Added EXT_vector_integer extension

This commit is contained in:
Christophe Riccio 2019-04-26 19:01:12 +02:00
parent 07c6d56b5f
commit a91fb705db
4 changed files with 270 additions and 462 deletions

View File

@ -101,7 +101,7 @@ namespace glm
/// @param v Source values to which is applied the function
/// @param Multiple Must be a null or positive value
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> prevMultiple(vec<L, T, Q> const& v, T const& Multiple);
GLM_FUNC_DECL vec<L, T, Q> prevMultiple(vec<L, T, Q> const& v, T Multiple);
/// Lower multiple number of Source.
///

View File

@ -1,223 +1,7 @@
/// @ref gtc_round
#include "scalar_integer.hpp"
#include "../integer.hpp"
namespace glm{
namespace detail
namespace glm
{
template<length_t L, typename T, qualifier Q, bool compute = false>
struct compute_ceilShift
{
GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& v, T)
{
return v;
}
};
template<length_t L, typename T, qualifier Q>
struct compute_ceilShift<L, T, Q, true>
{
GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& v, T Shift)
{
return v | (v >> Shift);
}
};
template<length_t L, typename T, qualifier Q, bool isSigned = true>
struct compute_ceilPowerOfTwo
{
GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vec<L, T, Q> const Sign(sign(x));
vec<L, T, Q> v(abs(x));
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<L, T, Q, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<L, T, Q, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<L, T, Q, sizeof(T) >= 8>::call(v, 32);
return (v + static_cast<T>(1)) * Sign;
}
};
template<length_t L, typename T, qualifier Q>
struct compute_ceilPowerOfTwo<L, T, Q, false>
{
GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vec<L, T, Q> v(x);
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<L, T, Q, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<L, T, Q, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<L, T, Q, sizeof(T) >= 8>::call(v, 32);
return v + static_cast<T>(1);
}
};
template<bool is_float, bool is_signed>
struct compute_ceilMultiple{};
template<>
struct compute_ceilMultiple<true, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
return Source + (Multiple - std::fmod(Source, Multiple));
else
return Source + std::fmod(-Source, Multiple);
}
};
template<>
struct compute_ceilMultiple<false, false>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
};
template<>
struct compute_ceilMultiple<false, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
else
return Source + (-Source % Multiple);
}
};
template<bool is_float, bool is_signed>
struct compute_floorMultiple{};
template<>
struct compute_floorMultiple<true, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
return Source - std::fmod(Source, Multiple) - Multiple;
}
};
template<>
struct compute_floorMultiple<false, false>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template<>
struct compute_floorMultiple<false, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template<bool is_float, bool is_signed>
struct compute_roundMultiple{};
template<>
struct compute_roundMultiple<true, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
{
genType Tmp = Source + genType(1);
return Tmp - std::fmod(Tmp, Multiple) - Multiple;
}
}
};
template<>
struct compute_roundMultiple<false, false>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template<>
struct compute_roundMultiple<false, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
}//namespace detail
////////////////
// isPowerOfTwo
template<typename genType>
GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value)
{
genType const Result = glm::abs(Value);
return !(Result & (Result - 1));
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, bool, Q> isPowerOfTwo(vec<L, T, Q> const& Value)
{
@ -225,63 +9,16 @@ namespace detail
return equal(Result & (Result - 1), vec<L, T, Q>(0));
}
//////////////////
// ceilPowerOfTwo
template<typename genType>
GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value)
{
return detail::compute_ceilPowerOfTwo<1, genType, defaultp, std::numeric_limits<genType>::is_signed>::call(vec<1, genType, defaultp>(value)).x;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> ceilPowerOfTwo(vec<L, T, Q> const& v)
GLM_FUNC_QUALIFIER vec<L, T, Q> nextPowerOfTwo(vec<L, T, Q> const& v)
{
return detail::compute_ceilPowerOfTwo<L, T, Q, std::numeric_limits<T>::is_signed>::call(v);
}
///////////////////
// floorPowerOfTwo
template<typename genType>
GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value)
{
return isPowerOfTwo(value) ? value : static_cast<genType>(1) << findMSB(value);
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> floorPowerOfTwo(vec<L, T, Q> const& v)
GLM_FUNC_QUALIFIER vec<L, T, Q> prevPowerOfTwo(vec<L, T, Q> const& v)
{
return detail::functor1<vec, L, T, T, Q>::call(floorPowerOfTwo, v);
}
///////////////////
// roundPowerOfTwo
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value)
{
if(isPowerOfTwo(value))
return value;
genIUType const prev = static_cast<genIUType>(1) << findMSB(value);
genIUType const next = prev << static_cast<genIUType>(1);
return (next - value) < (value - prev) ? next : prev;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> roundPowerOfTwo(vec<L, T, Q> const& v)
{
return detail::functor1<vec, L, T, T, Q>::call(roundPowerOfTwo, v);
}
////////////////
// isMultiple
template<typename genType>
GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple)
{
return isMultiple(vec<1, genType>(Value), vec<1, genType>(Multiple)).x;
return detail::functor1<vec, L, T, T, Q>::call(prevPowerOfTwo, v);
}
template<length_t L, typename T, qualifier Q>
@ -296,48 +33,27 @@ namespace detail
return (Value % Multiple) == vec<L, T, Q>(0);
}
//////////////////////
// ceilMultiple
template<typename genType>
GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple)
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> nextMultiple(vec<L, T, Q> const& Source, T Multiple)
{
return detail::compute_ceilMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
return detail::functor2<vec, L, T, Q>::call(nextMultiple, Source, vec<L, T, Q>(Multiple));
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> ceilMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple)
GLM_FUNC_QUALIFIER vec<L, T, Q> nextMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple)
{
return detail::functor2<vec, L, T, Q>::call(ceilMultiple, Source, Multiple);
}
//////////////////////
// floorMultiple
template<typename genType>
GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple)
{
return detail::compute_floorMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
return detail::functor2<vec, L, T, Q>::call(nextMultiple, Source, Multiple);
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> floorMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple)
GLM_FUNC_QUALIFIER vec<L, T, Q> prevMultiple(vec<L, T, Q> const& Source, T Multiple)
{
return detail::functor2<vec, L, T, Q>::call(floorMultiple, Source, Multiple);
}
//////////////////////
// roundMultiple
template<typename genType>
GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple)
{
return detail::compute_roundMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
return detail::functor2<vec, L, T, Q>::call(prevMultiple, Source, vec<L, T, Q>(Multiple));
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> roundMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple)
GLM_FUNC_QUALIFIER vec<L, T, Q> prevMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple)
{
return detail::functor2<vec, L, T, Q>::call(roundMultiple, Source, Multiple);
return detail::functor2<vec, L, T, Q>::call(prevMultiple, Source, Multiple);
}
}//namespace glm

View File

@ -1,211 +1,309 @@
#include <glm/ext/vector_integer.hpp>
#include <glm/ext/vector_int1.hpp>
#include <glm/ext/vector_int2.hpp>
#include <glm/ext/vector_int3.hpp>
#include <glm/ext/vector_int4.hpp>
#include <glm/ext/vector_uint1.hpp>
#include <glm/ext/vector_uint2.hpp>
#include <glm/ext/vector_uint3.hpp>
#include <glm/ext/vector_uint4.hpp>
#include <glm/vector_relational.hpp>
#include <glm/ext/scalar_int_sized.hpp>
#include <glm/ext/scalar_uint_sized.hpp>
#include <vector>
#include <ctime>
#include <cstdio>
template <typename genType>
static int test_operators()
namespace isPowerOfTwo
{
int Error = 0;
template<typename genType>
struct type
{
genType const A(1);
genType const B(1);
genType Value;
bool Return;
};
bool const R = A != B;
bool const S = A == B;
Error += (S && !R) ? 0 : 1;
int test_int16()
{
type<glm::int16> const Data[] =
{
{ 0x0001, true },
{ 0x0002, true },
{ 0x0004, true },
{ 0x0080, true },
{ 0x0000, true },
{ 0x0003, false }
};
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_uint16()
{
genType const A(1);
genType const B(1);
type<glm::uint16> const Data[] =
{
{ 0x0001, true },
{ 0x0002, true },
{ 0x0004, true },
{ 0x0000, true },
{ 0x0000, true },
{ 0x0003, false }
};
genType const C = A + B;
Error += C == genType(2) ? 0 : 1;
int Error = 0;
genType const D = A - B;
Error += D == genType(0) ? 0 : 1;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
genType const E = A * B;
Error += E == genType(1) ? 0 : 1;
genType const F = A / B;
Error += F == genType(1) ? 0 : 1;
return Error;
}
int test_int32()
{
genType const A(3);
genType const B(2);
type<int> const Data[] =
{
{ 0x00000001, true },
{ 0x00000002, true },
{ 0x00000004, true },
{ 0x0000000f, false },
{ 0x00000000, true },
{ 0x00000003, false }
};
genType const C = A % B;
Error += C == genType(1) ? 0 : 1;
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_uint32()
{
genType const A(1);
genType const B(1);
genType const C(0);
type<glm::uint> const Data[] =
{
{ 0x00000001, true },
{ 0x00000002, true },
{ 0x00000004, true },
{ 0x80000000, true },
{ 0x00000000, true },
{ 0x00000003, false }
};
genType const I = A & B;
Error += I == genType(1) ? 0 : 1;
genType const D = A & C;
Error += D == genType(0) ? 0 : 1;
int Error = 0;
genType const E = A | B;
Error += E == genType(1) ? 0 : 1;
genType const F = A | C;
Error += F == genType(1) ? 0 : 1;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
genType const G = A ^ B;
Error += G == genType(0) ? 0 : 1;
genType const H = A ^ C;
Error += H == genType(1) ? 0 : 1;
return Error;
}
int test()
{
genType const A(0);
genType const B(1);
genType const C(2);
int Error = 0;
genType const D = B << B;
Error += D == genType(2) ? 0 : 1;
genType const E = C >> B;
Error += E == genType(1) ? 0 : 1;
Error += test_int16();
Error += test_uint16();
Error += test_int32();
Error += test_uint32();
return Error;
}
}//isPowerOfTwo
namespace prevPowerOfTwo
{
template <typename T>
int run()
{
int Error = 0;
T const A = glm::prevPowerOfTwo(static_cast<T>(7));
Error += A == static_cast<T>(4) ? 0 : 1;
T const B = glm::prevPowerOfTwo(static_cast<T>(15));
Error += B == static_cast<T>(8) ? 0 : 1;
T const C = glm::prevPowerOfTwo(static_cast<T>(31));
Error += C == static_cast<T>(16) ? 0 : 1;
T const D = glm::prevPowerOfTwo(static_cast<T>(32));
Error += D == static_cast<T>(32) ? 0 : 1;
return Error;
}
return Error;
}
int test()
{
int Error = 0;
template <typename genType>
static int test_ctor()
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace prevPowerOfTwo
namespace nextPowerOfTwo
{
typedef typename genType::value_type T;
int Error = 0;
template <typename T>
int run()
{
int Error = 0;
genType const A = genType(1);
T const A = glm::nextPowerOfTwo(static_cast<T>(7));
Error += A == static_cast<T>(8) ? 0 : 1;
genType const E(genType(1));
Error += A == E ? 0 : 1;
T const B = glm::nextPowerOfTwo(static_cast<T>(15));
Error += B == static_cast<T>(16) ? 0 : 1;
genType const F(E);
Error += A == F ? 0 : 1;
T const C = glm::nextPowerOfTwo(static_cast<T>(31));
Error += C == static_cast<T>(32) ? 0 : 1;
genType const B = genType(1);
genType const G(glm::vec<2, T>(1));
Error += B == G ? 0 : 1;
T const D = glm::nextPowerOfTwo(static_cast<T>(32));
Error += D == static_cast<T>(32) ? 0 : 1;
genType const H(glm::vec<3, T>(1));
Error += B == H ? 0 : 1;
return Error;
}
genType const I(glm::vec<4, T>(1));
Error += B == I ? 0 : 1;
int test()
{
int Error = 0;
return Error;
}
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
template <typename genType>
static int test_size()
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace nextPowerOfTwo
namespace prevMultiple
{
int Error = 0;
template<typename genIUType>
struct type
{
genIUType Source;
genIUType Multiple;
genIUType Return;
};
Error += sizeof(typename genType::value_type) == sizeof(genType) ? 0 : 1;
Error += genType().length() == 1 ? 0 : 1;
Error += genType::length() == 1 ? 0 : 1;
template <typename T>
int run()
{
type<T> const Data[] =
{
{ 8, 3, 6 },
{ 7, 7, 7 }
};
return Error;
}
int Error = 0;
template <typename genType>
static int test_relational()
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
glm::vec<4, T> const Result = glm::prevMultiple(glm::vec<4, T>(Data[i].Source), Data[i].Multiple);
Error += glm::vec<4, T>(Data[i].Return) == Result ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace prevMultiple
namespace nextMultiple
{
int Error = 0;
template<typename genIUType>
struct type
{
genIUType Source;
genIUType Multiple;
genIUType Return;
};
genType const A(1);
genType const B(1);
genType const C(0);
template <typename T>
int run()
{
type<T> const Data[] =
{
{ 8, 3, 6 },
{ 7, 7, 7 }
};
Error += A == B ? 0 : 1;
Error += A != C ? 0 : 1;
Error += all(equal(A, B)) ? 0 : 1;
Error += any(notEqual(A, C)) ? 0 : 1;
int Error = 0;
return Error;
}
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
glm::vec<4, T> const Result = glm::nextMultiple(glm::vec<4, T>(Data[i].Source), Data[i].Multiple);
Error += glm::vec<4, T>(Data[i].Return) == Result ? 0 : 1;
}
template <typename genType>
static int test_constexpr()
{
# if GLM_CONFIG_CONSTEXP == GLM_ENABLE
static_assert(genType::length() == 1, "GLM: Failed constexpr");
static_assert(genType(1)[0] == 1, "GLM: Failed constexpr");
static_assert(genType(1) == genType(1), "GLM: Failed constexpr");
static_assert(genType(1) != genType(0), "GLM: Failed constexpr");
# endif
return Error;
}
return 0;
}
int test()
{
int Error = 0;
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace nextMultiple
int main()
{
int Error = 0;
Error += test_operators<glm::ivec1>();
Error += test_operators<glm::lowp_ivec1>();
Error += test_operators<glm::mediump_ivec1>();
Error += test_operators<glm::highp_ivec1>();
Error += isPowerOfTwo::test();
Error += prevPowerOfTwo::test();
Error += nextPowerOfTwo::test();
Error += prevMultiple::test();
Error += nextMultiple::test();
Error += test_ctor<glm::ivec1>();
Error += test_ctor<glm::lowp_ivec1>();
Error += test_ctor<glm::mediump_ivec1>();
Error += test_ctor<glm::highp_ivec1>();
Error += test_size<glm::ivec1>();
Error += test_size<glm::lowp_ivec1>();
Error += test_size<glm::mediump_ivec1>();
Error += test_size<glm::highp_ivec1>();
Error += test_relational<glm::ivec1>();
Error += test_relational<glm::lowp_ivec1>();
Error += test_relational<glm::mediump_ivec1>();
Error += test_relational<glm::highp_ivec1>();
Error += test_constexpr<glm::ivec1>();
Error += test_constexpr<glm::lowp_ivec1>();
Error += test_constexpr<glm::mediump_ivec1>();
Error += test_constexpr<glm::highp_ivec1>();
Error += test_operators<glm::uvec1>();
Error += test_operators<glm::lowp_uvec1>();
Error += test_operators<glm::mediump_uvec1>();
Error += test_operators<glm::highp_uvec1>();
Error += test_ctor<glm::uvec1>();
Error += test_ctor<glm::lowp_uvec1>();
Error += test_ctor<glm::mediump_uvec1>();
Error += test_ctor<glm::highp_uvec1>();
Error += test_size<glm::uvec1>();
Error += test_size<glm::lowp_uvec1>();
Error += test_size<glm::mediump_uvec1>();
Error += test_size<glm::highp_uvec1>();
Error += test_relational<glm::uvec1>();
Error += test_relational<glm::lowp_uvec1>();
Error += test_relational<glm::mediump_uvec1>();
Error += test_relational<glm::highp_uvec1>();
Error += test_constexpr<glm::uvec1>();
Error += test_constexpr<glm::lowp_uvec1>();
Error += test_constexpr<glm::mediump_uvec1>();
Error += test_constexpr<glm::highp_uvec1>();
return Error;
}

View File

@ -1,14 +1,8 @@
#include <glm/ext/vector_integer.hpp>
#include <glm/ext/vector_int1.hpp>
#include <glm/ext/vector_int1_precision.hpp>
#include <glm/ext/vector_int2.hpp>
#include <glm/ext/vector_int3.hpp>
#include <glm/ext/vector_int4.hpp>
#include <glm/ext/vector_uint1.hpp>
#include <glm/ext/vector_uint1_precision.hpp>
#include <glm/ext/vector_uint2.hpp>
#include <glm/ext/vector_uint3.hpp>
#include <glm/ext/vector_uint4.hpp>
#include <glm/vector_relational.hpp>
template <typename genType>
static int test_operators()