Added spearate functions to use both nagative one and zero near clip plans #680

This commit is contained in:
Christophe Riccio 2017-09-23 15:55:18 +02:00
parent 083782185e
commit aa38362b2c
3 changed files with 939 additions and 414 deletions

View File

@ -57,8 +57,7 @@ namespace glm
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glTranslate.xml">glTranslate man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glTranslate.xml">glTranslate man page</a>
template<typename T, qualifier Q> template<typename T, qualifier Q>
GLM_FUNC_DECL mat<4, 4, T, Q> translate( GLM_FUNC_DECL mat<4, 4, T, Q> translate(
mat<4, 4, T, Q> const& m, mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v);
vec<3, T, Q> const& v);
/// Builds a rotation 4 * 4 matrix created from an axis vector and an angle. /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle.
/// ///
@ -72,9 +71,7 @@ namespace glm
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glRotate.xml">glRotate man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glRotate.xml">glRotate man page</a>
template<typename T, qualifier Q> template<typename T, qualifier Q>
GLM_FUNC_DECL mat<4, 4, T, Q> rotate( GLM_FUNC_DECL mat<4, 4, T, Q> rotate(
mat<4, 4, T, Q> const& m, mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& axis);
T angle,
vec<3, T, Q> const& axis);
/// Builds a scale 4 * 4 matrix created from 3 scalars. /// Builds a scale 4 * 4 matrix created from 3 scalars.
/// ///
@ -87,51 +84,7 @@ namespace glm
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glScale.xml">glScale man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glScale.xml">glScale man page</a>
template<typename T, qualifier Q> template<typename T, qualifier Q>
GLM_FUNC_DECL mat<4, 4, T, Q> scale( GLM_FUNC_DECL mat<4, 4, T, Q> scale(
mat<4, 4, T, Q> const& m, mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v);
vec<3, T, Q> const& v);
/// Creates a matrix for an orthographic parallel viewing volume, using the default handedness.
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml">glOrtho man page</a>
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using left-handedness.
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using right-handedness.
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar);
/// Creates a matrix for projecting two-dimensional coordinates onto the screen. /// Creates a matrix for projecting two-dimensional coordinates onto the screen.
/// ///
@ -141,52 +94,294 @@ namespace glm
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluOrtho2D.xml">gluOrtho2D man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluOrtho2D.xml">gluOrtho2D man page</a>
template<typename T> template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho( GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
T left, T left, T right, T bottom, T top);
T right,
T bottom,
T top);
/// Creates a frustum matrix with default handedness. /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_ZO(
T left, T right, T bottom, T top, T zNear, T zFar);
/// Creates a matrix for an orthographic parallel viewing volume using right-handed coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_NO(
T left, T right, T bottom, T top, T zNear, T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_ZO(
T left, T right, T bottom, T top, T zNear, T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_NO(
T left, T right, T bottom, T top, T zNear, T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoZO(
T left, T right, T bottom, T top, T zNear, T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoNO(
T left, T right, T bottom, T top, T zNear, T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH(
T left, T right, T bottom, T top, T zNear, T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates.
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH(
T left, T right, T bottom, T top, T zNear, T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using the default handedness and default near and far clip planes definition.
/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml">glOrtho man page</a>
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
T left, T right, T bottom, T top, T zNear, T zFar);
/// Creates a left handed frustum matrix.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_ZO(
T left, T right, T bottom, T top, T near, T far);
/// Creates a left handed frustum matrix.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_NO(
T left, T right, T bottom, T top, T near, T far);
/// Creates a right handed frustum matrix.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_ZO(
T left, T right, T bottom, T top, T near, T far);
/// Creates a right handed frustum matrix.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_NO(
T left, T right, T bottom, T top, T near, T far);
/// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumZO(
T left, T right, T bottom, T top, T near, T far);
/// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumNO(
T left, T right, T bottom, T top, T near, T far);
/// Creates a left handed frustum matrix.
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH(
T left, T right, T bottom, T top, T near, T far);
/// Creates a right handed frustum matrix.
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH(
T left, T right, T bottom, T top, T near, T far);
/// Creates a frustum matrix with default handedness, using the default handedness and default near and far clip planes definition.
/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
/// ///
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform /// @see gtc_matrix_transform
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glFrustum.xml">glFrustum man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glFrustum.xml">glFrustum man page</a>
template<typename T> template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum( GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum(
T left, T left, T right, T bottom, T top, T near, T far);
T right,
T bottom,
T top,
T near,
T far);
/// Creates a left handed frustum matrix.
/// Creates a matrix for a right handed, symetric perspective-view frustum.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// ///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform /// @see gtc_matrix_transform
template<typename T> template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH( GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_ZO(
T left, T fovy, T aspect, T near, T far);
T right,
T bottom,
T top,
T near,
T far);
/// Creates a right handed frustum matrix. /// Creates a matrix for a right handed, symetric perspective-view frustum.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
/// ///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform /// @see gtc_matrix_transform
template<typename T> template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH( GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_NO(
T left, T fovy, T aspect, T near, T far);
T right,
T bottom,
T top,
T near,
T far);
/// Creates a matrix for a symetric perspective-view frustum based on the default handedness. /// Creates a matrix for a left handed, symetric perspective-view frustum.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_ZO(
T fovy, T aspect, T near, T far);
/// Creates a matrix for a left handed, symetric perspective-view frustum.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_NO(
T fovy, T aspect, T near, T far);
/// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveZO(
T fovy, T aspect, T near, T far);
/// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveNO(
T fovy, T aspect, T near, T far);
/// Creates a matrix for a right handed, symetric perspective-view frustum.
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH(
T fovy, T aspect, T near, T far);
/// Creates a matrix for a left handed, symetric perspective-view frustum.
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH(
T fovy, T aspect, T near, T far);
/// Creates a matrix for a symetric perspective-view frustum based on the default handedness and default near and far clip planes definition.
/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
/// ///
/// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
@ -197,42 +392,10 @@ namespace glm
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml">gluPerspective man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml">gluPerspective man page</a>
template<typename T> template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective( GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective(
T fovy, T fovy, T aspect, T near, T far);
T aspect,
T near,
T far);
/// Creates a matrix for a right handed, symetric perspective-view frustum. /// Builds a perspective projection matrix based on a field of view using right-handed coordinates.
/// /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH(
T fovy,
T aspect,
T near,
T far);
/// Creates a matrix for a left handed, symetric perspective-view frustum.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH(
T fovy,
T aspect,
T near,
T far);
/// Builds a perspective projection matrix based on a field of view and the default handedness.
/// ///
/// @param fov Expressed in radians. /// @param fov Expressed in radians.
/// @param width Width of the viewport /// @param width Width of the viewport
@ -242,14 +405,82 @@ namespace glm
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform /// @see gtc_matrix_transform
template<typename T> template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov( GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_ZO(
T fov, T fov, T width, T height, T near, T far);
T width,
T height, /// Builds a perspective projection matrix based on a field of view using right-handed coordinates.
T near, /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
T far); ///
/// @param fov Expressed in radians.
/// @param width Width of the viewport
/// @param height Height of the viewport
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_NO(
T fov, T width, T height, T near, T far);
/// Builds a perspective projection matrix based on a field of view using left-handed coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @param fov Expressed in radians.
/// @param width Width of the viewport
/// @param height Height of the viewport
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_ZO(
T fov, T width, T height, T near, T far);
/// Builds a perspective projection matrix based on a field of view using left-handed coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @param fov Expressed in radians.
/// @param width Width of the viewport
/// @param height Height of the viewport
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_NO(
T fov, T width, T height, T near, T far);
/// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @param fov Expressed in radians.
/// @param width Width of the viewport
/// @param height Height of the viewport
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovZO(
T fov, T width, T height, T near, T far);
/// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @param fov Expressed in radians.
/// @param width Width of the viewport
/// @param height Height of the viewport
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovNO(
T fov, T width, T height, T near, T far);
/// Builds a right handed perspective projection matrix based on a field of view. /// Builds a right handed perspective projection matrix based on a field of view.
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
/// ///
/// @param fov Expressed in radians. /// @param fov Expressed in radians.
/// @param width Width of the viewport /// @param width Width of the viewport
@ -260,13 +491,11 @@ namespace glm
/// @see gtc_matrix_transform /// @see gtc_matrix_transform
template<typename T> template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH( GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH(
T fov, T fov, T width, T height, T near, T far);
T width,
T height,
T near,
T far);
/// Builds a left handed perspective projection matrix based on a field of view. /// Builds a left handed perspective projection matrix based on a field of view.
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
/// ///
/// @param fov Expressed in radians. /// @param fov Expressed in radians.
/// @param width Width of the viewport /// @param width Width of the viewport
@ -277,22 +506,21 @@ namespace glm
/// @see gtc_matrix_transform /// @see gtc_matrix_transform
template<typename T> template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH( GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH(
T fov, T fov, T width, T height, T near, T far);
T width,
T height,
T near,
T far);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. /// Builds a perspective projection matrix based on a field of view and the default handedness and default near and far clip planes definition.
/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
/// ///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param fov Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param width Width of the viewport
/// @param height Height of the viewport
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform /// @see gtc_matrix_transform
template<typename T> template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective( GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov(
T fovy, T aspect, T near); T fov, T width, T height, T near, T far);
/// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite. /// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite.
/// ///
@ -316,6 +544,17 @@ namespace glm
GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH( GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH(
T fovy, T aspect, T near); T fovy, T aspect, T near);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective(
T fovy, T aspect, T near);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
/// ///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
@ -340,6 +579,39 @@ namespace glm
T fovy, T aspect, T near, T ep); T fovy, T aspect, T near, T ep);
/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @param obj Specify the object coordinates.
/// @param model Specifies the current modelview matrix
/// @param proj Specifies the current projection matrix
/// @param viewport Specifies the current viewport
/// @return Return the computed window coordinates.
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
template<typename T, typename U, qualifier Q>
GLM_FUNC_DECL vec<3, T, Q> projectZO(
vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @param obj Specify the object coordinates.
/// @param model Specifies the current modelview matrix
/// @param proj Specifies the current projection matrix
/// @param viewport Specifies the current viewport
/// @return Return the computed window coordinates.
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
template<typename T, typename U, qualifier Q>
GLM_FUNC_DECL vec<3, T, Q> projectNO(
vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates using default near and far clip planes definition.
/// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
/// ///
/// @param obj Specify the object coordinates. /// @param obj Specify the object coordinates.
/// @param model Specifies the current modelview matrix /// @param model Specifies the current modelview matrix
@ -352,12 +624,42 @@ namespace glm
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
template<typename T, typename U, qualifier Q> template<typename T, typename U, qualifier Q>
GLM_FUNC_DECL vec<3, T, Q> project( GLM_FUNC_DECL vec<3, T, Q> project(
vec<3, T, Q> const& obj, vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
mat<4, 4, T, Q> const& model,
mat<4, 4, T, Q> const& proj,
vec<4, U, Q> const& viewport);
/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
///
/// @param win Specify the window coordinates to be mapped.
/// @param model Specifies the modelview matrix
/// @param proj Specifies the projection matrix
/// @param viewport Specifies the viewport
/// @return Returns the computed object coordinates.
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
template<typename T, typename U, qualifier Q>
GLM_FUNC_DECL vec<3, T, Q> unProjectZO(
vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
///
/// @param win Specify the window coordinates to be mapped.
/// @param model Specifies the modelview matrix
/// @param proj Specifies the projection matrix
/// @param viewport Specifies the viewport
/// @return Returns the computed object coordinates.
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
template<typename T, typename U, qualifier Q>
GLM_FUNC_DECL vec<3, T, Q> unProjectNO(
vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates using default near and far clip planes definition.
/// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
/// ///
/// @param win Specify the window coordinates to be mapped. /// @param win Specify the window coordinates to be mapped.
/// @param model Specifies the modelview matrix /// @param model Specifies the modelview matrix
@ -370,10 +672,7 @@ namespace glm
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
template<typename T, typename U, qualifier Q> template<typename T, typename U, qualifier Q>
GLM_FUNC_DECL vec<3, T, Q> unProject( GLM_FUNC_DECL vec<3, T, Q> unProject(
vec<3, T, Q> const& win, vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
mat<4, 4, T, Q> const& model,
mat<4, 4, T, Q> const& proj,
vec<4, U, Q> const& viewport);
/// Define a picking region /// Define a picking region
/// ///
@ -386,9 +685,29 @@ namespace glm
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPickMatrix.xml">gluPickMatrix man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPickMatrix.xml">gluPickMatrix man page</a>
template<typename T, qualifier Q, typename U> template<typename T, qualifier Q, typename U>
GLM_FUNC_DECL mat<4, 4, T, Q> pickMatrix( GLM_FUNC_DECL mat<4, 4, T, Q> pickMatrix(
vec<2, T, Q> const& center, vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport);
vec<2, T, Q> const& delta,
vec<4, U, Q> const& viewport); /// Build a right handed look at view matrix.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal)
template<typename T, qualifier Q>
GLM_FUNC_DECL mat<4, 4, T, Q> lookAtRH(
vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up);
/// Build a left handed look at view matrix.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal)
template<typename T, qualifier Q>
GLM_FUNC_DECL mat<4, 4, T, Q> lookAtLH(
vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up);
/// Build a look at view matrix based on the default handedness. /// Build a look at view matrix based on the default handedness.
/// ///
@ -400,35 +719,7 @@ namespace glm
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml">gluLookAt man page</a> /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml">gluLookAt man page</a>
template<typename T, qualifier Q> template<typename T, qualifier Q>
GLM_FUNC_DECL mat<4, 4, T, Q> lookAt( GLM_FUNC_DECL mat<4, 4, T, Q> lookAt(
vec<3, T, Q> const& eye, vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up);
vec<3, T, Q> const& center,
vec<3, T, Q> const& up);
/// Build a right handed look at view matrix.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal)
template<typename T, qualifier Q>
GLM_FUNC_DECL mat<4, 4, T, Q> lookAtRH(
vec<3, T, Q> const& eye,
vec<3, T, Q> const& center,
vec<3, T, Q> const& up);
/// Build a left handed look at view matrix.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal)
template<typename T, qualifier Q>
GLM_FUNC_DECL mat<4, 4, T, Q> lookAtLH(
vec<3, T, Q> const& eye,
vec<3, T, Q> const& center,
vec<3, T, Q> const& up);
/// @} /// @}
}//namespace glm }//namespace glm

View File

@ -97,280 +97,481 @@ namespace glm
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top)
(
T left, T right,
T bottom, T top,
T zNear, T zFar
)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return orthoLH(left, right, bottom, top, zNear, zFar);
# else
return orthoRH(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH
(
T left, T right,
T bottom, T top,
T zNear, T zFar
)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = static_cast<T>(1) / (zFar - zNear);
Result[3][2] = - zNear / (zFar - zNear);
# else
Result[2][2] = static_cast<T>(2) / (zFar - zNear);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH
(
T left, T right,
T bottom, T top,
T zNear, T zFar
)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
Result[3][2] = - zNear / (zFar - zNear);
# else
Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho
(
T left, T right,
T bottom, T top
)
{ {
mat<4, 4, T, defaultp> Result(static_cast<T>(1)); mat<4, 4, T, defaultp> Result(static_cast<T>(1));
Result[0][0] = static_cast<T>(2) / (right - left); Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom); Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(1);
Result[3][0] = - (right + left) / (right - left); Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom); Result[3][1] = - (top + bottom) / (top - bottom);
return Result; return Result;
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
( {
T left, T right, mat<4, 4, T, defaultp> Result(1);
T bottom, T top, Result[0][0] = static_cast<T>(2) / (right - left);
T nearVal, T farVal Result[1][1] = static_cast<T>(2) / (top - bottom);
) Result[2][2] = static_cast<T>(1) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - zNear / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = static_cast<T>(2) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - zNear / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar)
{ {
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return frustumLH(left, right, bottom, top, nearVal, farVal); return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
# else # else
return frustumRH(left, right, bottom, top, nearVal, farVal); return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
# endif # endif
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar)
( {
T left, T right, # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
T bottom, T top, return orthoLH_NO(left, right, bottom, top, zNear, zFar);
T nearVal, T farVal # else
) return orthoRH_NO(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar)
{
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
# else
return orthoLH_NO(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar)
{
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
# else
return orthoRH_NO(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE
return orthoLH_NO(left, right, bottom, top, zNear, zFar);
# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE
return orthoRH_NO(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
{ {
mat<4, 4, T, defaultp> Result(0); mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left); Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom); Result[2][1] = (top + bottom) / (top - bottom);
Result[2][3] = static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = farVal / (farVal - nearVal); Result[2][2] = farVal / (farVal - nearVal);
Result[2][3] = static_cast<T>(1);
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
# else
Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
# endif
return Result; return Result;
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
(
T left, T right,
T bottom, T top,
T nearVal, T farVal
)
{ {
mat<4, 4, T, defaultp> Result(0); mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left); Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom); Result[2][1] = (top + bottom) / (top - bottom);
Result[2][3] = static_cast<T>(-1); Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
Result[2][3] = static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = farVal / (nearVal - farVal);
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
# else
Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
# endif
return Result; return Result;
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
{
mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][2] = farVal / (nearVal - farVal);
Result[2][3] = static_cast<T>(-1);
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
{
mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
Result[2][3] = static_cast<T>(-1);
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal)
{ {
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return perspectiveLH(fovy, aspect, zNear, zFar); return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
# else # else
return perspectiveRH(fovy, aspect, zNear, zFar); return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
# else
return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal)
{
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
# else
return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal)
{
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
# else
return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE
return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE
return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = zFar / (zNear - zFar);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = zFar / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
# else
return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return perspectiveLH_NO(fovy, aspect, zNear, zFar);
# else
return perspectiveRH_NO(fovy, aspect, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar)
{
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
# else
return perspectiveLH_NO(fovy, aspect, zNear, zFar);
# endif # endif
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar)
{ {
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][3] = - static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zNear - zFar); return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
# else # else
Result[2][2] = - (zFar + zNear) / (zFar - zNear); return perspectiveRH_NO(fovy, aspect, zNear, zFar);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
# endif # endif
return Result;
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar)
{ {
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE
return perspectiveLH_NO(fovy, aspect, zNear, zFar);
# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE
return perspectiveRH_NO(fovy, aspect, zNear, zFar);
# endif
}
T const tanHalfFovy = tan(fovy / static_cast<T>(2)); template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0)); mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); Result[0][0] = w;
Result[1][1] = static_cast<T>(1) / (tanHalfFovy); Result[1][1] = h;
Result[2][3] = static_cast<T>(1); Result[2][2] = zFar / (zNear - zFar);
Result[2][3] = - static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zFar - zNear);
Result[3][2] = -(zFar * zNear) / (zFar - zNear); Result[3][2] = -(zFar * zNear) / (zFar - zNear);
# else
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
# endif
return Result; return Result;
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = zFar / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[2][3] = static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar)
{ {
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return perspectiveFovLH(fov, width, height, zNear, zFar); return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
# else # else
return perspectiveFovRH(fov, width, height, zNear, zFar); return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
# else
return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar)
{
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
# else
return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
# endif # endif
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar)
{ {
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][3] = - static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zNear - zFar); return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
# else # else
Result[2][2] = - (zFar + zNear) / (zFar - zNear); return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
# endif # endif
return Result;
} }
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar)
{ {
assert(width > static_cast<T>(0)); # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
assert(height > static_cast<T>(0)); return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
assert(fov > static_cast<T>(0)); # elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE
return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
T const rad = fov; # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE
return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][3] = static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zFar - zNear);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
# else
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return infinitePerspectiveLH(fovy, aspect, zNear);
# else
return infinitePerspectiveRH(fovy, aspect, zNear);
# endif # endif
} }
@ -410,6 +611,16 @@ namespace glm
return Result; return Result;
} }
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return infinitePerspectiveLH(fovy, aspect, zNear);
# else
return infinitePerspectiveRH(fovy, aspect, zNear);
# endif
}
// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
template<typename T> template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep)
@ -436,25 +647,16 @@ namespace glm
} }
template<typename T, typename U, qualifier Q> template<typename T, typename U, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> project GLM_FUNC_QUALIFIER vec<3, T, Q> projectZO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
(
vec<3, T, Q> const& obj,
mat<4, 4, T, Q> const& model,
mat<4, 4, T, Q> const& proj,
vec<4, U, Q> const& viewport
)
{ {
vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1)); vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1));
tmp = model * tmp; tmp = model * tmp;
tmp = proj * tmp; tmp = proj * tmp;
tmp /= tmp.w; tmp /= tmp.w;
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5); tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5);
tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5); tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5);
# else
tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5);
# endif
tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
@ -462,25 +664,40 @@ namespace glm
} }
template<typename T, typename U, qualifier Q> template<typename T, typename U, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> unProject GLM_FUNC_QUALIFIER vec<3, T, Q> projectNO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
( {
vec<3, T, Q> const& win, vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1));
mat<4, 4, T, Q> const& model, tmp = model * tmp;
mat<4, 4, T, Q> const& proj, tmp = proj * tmp;
vec<4, U, Q> const& viewport
) tmp /= tmp.w;
tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5);
tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
return vec<3, T, Q>(tmp);
}
template<typename T, typename U, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> project(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
{
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return projectZO(obj, model, proj, viewport);
# else
return projectNO(obj, model, proj, viewport);
# endif
}
template<typename T, typename U, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectZO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
{ {
mat<4, 4, T, Q> Inverse = inverse(proj * model); mat<4, 4, T, Q> Inverse = inverse(proj * model);
vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1)); vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1));
tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1); tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1);
tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1); tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1);
# else
tmp = tmp * static_cast<T>(2) - static_cast<T>(1);
# endif
vec<4, T, Q> obj = Inverse * tmp; vec<4, T, Q> obj = Inverse * tmp;
obj /= obj.w; obj /= obj.w;
@ -488,6 +705,32 @@ namespace glm
return vec<3, T, Q>(obj); return vec<3, T, Q>(obj);
} }
template<typename T, typename U, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectNO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
{
mat<4, 4, T, Q> Inverse = inverse(proj * model);
vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1));
tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
tmp = tmp * static_cast<T>(2) - static_cast<T>(1);
vec<4, T, Q> obj = Inverse * tmp;
obj /= obj.w;
return vec<3, T, Q>(obj);
}
template<typename T, typename U, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> unProject(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
{
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
return unProjectZO(win, model, proj, viewport);
# else
return unProjectNO(win, model, proj, viewport);
# endif
}
template<typename T, qualifier Q, typename U> template<typename T, qualifier Q, typename U>
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> pickMatrix(vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport) GLM_FUNC_QUALIFIER mat<4, 4, T, Q> pickMatrix(vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport)
{ {
@ -508,22 +751,7 @@ namespace glm
} }
template<typename T, qualifier Q> template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAt(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtRH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return lookAtLH(eye, center, up);
# else
return lookAtRH(eye, center, up);
# endif
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtRH
(
vec<3, T, Q> const& eye,
vec<3, T, Q> const& center,
vec<3, T, Q> const& up
)
{ {
vec<3, T, Q> const f(normalize(center - eye)); vec<3, T, Q> const f(normalize(center - eye));
vec<3, T, Q> const s(normalize(cross(f, up))); vec<3, T, Q> const s(normalize(cross(f, up)));
@ -546,12 +774,7 @@ namespace glm
} }
template<typename T, qualifier Q> template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtLH GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtLH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up)
(
vec<3, T, Q> const& eye,
vec<3, T, Q> const& center,
vec<3, T, Q> const& up
)
{ {
vec<3, T, Q> const f(normalize(center - eye)); vec<3, T, Q> const f(normalize(center - eye));
vec<3, T, Q> const s(normalize(cross(up, f))); vec<3, T, Q> const s(normalize(cross(up, f)));
@ -572,4 +795,14 @@ namespace glm
Result[3][2] = -dot(f, eye); Result[3][2] = -dot(f, eye);
return Result; return Result;
} }
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAt(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return lookAtLH(eye, center, up);
# else
return lookAtRH(eye, center, up);
# endif
}
}//namespace glm }//namespace glm

View File

@ -67,6 +67,7 @@ glm::mat4 camera(float Translate, glm::vec2 const& Rotate)
- Added EXT_vector_relational: openBounded and closeBounded - Added EXT_vector_relational: openBounded and closeBounded
- Added EXT_vec1: *vec1 types - Added EXT_vec1: *vec1 types
- Added GTX_texture: levels function - Added GTX_texture: levels function
- Added spearate functions to use both nagative one and zero near clip plans #680
#### Improvements: #### Improvements:
- No more default initialization of vector, matrix and quaternion types - No more default initialization of vector, matrix and quaternion types