mirror of
https://github.com/g-truc/glm.git
synced 2024-11-10 12:41:54 +00:00
Make C++98 compliant
This commit is contained in:
parent
edde2bcf60
commit
f9962054d9
@ -13,7 +13,6 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
// Dependency:
|
// Dependency:
|
||||||
#include <algorithm>
|
|
||||||
#include "../glm.hpp"
|
#include "../glm.hpp"
|
||||||
|
|
||||||
#ifndef GLM_ENABLE_EXPERIMENTAL
|
#ifndef GLM_ENABLE_EXPERIMENTAL
|
||||||
@ -49,7 +48,7 @@ namespace glm{
|
|||||||
/// Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m).
|
/// Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m).
|
||||||
/// From GLM_GTX_matrix_factorisation extension.
|
/// From GLM_GTX_matrix_factorisation extension.
|
||||||
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
||||||
GLM_FUNC_DECL void qr_decompose(matType<std::min(C, R), R, T, P>& q, matType<C, std::min(C, R), T, P>& r, const matType<C, R, T, P>& in);
|
GLM_FUNC_DECL void qr_decompose(matType<(C < R ? C : R), R, T, P>& q, matType<C, (C < R ? C : R), T, P>& r, const matType<C, R, T, P>& in);
|
||||||
|
|
||||||
/// Performs RQ factorisation of a matrix.
|
/// Performs RQ factorisation of a matrix.
|
||||||
/// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in.
|
/// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in.
|
||||||
@ -57,7 +56,7 @@ namespace glm{
|
|||||||
/// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).
|
/// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).
|
||||||
/// From GLM_GTX_matrix_factorisation extension.
|
/// From GLM_GTX_matrix_factorisation extension.
|
||||||
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
||||||
GLM_FUNC_DECL void rq_decompose(matType<std::min(C, R), R, T, P>& r, matType<C, std::min(C, R), T, P>& q, const matType<C, R, T, P>& in);
|
GLM_FUNC_DECL void rq_decompose(matType<(C < R ? C : R), R, T, P>& r, matType<C, (C < R ? C : R), T, P>& q, const matType<C, R, T, P>& in);
|
||||||
|
|
||||||
/// @}
|
/// @}
|
||||||
}
|
}
|
||||||
|
@ -24,14 +24,14 @@ namespace glm {
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
||||||
GLM_FUNC_QUALIFIER void qr_decompose(matType<std::min(C, R), R, T, P>& q, matType<C, std::min(C, R), T, P>& r, const matType<C, R, T, P>& in) {
|
GLM_FUNC_QUALIFIER void qr_decompose(matType<(C < R ? C : R), R, T, P>& q, matType<C, (C < R ? C : R), T, P>& r, const matType<C, R, T, P>& in) {
|
||||||
// Uses modified Gram-Schmidt method
|
// Uses modified Gram-Schmidt method
|
||||||
// Source: https://en.wikipedia.org/wiki/Gram–Schmidt_process
|
// Source: https://en.wikipedia.org/wiki/Gram–Schmidt_process
|
||||||
// And https://en.wikipedia.org/wiki/QR_decomposition
|
// And https://en.wikipedia.org/wiki/QR_decomposition
|
||||||
|
|
||||||
//For all the linearly independs columns of the input...
|
//For all the linearly independs columns of the input...
|
||||||
// (there can be no more linearly independents columns than there are rows.)
|
// (there can be no more linearly independents columns than there are rows.)
|
||||||
for (length_t i = 0; i < std::min(R, C); i++) {
|
for (length_t i = 0; i < (C < R ? C : R); i++) {
|
||||||
//Copy in Q the input's i-th column.
|
//Copy in Q the input's i-th column.
|
||||||
q[i] = in[i];
|
q[i] = in[i];
|
||||||
|
|
||||||
@ -55,7 +55,7 @@ namespace glm {
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
||||||
GLM_FUNC_QUALIFIER void rq_decompose(matType<std::min(C, R), R, T, P>& r, matType<C, std::min(C, R), T, P>& q, const matType<C, R, T, P>& in) {
|
GLM_FUNC_QUALIFIER void rq_decompose(matType<(C < R ? C : R), R, T, P>& r, matType<C, (C < R ? C : R), T, P>& q, const matType<C, R, T, P>& in) {
|
||||||
// From https://en.wikipedia.org/wiki/QR_decomposition:
|
// From https://en.wikipedia.org/wiki/QR_decomposition:
|
||||||
// The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices.
|
// The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices.
|
||||||
// QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.
|
// QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.
|
||||||
@ -64,8 +64,8 @@ namespace glm {
|
|||||||
matType<R, C, T, P> tin = transpose(in);
|
matType<R, C, T, P> tin = transpose(in);
|
||||||
tin = fliplr(tin);
|
tin = fliplr(tin);
|
||||||
|
|
||||||
matType<R, std::min(C, R), T, P> tr;
|
matType<R, (C < R ? C : R), T, P> tr;
|
||||||
matType<std::min(C, R), C, T, P> tq;
|
matType<(C < R ? C : R), C, T, P> tq;
|
||||||
qr_decompose(tq, tr, tin);
|
qr_decompose(tq, tr, tin);
|
||||||
|
|
||||||
tr = fliplr(tr);
|
tr = fliplr(tr);
|
||||||
|
@ -5,8 +5,8 @@ const double epsilon = 1e-10f;
|
|||||||
|
|
||||||
template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
|
template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
|
||||||
int test_qr(matType<C, R, T, P> m) {
|
int test_qr(matType<C, R, T, P> m) {
|
||||||
matType<std::min(C, R), R, T, P> q(-999);
|
matType<(C < R ? C : R), R, T, P> q(-999);
|
||||||
matType<C, std::min(C, R), T, P> r(-999);
|
matType<C, (C < R ? C : R), T, P> r(-999);
|
||||||
|
|
||||||
glm::qr_decompose(q, r, m);
|
glm::qr_decompose(q, r, m);
|
||||||
|
|
||||||
@ -21,7 +21,7 @@ int test_qr(matType<C, R, T, P> m) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
//Test if the columns of q are orthonormal
|
//Test if the columns of q are orthonormal
|
||||||
for (glm::length_t i = 0; i < std::min(C, R); i++) {
|
for (glm::length_t i = 0; i < (C < R ? C : R); i++) {
|
||||||
if ((length(q[i]) - 1) > epsilon) return 2;
|
if ((length(q[i]) - 1) > epsilon) return 2;
|
||||||
|
|
||||||
for (glm::length_t j = 0; j<i; j++) {
|
for (glm::length_t j = 0; j<i; j++) {
|
||||||
@ -31,7 +31,7 @@ int test_qr(matType<C, R, T, P> m) {
|
|||||||
|
|
||||||
//Test if the matrix r is upper triangular
|
//Test if the matrix r is upper triangular
|
||||||
for (glm::length_t i = 0; i < C; i++) {
|
for (glm::length_t i = 0; i < C; i++) {
|
||||||
for (glm::length_t j = i + 1; j < std::min(C, R); j++) {
|
for (glm::length_t j = i + 1; j < (C < R ? C : R); j++) {
|
||||||
if (r[i][j] != 0) return 4;
|
if (r[i][j] != 0) return 4;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -41,8 +41,8 @@ int test_qr(matType<C, R, T, P> m) {
|
|||||||
|
|
||||||
template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
|
template <glm::length_t C, glm::length_t R, typename T, glm::precision P, template<glm::length_t, glm::length_t, typename, glm::precision> class matType>
|
||||||
int test_rq(matType<C, R, T, P> m) {
|
int test_rq(matType<C, R, T, P> m) {
|
||||||
matType<C, std::min(C, R), T, P> q(-999);
|
matType<C, (C < R ? C : R), T, P> q(-999);
|
||||||
matType<std::min(C, R), R, T, P> r(-999);
|
matType<(C < R ? C : R), R, T, P> r(-999);
|
||||||
|
|
||||||
glm::rq_decompose(r, q, m);
|
glm::rq_decompose(r, q, m);
|
||||||
|
|
||||||
@ -58,9 +58,9 @@ int test_rq(matType<C, R, T, P> m) {
|
|||||||
|
|
||||||
|
|
||||||
//Test if the rows of q are orthonormal
|
//Test if the rows of q are orthonormal
|
||||||
matType<std::min(C, R), C, T, P> tq = transpose(q);
|
matType<(C < R ? C : R), C, T, P> tq = transpose(q);
|
||||||
|
|
||||||
for (glm::length_t i = 0; i < std::min(C, R); i++) {
|
for (glm::length_t i = 0; i < (C < R ? C : R); i++) {
|
||||||
if ((length(tq[i]) - 1) > epsilon) return 2;
|
if ((length(tq[i]) - 1) > epsilon) return 2;
|
||||||
|
|
||||||
for (glm::length_t j = 0; j<i; j++) {
|
for (glm::length_t j = 0; j<i; j++) {
|
||||||
@ -69,8 +69,8 @@ int test_rq(matType<C, R, T, P> m) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
//Test if the matrix r is upper triangular
|
//Test if the matrix r is upper triangular
|
||||||
for (glm::length_t i = 0; i < std::min(C, R); i++) {
|
for (glm::length_t i = 0; i < (C < R ? C : R); i++) {
|
||||||
for (glm::length_t j = R - std::min(C, R) + i + 1; j < R; j++) {
|
for (glm::length_t j = R - (C < R ? C : R) + i + 1; j < R; j++) {
|
||||||
if (r[i][j] != 0) return 4;
|
if (r[i][j] != 0) return 4;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user