Promoted matrix inverse functions

This commit is contained in:
Christophe Riccio 2010-12-13 12:19:51 +00:00
parent 455144b990
commit cd183edb29
8 changed files with 184 additions and 241 deletions

View File

@ -65,7 +65,6 @@ namespace glm
genIType & msb,
genIType & lsb);
//! Extracts bits [offset, offset + bits - 1] from value,
//! returning them in the least significant bits of the result.
//! For unsigned data types, the most significant bits of the

View File

@ -2,7 +2,7 @@
// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2009-05-01
// Updated : 2010-04-30
// Updated : 2010-12-13
// Licence : This source is under MIT License
// File : glm/ext.hpp
///////////////////////////////////////////////////////////////////////////////////////////////////
@ -12,6 +12,7 @@
#include "./gtc/half_float.hpp"
#include "./gtc/matrix_access.hpp"
#include "./gtc/matrix_inverse.hpp"
#include "./gtc/matrix_transform.hpp"
#include "./gtc/quaternion.hpp"
#include "./gtc/swizzle.hpp"
@ -27,7 +28,6 @@
#include "./gtx/comparison.hpp"
#include "./gtx/compatibility.hpp"
#include "./gtx/component_wise.hpp"
#include "./gtx/determinant.hpp"
#include "./gtx/epsilon.hpp"
#include "./gtx/euler_angles.hpp"
#include "./gtx/extend.hpp"
@ -41,14 +41,11 @@
#include "./gtx/int_10_10_10_2.hpp"
#include "./gtx/integer.hpp"
#include "./gtx/intersect.hpp"
#include "./gtx/inverse.hpp"
#include "./gtx/inverse_transpose.hpp"
#include "./gtx/log_base.hpp"
#include "./gtx/matrix_cross_product.hpp"
#include "./gtx/matrix_major_storage.hpp"
#include "./gtx/matrix_operation.hpp"
#include "./gtx/matrix_query.hpp"
#include "./gtx/matrix_selection.hpp"
#include "./gtx/mixed_product.hpp"
#include "./gtx/norm.hpp"
#include "./gtx/normal.hpp"

View File

@ -0,0 +1,43 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2010-12-13
// Licence : This source is under MIT License
// File : glm/gtc/matrix_inverse.hpp
///////////////////////////////////////////////////////////////////////////////////////////////////
// Dependency:
// - GLM core
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef glm_gtc_matrix_inverse
#define glm_gtc_matrix_inverse
// Dependency:
#include "../glm.hpp"
namespace glm{
namespace gtc{
//! GLM_GTC_matrix_inverse extension: Inverse matrix functions
namespace matrix_inverse
{
//! Fast matrix inverse for affine matrix.
//! From GLM_GTC_matrix_inverse extension.
template <typename genType>
genType affineInverse(genType const & m);
//! Compute the inverse transpose of a matrix.
//! From GLM_GTC_matrix_inverse extension.
template <typename genType>
inline typename genType::value_type inverseTranspose(
genType const & m);
}//namespace matrix_inverse
}//namespace gtc
}//namespace glm
#include "matrix_inverse.inl"
namespace glm{using namespace gtc::matrix_inverse;}
#endif//glm_gtc_matrix_inverse

View File

@ -0,0 +1,139 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2010-12-13
// Licence : This source is under MIT License
// File : glm/gtc/matrix_inverse.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm{
namespace gtx{
namespace matrix_inverse
{
template <typename T>
inline detail::tmat3x3<T> affineInverse
(
detail::tmat3x3<T> const & m
)
{
detail::tmat3x3<T> Result(m);
Result[2] = detail::tvec3<T>(0, 0, 1);
Result = transpose(Result);
detail::tvec3<T> Translation = Result * detail::tvec3<T>(-detail::tvec2<T>(m[2]), m[2][2]);
Result[2] = Translation;
return Result;
}
template <typename T>
inline detail::tmat4x4<T> affineInverse
(
detail::tmat4x4<T> const & m
)
{
detail::tmat4x4<T> Result(m);
Result[3] = detail::tvec4<T>(0, 0, 0, 1);
Result = transpose(Result);
detail::tvec4<T> Translation = Result * detail::tvec4<T>(-detail::tvec3<T>(m[3]), m[3][3]);
Result[3] = Translation;
return Result;
}
template <typename valType>
inline detail::tmat2x2<valType> inverseTranspose(
detail::tmat2x2<valType> const & m)
{
valType Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
detail::tmat2x2<valType> Inverse(
+ m[1][1] / Determinant,
- m[0][1] / Determinant,
- m[1][0] / Determinant,
+ m[0][0] / Determinant);
return Inverse;
}
template <typename valType>
inline detail::tmat3x3<valType> inverseTranspose(
detail::tmat3x3<valType> const & m)
{
valType Determinant =
+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
detail::tmat3x3<valType> Inverse;
Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
Inverse /= Determinant;
return Inverse;
}
template <typename valType>
inline detail::tmat4x4<valType> inverseTranspose(
detail::tmat4x4<valType> const & m)
{
valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
valType SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
detail::tmat4x4<valType> Inverse;
Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
valType Determinant =
+ m[0][0] * Inverse[0][0]
+ m[0][1] * Inverse[0][1]
+ m[0][2] * Inverse[0][2]
+ m[0][3] * Inverse[0][3];
Inverse /= Determinant;
return Inverse;
}
}//namespace matrix_inverse
}//namespace gtx
}//namespace glm

View File

@ -1,40 +0,0 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2008-09-30
// Licence : This source is under MIT License
// File : glm/gtx/inverse.hpp
///////////////////////////////////////////////////////////////////////////////////////////////////
// Dependency:
// - GLM core
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef glm_gtx_inverse
#define glm_gtx_inverse
// Dependency:
#include "../glm.hpp"
#include "../gtc/matrix_operation.hpp"
namespace glm{
namespace gtx{
//! GLM_GTX_inverse extension: Inverse matrix functions
namespace inverse
{
using namespace gtc::matrix_operation;
//! Fast matrix inverse for affine matrix.
//! From GLM_GTX_inverse extension.
template <typename genType>
genType affineInverse(genType const & m);
}//namespace inverse
}//namespace gtx
}//namespace glm
#include "inverse.inl"
namespace glm{using namespace gtx::inverse;}
#endif//glm_gtx_inverse

View File

@ -1,44 +0,0 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2008-09-30
// Licence : This source is under MIT License
// File : glm/gtx/inverse.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm{
namespace gtx{
namespace inverse
{
template <typename T>
inline detail::tmat3x3<T> affineInverse
(
detail::tmat3x3<T> const & m
)
{
detail::tmat3x3<T> Result(m);
Result[2] = detail::tvec3<T>(0, 0, 1);
Result = transpose(Result);
detail::tvec3<T> Translation = Result * detail::tvec3<T>(-detail::tvec2<T>(m[2]), m[2][2]);
Result[2] = Translation;
return Result;
}
template <typename T>
inline detail::tmat4x4<T> affineInverse
(
detail::tmat4x4<T> const & m
)
{
detail::tmat4x4<T> Result(m);
Result[3] = detail::tvec4<T>(0, 0, 0, 1);
Result = transpose(Result);
detail::tvec4<T> Translation = Result * detail::tvec4<T>(-detail::tvec3<T>(m[3]), m[3][3]);
Result[3] = Translation;
return Result;
}
}//namespace inverse
}//namespace gtx
}//namespace glm

View File

@ -1,39 +0,0 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2006-01-04
// Updated : 2008-10-23
// Licence : This source is under MIT License
// File : glm/gtx/inverse_transpose.hpp
///////////////////////////////////////////////////////////////////////////////////////////////////
// Dependency:
// - GLM core
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef glm_gtx_inverse_transpose
#define glm_gtx_inverse_transpose
// Dependency:
#include "../glm.hpp"
namespace glm
{
namespace gtx{
//! GLM_GTX_inverse_transpose extension: Inverse transpose matrix functions
namespace inverse_transpose
{
//! Compute the inverse transpose of a matrix.
//! From GLM_GTX_inverse extension.
template <typename genType>
inline typename genType::value_type inverseTranspose(
genType const & m);
}//namespace inverse_transpose
}//namespace gtx
}//namespace glm
#include "inverse_transpose.inl"
namespace glm{using namespace gtx::inverse_transpose;}
#endif//glm_gtx_inverse_transpose

View File

@ -1,112 +0,0 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2006-01-04
// Updated : 2008-12-02
// Licence : This source is under MIT License
// File : glm/gtx/inverse_transpose.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm{
namespace gtx{
//! GLM_GTX_inverse_transpose extension: Inverse transpose matrix functions
namespace inverse_transpose{
template <typename valType>
inline detail::tmat2x2<valType> inverseTranspose(
detail::tmat2x2<valType> const & m)
{
valType Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
detail::tmat2x2<valType> Inverse(
+ m[1][1] / Determinant,
- m[0][1] / Determinant,
- m[1][0] / Determinant,
+ m[0][0] / Determinant);
return Inverse;
}
template <typename valType>
inline detail::tmat3x3<valType> inverseTranspose(
detail::tmat3x3<valType> const & m)
{
valType Determinant =
+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
detail::tmat3x3<valType> Inverse;
Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
Inverse /= Determinant;
return Inverse;
}
template <typename valType>
inline detail::tmat4x4<valType> inverseTranspose(
detail::tmat4x4<valType> const & m)
{
valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
valType SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
detail::tmat4x4<valType> Inverse;
Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
valType Determinant =
+ m[0][0] * Inverse[0][0]
+ m[0][1] * Inverse[0][1]
+ m[0][2] * Inverse[0][2]
+ m[0][3] * Inverse[0][3];
Inverse /= Determinant;
return Inverse;
}
}//namespace inverse_transpose
}//namespace gtx
}//namespace glm