Merge pull request #996 from Bargor/quaternion-slerp-multiple-spins

Quaternion slerp overload which interpolates with extra spins #996
This commit is contained in:
Christophe 2020-03-05 18:51:49 +01:00 committed by GitHub
commit efbfecab63
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 131 additions and 0 deletions

View File

@ -76,6 +76,21 @@ namespace glm
template<typename T, qualifier Q>
GLM_FUNC_DECL qua<T, Q> slerp(qua<T, Q> const& x, qua<T, Q> const& y, T a);
/// Spherical linear interpolation of two quaternions with multiple spins over rotation axis.
/// The interpolation always take the short path when the spin count is positive and long path
/// when count is negative. Rotation is performed at constant speed.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @param k Additional spin count. If Value is negative interpolation will be on "long" path.
///
/// @tparam T A floating-point scalar type
/// @tparam S An integer scalar type
/// @tparam Q A value from qualifier enum
template<typename T, typename S, qualifier Q>
GLM_FUNC_DECL qua<T, Q> slerp(qua<T, Q> const& x, qua<T, Q> const& y, T a, S k);
/// Returns the q conjugate.
///
/// @tparam T A floating-point scalar type

View File

@ -72,6 +72,43 @@ namespace glm
}
}
template<typename T, typename S, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> slerp(qua<T, Q> const& x, qua<T, Q> const& y, T a, S k)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'slerp' only accept floating-point inputs");
GLM_STATIC_ASSERT(std::numeric_limits<S>::is_integer, "'slerp' only accept integer for spin count");
qua<T, Q> z = y;
T cosTheta = dot(x, y);
// If cosTheta < 0, the interpolation will take the long way around the sphere.
// To fix this, one quat must be negated.
if (cosTheta < static_cast<T>(0))
{
z = -y;
cosTheta = -cosTheta;
}
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if (cosTheta > static_cast<T>(1) - epsilon<T>())
{
// Linear interpolation
return qua<T, Q>(
mix(x.w, z.w, a),
mix(x.x, z.x, a),
mix(x.y, z.y, a),
mix(x.z, z.z, a));
}
else
{
// Graphics Gems III, page 96
T angle = acos(cosTheta);
T phi = angle + k * glm::pi<T>();
return (sin(angle - a * phi)* x + sin(a * phi) * z) / sin(angle);
}
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> conjugate(qua<T, Q> const& q)
{

View File

@ -194,6 +194,84 @@ int test_quat_slerp()
return Error;
}
int test_quat_slerp_spins()
{
int Error = 0;
float const Epsilon = 0.0001f;//glm::epsilon<float>();
float sqrt2 = std::sqrt(2.0f) / 2.0f;
glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0));
glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
// Testing a == 0, k == 1
// Must be id
glm::quat id2 = glm::slerp(id, id, 1.0f, 1);
Error += glm::all(glm::equal(id, id2, Epsilon)) ? 0 : 1;
// Testing a == 1, k == 2
// Must be id
glm::quat id3 = glm::slerp(id, id, 1.0f, 2);
Error += glm::all(glm::equal(id, id3, Epsilon)) ? 0 : 1;
// Testing a == 1, k == 1
// Must be 90° rotation on Y : 0 0.7 0 0.7
// Negative quaternion is representing same orientation
glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f, 1);
Error += glm::all(glm::equal(Y90rot, -Y90rot2, Epsilon)) ? 0 : 1;
// Testing a == 1, k == 2
// Must be id
glm::quat Y90rot3 = glm::slerp(id, Y90rot, 8.0f / 9.0f, 2);
Error += glm::all(glm::equal(id, Y90rot3, Epsilon)) ? 0 : 1;
// Testing a == 1, k == 1
// Must be 90° rotation on Y : 0 0.7 0 0.7
glm::quat Y90rot4 = glm::slerp(id, Y90rot, 0.2f, 1);
Error += glm::all(glm::equal(Y90rot, Y90rot4, Epsilon)) ? 0 : 1;
// Testing reverse case
// Must be 45° rotation on Y : 0 0.38 0 0.92
// Negative quaternion is representing same orientation
glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.9f, 1);
glm::quat Ym45rot3 = glm::slerp(Y90rot, id, 0.5f);
Error += glm::all(glm::equal(-Ym45rot2, Ym45rot3, Epsilon)) ? 0 : 1;
// Testing against full circle around the sphere instead of shortest path
// Must be 45° rotation on Y
// certainly not a 135° rotation
glm::quat Y45rot3 = glm::slerp(id, -Y90rot, 0.5f, 0);
float Y45angle3 = glm::angle(Y45rot3);
Error += glm::equal(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
Error += glm::all(glm::equal(Ym45rot3, Y45rot3, Epsilon)) ? 0 : 1;
// Same, but inverted
// Must also be 45° rotation on Y : 0 0.38 0 0.92
// -0 -0.38 -0 -0.92 is ok too
glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f, 0);
Error += glm::all(glm::equal(Ym45rot2, Y45rot4, Epsilon)) ? 0 : 1;
// Testing q1 = q2 k == 2
// Must be 90° rotation on Y : 0 0.7 0 0.7
glm::quat Y90rot5 = glm::slerp(Y90rot, Y90rot, 0.5f, 2);
Error += glm::all(glm::equal(Y90rot, Y90rot5, Epsilon)) ? 0 : 1;
// Testing 180° rotation
// Must be 90° rotation on almost any axis that is on the XZ plane
glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f, 1);
float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
Error += glm::equal(XZ90angle, glm::pi<float>() * 1.25f, Epsilon) ? 0 : 1;
// Testing rotation over long arc
// Distance from id to 90° is 270°, so 2/3 of it should be 180°
// Negative quaternion is representing same orientation
glm::quat Neg90rot = glm::slerp(id, Y90rot, 2.0f / 3.0f, -1);
Error += glm::all(glm::equal(Y180rot, -Neg90rot, Epsilon)) ? 0 : 1;
return Error;
}
static int test_quat_mul_vec()
{
int Error(0);
@ -260,6 +338,7 @@ int main()
Error += test_quat_normalize();
Error += test_quat_euler();
Error += test_quat_slerp();
Error += test_quat_slerp_spins();
Error += test_identity();
return Error;