vec2 - not working! how is vec3 working and not vec2?
glm::vec2 a, b;
glm::dot(a, b);
glm::dot(a.xy, b.yy);
glm::dot(a.xy, b.xy);
glm::dot(u.xy, v.xy);
glm::dot(glm::vec4(1,2,3,4).xyz, v);
glm::vec4 r, s, t;
r = glm::vec4(1, 2, 3, 4);
s = glm::vec4(10, 20, 30, 40);
glm::dot(r, s);
glm::dot(r.xyzw, s.xyzw);
glm::dot(r.xyz, s.xyz);
glm::cross(u, v);
glm::cross(u.zyx, v);
glm::cross(u.xxz, v.yyx);
return Error;
}
#if 1
using namespace glm;
//
// GLSL textureless classic 4D noise "cnoise",
// with an RSL-style periodic variant "pnoise".
// Author: Stefan Gustavson (stefan.gustavson@liu.se)
// Version: 2011-08-22
//
// Many thanks to Ian McEwan of Ashima Arts for the
// ideas for permutation and gradient selection.
//
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
// Distributed under the MIT license. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
@ -262,123 +266,292 @@ vec4 taylorInvSqrt(vec4 r)
return 1.79284291400159 - 0.85373472095314 * r;
}
float taylorInvSqrt(float r)
{
return 1.79284291400159 - 0.85373472095314 * r;
vec4 fade(vec4 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
vec4 grad4(float j, vec4 ip)
{
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p,s;
// Classic Perlin noise
float cnoise(vec4 P)
{
vec4 Pi0 = floor(P); // Integer part for indexing
vec4 Pi1 = Pi0 + 1.0; // Integer part + 1
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec4 Pf0 = fract(P); // Fractional part for interpolation
vec4 Pf1 = Pf0 - 1.0; // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy(), Pi1.yy());
vec4 iz0 = vec4(Pi0.zzzz());
vec4 iz1 = vec4(Pi1.zzzz());
vec4 iw0 = vec4(Pi0.wwww());
vec4 iw1 = vec4(Pi1.wwww);
auto t1 = abs(p.xyz);
auto t2 = ones.xyz;
auto t3 = dot(t1, t2);
auto t0 = dot(abs(p.xyz), ones.xyz);
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 ixy00 = permute(ixy0 + iw0);
vec4 ixy01 = permute(ixy0 + iw1);
vec4 ixy10 = permute(ixy1 + iw0);
vec4 ixy11 = permute(ixy1 + iw1);
p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0f) * ip.z - 1.0f;
p.w = 1.5f - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz*2.0f - 1.0f) * s.www;
vec4 gx00 = ixy00 * (1.0 / 7.0);
vec4 gy00 = floor(gx00) * (1.0 / 7.0);
vec4 gz00 = floor(gy00) * (1.0 / 6.0);
gx00 = fract(gx00) - 0.5;
gy00 = fract(gy00) - 0.5;
gz00 = fract(gz00) - 0.5;
vec4 gw00 = vec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
vec4 sw00 = step(gw00, vec4(0.0));
gx00 -= sw00 * (step(0.0, gx00) - 0.5);
gy00 -= sw00 * (step(0.0, gy00) - 0.5);
return p;
vec4 gx01 = ixy01 * (1.0 / 7.0);
vec4 gy01 = floor(gx01) * (1.0 / 7.0);
vec4 gz01 = floor(gy01) * (1.0 / 6.0);
gx01 = fract(gx01) - 0.5;
gy01 = fract(gy01) - 0.5;
gz01 = fract(gz01) - 0.5;
vec4 gw01 = vec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
vec4 sw01 = step(gw01, vec4(0.0));
gx01 -= sw01 * (step(0.0, gx01) - 0.5);
gy01 -= sw01 * (step(0.0, gy01) - 0.5);
vec4 gx10 = ixy10 * (1.0 / 7.0);
vec4 gy10 = floor(gx10) * (1.0 / 7.0);
vec4 gz10 = floor(gy10) * (1.0 / 6.0);
gx10 = fract(gx10) - 0.5;
gy10 = fract(gy10) - 0.5;
gz10 = fract(gz10) - 0.5;
vec4 gw10 = vec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
vec4 sw10 = step(gw10, vec4(0.0));
gx10 -= sw10 * (step(0.0, gx10) - 0.5);
gy10 -= sw10 * (step(0.0, gy10) - 0.5);
vec4 gx11 = ixy11 * (1.0 / 7.0);
vec4 gy11 = floor(gx11) * (1.0 / 7.0);
vec4 gz11 = floor(gy11) * (1.0 / 6.0);
gx11 = fract(gx11) - 0.5;
gy11 = fract(gy11) - 0.5;
gz11 = fract(gz11) - 0.5;
vec4 gw11 = vec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
vec4 sw11 = step(gw11, vec4(0.0));
gx11 -= sw11 * (step(0.0, gx11) - 0.5);
gy11 -= sw11 * (step(0.0, gy11) - 0.5);
vec4 g0000 = vec4(gx00.x,gy00.x,gz00.x,gw00.x);
vec4 g1000 = vec4(gx00.y,gy00.y,gz00.y,gw00.y);
vec4 g0100 = vec4(gx00.z,gy00.z,gz00.z,gw00.z);
vec4 g1100 = vec4(gx00.w,gy00.w,gz00.w,gw00.w);
vec4 g0010 = vec4(gx10.x,gy10.x,gz10.x,gw10.x);
vec4 g1010 = vec4(gx10.y,gy10.y,gz10.y,gw10.y);
vec4 g0110 = vec4(gx10.z,gy10.z,gz10.z,gw10.z);
vec4 g1110 = vec4(gx10.w,gy10.w,gz10.w,gw10.w);
vec4 g0001 = vec4(gx01.x,gy01.x,gz01.x,gw01.x);
vec4 g1001 = vec4(gx01.y,gy01.y,gz01.y,gw01.y);
vec4 g0101 = vec4(gx01.z,gy01.z,gz01.z,gw01.z);
vec4 g1101 = vec4(gx01.w,gy01.w,gz01.w,gw01.w);
vec4 g0011 = vec4(gx11.x,gy11.x,gz11.x,gw11.x);
vec4 g1011 = vec4(gx11.y,gy11.y,gz11.y,gw11.y);
vec4 g0111 = vec4(gx11.z,gy11.z,gz11.z,gw11.z);
vec4 g1111 = vec4(gx11.w,gy11.w,gz11.w,gw11.w);
vec4 norm00 = taylorInvSqrt(vec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
g0000 *= norm00.x;
g0100 *= norm00.y;
g1000 *= norm00.z;
g1100 *= norm00.w;
vec4 norm01 = taylorInvSqrt(vec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
g0001 *= norm01.x;
g0101 *= norm01.y;
g1001 *= norm01.z;
g1101 *= norm01.w;
vec4 norm10 = taylorInvSqrt(vec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
g0010 *= norm10.x;
g0110 *= norm10.y;
g1010 *= norm10.z;
g1110 *= norm10.w;
vec4 norm11 = taylorInvSqrt(vec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
g0011 *= norm11.x;
g0111 *= norm11.y;
g1011 *= norm11.z;
g1111 *= norm11.w;
float n0000 = dot(g0000, Pf0);
float n1000 = dot(g1000, vec4(Pf1.x, Pf0.yzw()));
float n0100 = dot(g0100, vec4(Pf0.x, Pf1.y, Pf0.zw()));
float n1100 = dot(g1100, vec4(Pf1.xy(), Pf0.zw()));
float n0010 = dot(g0010, vec4(Pf0.xy(), Pf1.z, Pf0.w));
float n1010 = dot(g1010, vec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
float n0110 = dot(g0110, vec4(Pf0.x, Pf1.yz(), Pf0.w));
float n1110 = dot(g1110, vec4(Pf1.xyz(), Pf0.w));
float n0001 = dot(g0001, vec4(Pf0.xyz(), Pf1.w));
float n1001 = dot(g1001, vec4(Pf1.x, Pf0.yz(), Pf1.w));
float n0101 = dot(g0101, vec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
float n1101 = dot(g1101, vec4(Pf1.xy(), Pf0.z, Pf1.w));
float n0011 = dot(g0011, vec4(Pf0.xy(), Pf1.zw()));
float n1011 = dot(g1011, vec4(Pf1.x, Pf0.y, Pf1.zw()));
float n0111 = dot(g0111, vec4(Pf0.x, Pf1.yzw()));
float n1111 = dot(g1111, Pf1);
vec4 fade_xyzw = fade(Pf0);
vec4 n_0w = mix(vec4(n0000, n1000, n0100, n1100), vec4(n0001, n1001, n0101, n1101), fade_xyzw.w);
vec4 n_1w = mix(vec4(n0010, n1010, n0110, n1110), vec4(n0011, n1011, n0111, n1111), fade_xyzw.w);
vec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z);
vec2 n_yzw = mix(n_zw.xy, n_zw.zw, fade_xyzw.y);
float n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
return 2.2 * n_xyzw;
}
// Classic Perlin noise, periodic version
float pnoise(vec4 P, vec4 rep)
{
vec4 Pi0 = mod(floor(P), rep); // Integer part modulo rep
vec4 Pi1 = mod(Pi0 + 1.0, rep); // Integer part + 1 mod rep
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec4 Pf0 = fract(P); // Fractional part for interpolation
vec4 Pf1 = Pf0 - 1.0; // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy(), Pi1.yy());
vec4 iz0 = vec4(Pi0.zzzz());
vec4 iz1 = vec4(Pi1.zzzz());
vec4 iw0 = vec4(Pi0.wwww());
vec4 iw1 = vec4(Pi1.wwww());
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 ixy00 = permute(ixy0 + iw0);
vec4 ixy01 = permute(ixy0 + iw1);
vec4 ixy10 = permute(ixy1 + iw0);
vec4 ixy11 = permute(ixy1 + iw1);
vec4 gx00 = ixy00 * (1.0 / 7.0);
vec4 gy00 = floor(gx00) * (1.0 / 7.0);
vec4 gz00 = floor(gy00) * (1.0 / 6.0);
gx00 = fract(gx00) - 0.5;
gy00 = fract(gy00) - 0.5;
gz00 = fract(gz00) - 0.5;
vec4 gw00 = vec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
vec4 sw00 = step(gw00, vec4(0.0));
gx00 -= sw00 * (step(0.0, gx00) - 0.5);
gy00 -= sw00 * (step(0.0, gy00) - 0.5);
vec4 gx01 = ixy01 * (1.0 / 7.0);
vec4 gy01 = floor(gx01) * (1.0 / 7.0);
vec4 gz01 = floor(gy01) * (1.0 / 6.0);
gx01 = fract(gx01) - 0.5;
gy01 = fract(gy01) - 0.5;
gz01 = fract(gz01) - 0.5;
vec4 gw01 = vec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
vec4 sw01 = step(gw01, vec4(0.0));
gx01 -= sw01 * (step(0.0, gx01) - 0.5);
gy01 -= sw01 * (step(0.0, gy01) - 0.5);
vec4 gx10 = ixy10 * (1.0 / 7.0);
vec4 gy10 = floor(gx10) * (1.0 / 7.0);
vec4 gz10 = floor(gy10) * (1.0 / 6.0);
gx10 = fract(gx10) - 0.5;
gy10 = fract(gy10) - 0.5;
gz10 = fract(gz10) - 0.5;
vec4 gw10 = vec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
vec4 sw10 = step(gw10, vec4(0.0));
gx10 -= sw10 * (step(0.0, gx10) - 0.5);
gy10 -= sw10 * (step(0.0, gy10) - 0.5);
vec4 gx11 = ixy11 * (1.0 / 7.0);
vec4 gy11 = floor(gx11) * (1.0 / 7.0);
vec4 gz11 = floor(gy11) * (1.0 / 6.0);
gx11 = fract(gx11) - 0.5;
gy11 = fract(gy11) - 0.5;
gz11 = fract(gz11) - 0.5;
vec4 gw11 = vec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
vec4 sw11 = step(gw11, vec4(0.0));
gx11 -= sw11 * (step(0.0, gx11) - 0.5);
gy11 -= sw11 * (step(0.0, gy11) - 0.5);
vec4 g0000 = vec4(gx00.x,gy00.x,gz00.x,gw00.x);
vec4 g1000 = vec4(gx00.y,gy00.y,gz00.y,gw00.y);
vec4 g0100 = vec4(gx00.z,gy00.z,gz00.z,gw00.z);
vec4 g1100 = vec4(gx00.w,gy00.w,gz00.w,gw00.w);
vec4 g0010 = vec4(gx10.x,gy10.x,gz10.x,gw10.x);
vec4 g1010 = vec4(gx10.y,gy10.y,gz10.y,gw10.y);
vec4 g0110 = vec4(gx10.z,gy10.z,gz10.z,gw10.z);
vec4 g1110 = vec4(gx10.w,gy10.w,gz10.w,gw10.w);
vec4 g0001 = vec4(gx01.x,gy01.x,gz01.x,gw01.x);
vec4 g1001 = vec4(gx01.y,gy01.y,gz01.y,gw01.y);
vec4 g0101 = vec4(gx01.z,gy01.z,gz01.z,gw01.z);
vec4 g1101 = vec4(gx01.w,gy01.w,gz01.w,gw01.w);
vec4 g0011 = vec4(gx11.x,gy11.x,gz11.x,gw11.x);
vec4 g1011 = vec4(gx11.y,gy11.y,gz11.y,gw11.y);
vec4 g0111 = vec4(gx11.z,gy11.z,gz11.z,gw11.z);
vec4 g1111 = vec4(gx11.w,gy11.w,gz11.w,gw11.w);
vec4 norm00 = taylorInvSqrt(vec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
g0000 *= norm00.x;
g0100 *= norm00.y;
g1000 *= norm00.z;
g1100 *= norm00.w;
vec4 norm01 = taylorInvSqrt(vec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
g0001 *= norm01.x;
g0101 *= norm01.y;
g1001 *= norm01.z;
g1101 *= norm01.w;
vec4 norm10 = taylorInvSqrt(vec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
g0010 *= norm10.x;
g0110 *= norm10.y;
g1010 *= norm10.z;
g1110 *= norm10.w;
vec4 norm11 = taylorInvSqrt(vec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
g0011 *= norm11.x;
g0111 *= norm11.y;
g1011 *= norm11.z;
g1111 *= norm11.w;
float n0000 = dot(g0000, Pf0);
float n1000 = dot(g1000, vec4(Pf1.x, Pf0.yzw()));
float n0100 = dot(g0100, vec4(Pf0.x, Pf1.y, Pf0.zw()));
float n1100 = dot(g1100, vec4(Pf1.xy(), Pf0.zw()));
float n0010 = dot(g0010, vec4(Pf0.xy(), Pf1.z, Pf0.w));
float n1010 = dot(g1010, vec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
float n0110 = dot(g0110, vec4(Pf0.x, Pf1.yz(), Pf0.w));
float n1110 = dot(g1110, vec4(Pf1.xyz(), Pf0.w));
float n0001 = dot(g0001, vec4(Pf0.xyz(), Pf1.w));
float n1001 = dot(g1001, vec4(Pf1.x, Pf0.yz(), Pf1.w));
float n0101 = dot(g0101, vec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
float n1101 = dot(g1101, vec4(Pf1.xy(), Pf0.z, Pf1.w));
float n0011 = dot(g0011, vec4(Pf0.xy(), Pf1.zw()));
float n1011 = dot(g1011, vec4(Pf1.x, Pf0.y, Pf1.zw()));
float n0111 = dot(g0111, vec4(Pf0.x, Pf1.yzw()));
float n1111 = dot(g1111, Pf1);
vec4 fade_xyzw = fade(Pf0);
vec4 n_0w = mix(vec4(n0000, n1000, n0100, n1100), vec4(n0001, n1001, n0101, n1101), fade_xyzw.w);
vec4 n_1w = mix(vec4(n0010, n1010, n0110, n1110), vec4(n0011, n1011, n0111, n1111), fade_xyzw.w);
vec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z);
vec2 n_yzw = mix(n_zw.xy, n_zw.zw, fade_xyzw.y);
float n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
return 2.2 * n_xyzw;
}
#endif
int main()
{
int Error = 0;
float snoise(vec4 v)
{
const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958); // -1 + 4 * G4
// (sqrt(5) - 1)/4 = F4, used once below
#define F4 0.309016994374947451
// First corner
vec4 i = floor(v + dot(v, vec4(F4)) );
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0f - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0f - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0f - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C.xxxx
// x1 = x0 - i1 + 1.0 * C.xxxx
// x2 = x0 - i2 + 2.0 * C.xxxx
// x3 = x0 - i3 + 3.0 * C.xxxx
// x4 = x0 - 1.0 + 4.0 * C.xxxx
vec4 x1 = x0 - i1 + C.xxxx;
vec4 x2 = x0 - i2 + C.yyyy;
vec4 x3 = x0 - i3 + C.zzzz;
vec4 x4 = x0 + C.wwww;
// Permutations
i = mod289(i);
float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute( permute( permute( permute (
i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4,p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6f - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
vec2 m1 = max(0.6f - vec2(dot(x3,x3), dot(x4,x4) ), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
+ dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
}
#endif
int main()
{
int Error = 0;
Error += test_vec3_operators();
Error += test_vec3_size();
Error += test_vec3_swizzle3_2();
Error += test_vec3_swizzle3_3();
Error += test_vec3_swizzle_half();
Error += test_vec3_swizzle_operators();
Error += test_vec3_swizzle_functions();
return Error;
}
Error += test_vec3_operators();
Error += test_vec3_size();
Error += test_vec3_swizzle3_2();
Error += test_vec3_swizzle3_3();
Error += test_vec3_swizzle_half();
Error += test_vec3_swizzle_operators();
Error += test_vec3_swizzle_functions();
return Error;
}