Merge pull request #744 from vitali-parkhomenko/feature/extension_for_euler_angles

Extension for Euler angles #744
This commit is contained in:
Christophe 2018-03-25 12:05:34 +02:00 committed by GitHub
commit fdb0e43aa0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 987 additions and 0 deletions

View File

@ -9,6 +9,9 @@
/// Include <glm/gtx/euler_angles.hpp> to use the features of this extension.
///
/// Build matrices from Euler angles.
///
/// Extraction of Euler angles from rotation matrix.
/// Based on the original paper 2014 Mike Day - Extracting Euler Angles from a Rotation Matrix.
#pragma once
@ -46,6 +49,24 @@ namespace glm
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZ(
T const& angleZ);
/// Creates a 3D 4 * 4 homogeneous derived matrix from the rotation matrix about X-axis.
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> derivedEulerAngleX(
T const & angleX, T const & angularVelocityX);
/// Creates a 3D 4 * 4 homogeneous derived matrix from the rotation matrix about Y-axis.
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> derivedEulerAngleY(
T const & angleY, T const & angularVelocityY);
/// Creates a 3D 4 * 4 homogeneous derived matrix from the rotation matrix about Z-axis.
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> derivedEulerAngleZ(
T const & angleZ, T const & angularVelocityZ);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Y).
/// @see gtx_euler_angles
template<typename T>
@ -104,6 +125,86 @@ namespace glm
T const& pitch,
T const& roll);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Z * X).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXZX(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Y * X).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXYX(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Y).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYXY(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * Z * Y).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYZY(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * Y * Z).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZYZ(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * X * Z).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZXZ(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Z * Y).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXZY(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * Z * X).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYZX(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * Y * X).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZYX(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * X * Y).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZXY(
T const & t1,
T const & t2,
T const & t3);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Z).
/// @see gtx_euler_angles
template<typename T>
@ -140,6 +241,94 @@ namespace glm
T & t2,
T & t3);
/// Extracts the (Y * X * Z) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (X * Z * X) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (X * Y * X) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (Y * X * Y) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (Y * Z * Y) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (Z * Y * Z) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (Z * X * Z) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (X * Z * Y) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (Y * Z * X) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (Z * Y * X) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// Extracts the (Z * X * Y) Euler angles from the rotation matrix M
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3);
/// @}
}//namespace glm

View File

@ -53,6 +53,57 @@ namespace glm
T(0), T(0), T(0), T(1));
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleX
(
T const & angleX,
T const & angularVelocityX
)
{
T cosX = glm::cos(angleX) * angularVelocityX;
T sinX = glm::sin(angleX) * angularVelocityX;
return mat<4, 4, T, defaultp>(
T(0), T(0), T(0), T(0),
T(0),-sinX, cosX, T(0),
T(0),-cosX,-sinX, T(0),
T(0), T(0), T(0), T(0));
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleY
(
T const & angleY,
T const & angularVelocityY
)
{
T cosY = glm::cos(angleY) * angularVelocityY;
T sinY = glm::sin(angleY) * angularVelocityY;
return mat<4, 4, T, defaultp>(
-sinY, T(0), -cosY, T(0),
T(0), T(0), T(0), T(0),
cosY, T(0), -sinY, T(0),
T(0), T(0), T(0), T(0));
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleZ
(
T const & angleZ,
T const & angularVelocityZ
)
{
T cosZ = glm::cos(angleZ) * angularVelocityZ;
T sinZ = glm::sin(angleZ) * angularVelocityZ;
return mat<4, 4, T, defaultp>(
-sinZ, cosZ, T(0), T(0),
-cosZ, -sinZ, T(0), T(0),
T(0), T(0), T(0), T(0),
T(0), T(0), T(0), T(0));
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXY
(
@ -201,6 +252,356 @@ namespace glm
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZX
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c2;
Result[0][1] = c1 * s2;
Result[0][2] = s1 * s2;
Result[0][3] = static_cast<T>(0);
Result[1][0] =-c3 * s2;
Result[1][1] = c1 * c2 * c3 - s1 * s3;
Result[1][2] = c1 * s3 + c2 * c3 * s1;
Result[1][3] = static_cast<T>(0);
Result[2][0] = s2 * s3;
Result[2][1] =-c3 * s1 - c1 * c2 * s3;
Result[2][2] = c1 * c3 - c2 * s1 * s3;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYX
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c2;
Result[0][1] = s1 * s2;
Result[0][2] =-c1 * s2;
Result[0][3] = static_cast<T>(0);
Result[1][0] = s2 * s3;
Result[1][1] = c1 * c3 - c2 * s1 * s3;
Result[1][2] = c3 * s1 + c1 * c2 * s3;
Result[1][3] = static_cast<T>(0);
Result[2][0] = c3 * s2;
Result[2][1] =-c1 * s3 - c2 * c3 * s1;
Result[2][2] = c1 * c2 * c3 - s1 * s3;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYXY
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c1 * c3 - c2 * s1 * s3;
Result[0][1] = s2* s3;
Result[0][2] =-c3 * s1 - c1 * c2 * s3;
Result[0][3] = static_cast<T>(0);
Result[1][0] = s1 * s2;
Result[1][1] = c2;
Result[1][2] = c1 * s2;
Result[1][3] = static_cast<T>(0);
Result[2][0] = c1 * s3 + c2 * c3 * s1;
Result[2][1] =-c3 * s2;
Result[2][2] = c1 * c2 * c3 - s1 * s3;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZY
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c1 * c2 * c3 - s1 * s3;
Result[0][1] = c3 * s2;
Result[0][2] =-c1 * s3 - c2 * c3 * s1;
Result[0][3] = static_cast<T>(0);
Result[1][0] =-c1 * s2;
Result[1][1] = c2;
Result[1][2] = s1 * s2;
Result[1][3] = static_cast<T>(0);
Result[2][0] = c3 * s1 + c1 * c2 * s3;
Result[2][1] = s2 * s3;
Result[2][2] = c1 * c3 - c2 * s1 * s3;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYZ
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c1 * c2 * c3 - s1 * s3;
Result[0][1] = c1 * s3 + c2 * c3 * s1;
Result[0][2] =-c3 * s2;
Result[0][3] = static_cast<T>(0);
Result[1][0] =-c3 * s1 - c1 * c2 * s3;
Result[1][1] = c1 * c3 - c2 * s1 * s3;
Result[1][2] = s2 * s3;
Result[1][3] = static_cast<T>(0);
Result[2][0] = c1 * s2;
Result[2][1] = s1 * s2;
Result[2][2] = c2;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXZ
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c1 * c3 - c2 * s1 * s3;
Result[0][1] = c3 * s1 + c1 * c2 * s3;
Result[0][2] = s2 *s3;
Result[0][3] = static_cast<T>(0);
Result[1][0] =-c1 * s3 - c2 * c3 * s1;
Result[1][1] = c1 * c2 * c3 - s1 * s3;
Result[1][2] = c3 * s2;
Result[1][3] = static_cast<T>(0);
Result[2][0] = s1 * s2;
Result[2][1] =-c1 * s2;
Result[2][2] = c2;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZY
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c2 * c3;
Result[0][1] = s1 * s3 + c1 * c3 * s2;
Result[0][2] = c3 * s1 * s2 - c1 * s3;
Result[0][3] = static_cast<T>(0);
Result[1][0] =-s2;
Result[1][1] = c1 * c2;
Result[1][2] = c2 * s1;
Result[1][3] = static_cast<T>(0);
Result[2][0] = c2 * s3;
Result[2][1] = c1 * s2 * s3 - c3 * s1;
Result[2][2] = c1 * c3 + s1 * s2 *s3;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZX
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c1 * c2;
Result[0][1] = s2;
Result[0][2] =-c2 * s1;
Result[0][3] = static_cast<T>(0);
Result[1][0] = s1 * s3 - c1 * c3 * s2;
Result[1][1] = c2 * c3;
Result[1][2] = c1 * s3 + c3 * s1 * s2;
Result[1][3] = static_cast<T>(0);
Result[2][0] = c3 * s1 + c1 * s2 * s3;
Result[2][1] =-c2 * s3;
Result[2][2] = c1 * c3 - s1 * s2 * s3;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYX
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c1 * c2;
Result[0][1] = c2 * s1;
Result[0][2] =-s2;
Result[0][3] = static_cast<T>(0);
Result[1][0] = c1 * s2 * s3 - c3 * s1;
Result[1][1] = c1 * c3 + s1 * s2 * s3;
Result[1][2] = c2 * s3;
Result[1][3] = static_cast<T>(0);
Result[2][0] = s1 * s3 + c1 * c3 * s2;
Result[2][1] = c3 * s1 * s2 - c1 * s3;
Result[2][2] = c2 * c3;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXY
(
T const & t1,
T const & t2,
T const & t3
)
{
T c1 = glm::cos(t1);
T s1 = glm::sin(t1);
T c2 = glm::cos(t2);
T s2 = glm::sin(t2);
T c3 = glm::cos(t3);
T s3 = glm::sin(t3);
mat<4, 4, T, defaultp> Result;
Result[0][0] = c1 * c3 - s1 * s2 * s3;
Result[0][1] = c3 * s1 + c1 * s2 * s3;
Result[0][2] =-c2 * s3;
Result[0][3] = static_cast<T>(0);
Result[1][0] =-c2 * s1;
Result[1][1] = c1 * c2;
Result[1][2] = s2;
Result[1][3] = static_cast<T>(0);
Result[2][0] = c1 * s3 + c3 * s1 * s2;
Result[2][1] = s1 * s3 - c1 * c3 * s2;
Result[2][2] = c2 * c3;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> yawPitchRoll
(
@ -309,4 +710,191 @@ namespace glm
t2 = -T2;
t3 = -T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(M[2][0], M[2][2]);
T C2 = glm::sqrt(M[0][1]*M[0][1] + M[1][1]*M[1][1]);
T T2 = glm::atan2<T, defaultp>(-M[2][1], C2);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(S1*M[1][2] - C1*M[1][0], C1*M[0][0] - S1*M[0][2]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(M[0][2], M[0][1]);
T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]);
T T2 = glm::atan2<T, defaultp>(S2, M[0][0]);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(C1*M[1][2] - S1*M[1][1], C1*M[2][2] - S1*M[2][1]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(M[0][1], -M[0][2]);
T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]);
T T2 = glm::atan2<T, defaultp>(S2, M[0][0]);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(-C1*M[2][1] - S1*M[2][2], C1*M[1][1] + S1*M[1][2]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(M[1][0], M[1][2]);
T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]);
T T2 = glm::atan2<T, defaultp>(S2, M[1][1]);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(C1*M[2][0] - S1*M[2][2], C1*M[0][0] - S1*M[0][2]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(M[1][2], -M[1][0]);
T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]);
T T2 = glm::atan2<T, defaultp>(S2, M[1][1]);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(-S1*M[0][0] - C1*M[0][2], S1*M[2][0] + C1*M[2][2]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(M[2][1], M[2][0]);
T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]);
T T2 = glm::atan2<T, defaultp>(S2, M[2][2]);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(C1*M[0][1] - S1*M[0][0], C1*M[1][1] - S1*M[1][0]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(M[2][0], -M[2][1]);
T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]);
T T2 = glm::atan2<T, defaultp>(S2, M[2][2]);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(-C1*M[1][0] - S1*M[1][1], C1*M[0][0] + S1*M[0][1]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(M[1][2], M[1][1]);
T C2 = glm::sqrt(M[0][0]*M[0][0] + M[2][0]*M[2][0]);
T T2 = glm::atan2<T, defaultp>(-M[1][0], C2);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(S1*M[0][1] - C1*M[0][2], C1*M[2][2] - S1*M[2][1]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(-M[0][2], M[0][0]);
T C2 = glm::sqrt(M[1][1]*M[1][1] + M[2][1]*M[2][1]);
T T2 = glm::atan2<T, defaultp>(M[0][1], C2);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(S1*M[1][0] + C1*M[1][2], S1*M[2][0] + C1*M[2][2]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(M[0][1], M[0][0]);
T C2 = glm::sqrt(M[1][2]*M[1][2] + M[2][2]*M[2][2]);
T T2 = glm::atan2<T, defaultp>(-M[0][2], C2);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(S1*M[2][0] - C1*M[2][1], C1*M[1][1] - S1*M[1][0]);
t1 = T1;
t2 = T2;
t3 = T3;
}
template <typename T>
GLM_FUNC_QUALIFIER void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M,
T & t1,
T & t2,
T & t3)
{
T T1 = glm::atan2<T, defaultp>(-M[1][0], M[1][1]);
T C2 = glm::sqrt(M[0][2]*M[0][2] + M[2][2]*M[2][2]);
T T2 = glm::atan2<T, defaultp>(M[1][2], C2);
T S1 = glm::sin(T1);
T C1 = glm::cos(T1);
T T3 = glm::atan2<T, defaultp>(C1*M[2][0] + S1*M[2][1], C1*M[0][0] + S1*M[0][1]);
t1 = T1;
t2 = T2;
t3 = T3;
}
}//namespace glm

View File

@ -2,10 +2,14 @@
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/matrix_cross_product.hpp>
#include <glm/gtx/matrix_operation.hpp>
#include <glm/gtc/epsilon.hpp>
#include <glm/gtx/string_cast.hpp>
#include <glm/gtx/euler_angles.hpp>
#include <cstdio>
#include <vector>
#include <utility>
namespace test_eulerAngleX
{
@ -136,6 +140,62 @@ namespace test_eulerAngleZ
}
}//namespace test_eulerAngleZ
namespace test_derivedEulerAngles
{
bool epsilonEqual(glm::mat4 const& mat1, glm::mat4 const& mat2, glm::mat4::value_type const& epsilon)
{
return glm::all(glm::epsilonEqual(mat1[0], mat2[0], epsilon)) ?
(
glm::all(glm::epsilonEqual(mat1[1], mat2[1], epsilon)) ?
(
glm::all(glm::epsilonEqual(mat1[2], mat2[2], epsilon)) ?
(
glm::all(glm::epsilonEqual(mat1[3], mat2[3], epsilon)) ? true : false
) : false
) : false
) : false;
}
template<typename RotationFunc, typename TestDerivedFunc>
int test(RotationFunc rotationFunc, TestDerivedFunc testDerivedFunc, const glm::vec3& basis)
{
int Error = 0;
typedef glm::vec3::value_type value;
value const zeroAngle(0.0f);
value const Angle(glm::pi<float>() * 0.75f);
value const negativeAngle(-Angle);
value const zeroAngleVelocity(0.0f);
value const AngleVelocity(glm::pi<float>() * 0.27f);
value const negativeAngleVelocity(-AngleVelocity);
typedef std::pair<value,value> AngleAndAngleVelocity;
std::vector<AngleAndAngleVelocity> testPairs;
testPairs.push_back(AngleAndAngleVelocity(zeroAngle, zeroAngleVelocity));
testPairs.push_back(AngleAndAngleVelocity(zeroAngle, AngleVelocity));
testPairs.push_back(AngleAndAngleVelocity(zeroAngle, negativeAngleVelocity));
testPairs.push_back(AngleAndAngleVelocity(Angle, zeroAngleVelocity));
testPairs.push_back(AngleAndAngleVelocity(Angle, AngleVelocity));
testPairs.push_back(AngleAndAngleVelocity(Angle, negativeAngleVelocity));
testPairs.push_back(AngleAndAngleVelocity(negativeAngle, zeroAngleVelocity));
testPairs.push_back(AngleAndAngleVelocity(negativeAngle, AngleVelocity));
testPairs.push_back(AngleAndAngleVelocity(negativeAngle, negativeAngleVelocity));
for (size_t i = 0, size = testPairs.size(); i < size; ++i)
{
AngleAndAngleVelocity const& pair = testPairs.at(i);
glm::mat4 const W = glm::matrixCross4(basis * pair.second);
glm::mat4 const rotMt = glm::transpose(rotationFunc(pair.first));
glm::mat4 const derivedRotM = testDerivedFunc(pair.first, pair.second);
Error += epsilonEqual(W, derivedRotM * rotMt, 0.00001f) ? 0 : 1;
}
return Error;
}
}//namespace test_derivedEulerAngles
namespace test_eulerAngleXY
{
int test()
@ -310,13 +370,140 @@ namespace test_eulerAngleYXZ
}
}//namespace eulerAngleYXZ
namespace test_eulerAngles
{
template<typename TestRotationFunc>
int test(TestRotationFunc testRotationFunc, glm::vec3 const& I, glm::vec3 const& J, glm::vec3 const& K)
{
int Error = 0;
typedef glm::mat4::value_type value;
value const minAngle(-glm::pi<value>());
value const maxAngle(glm::pi<value>());
value const maxAngleWithDelta(maxAngle - 0.0000001f);
value const minMidAngle(-glm::pi<value>() * 0.5f);
value const maxMidAngle(glm::pi<value>() * 0.5f);
std::vector<glm::vec3> testEulerAngles;
testEulerAngles.push_back(glm::vec3(1.046f, 0.52f, -0.785f));
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, minAngle));
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, minAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, maxAngle));
for (size_t i = 0, size = testEulerAngles.size(); i < size; ++i)
{
glm::vec3 const& angles = testEulerAngles.at(i);
glm::mat4 const rotationEuler = testRotationFunc(angles.x, angles.y, angles.z);
glm::mat4 rotationDumb = glm::diagonal4x4(glm::mat4::col_type(1.0f));
rotationDumb = glm::rotate(rotationDumb, angles.x, I);
rotationDumb = glm::rotate(rotationDumb, angles.y, J);
rotationDumb = glm::rotate(rotationDumb, angles.z, K);
glm::vec4 const V(1.0f,1.0f,1.0f,1.0f);
glm::vec4 const V1 = rotationEuler * V;
glm::vec4 const V2 = rotationDumb * V;
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
}
return Error;
}
}//namespace test_extractsEulerAngles
namespace test_extractsEulerAngles
{
template<typename RotationFunc, typename TestExtractionFunc>
int test(RotationFunc rotationFunc, TestExtractionFunc testExtractionFunc)
{
int Error = 0;
typedef glm::mat4::value_type value;
value const minAngle(-glm::pi<value>());
value const maxAngle(glm::pi<value>());
value const maxAngleWithDelta(maxAngle - 0.0000001f);
value const minMidAngle(-glm::pi<value>() * 0.5f);
value const maxMidAngle(glm::pi<value>() * 0.5f);
std::vector<glm::vec3> testEulerAngles;
testEulerAngles.push_back(glm::vec3(1.046f, 0.52f, -0.785f));
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, minAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngleWithDelta));
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, minAngle));
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, maxAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, minAngle));
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, maxAngle));
for (size_t i = 0, size = testEulerAngles.size(); i < size; ++i)
{
glm::vec3 const& angles = testEulerAngles.at(i);
glm::mat4 const rotation = rotationFunc(angles.x, angles.y, angles.z);
glm::vec3 extractedEulerAngles(0.0f);
testExtractionFunc(rotation, extractedEulerAngles.x, extractedEulerAngles.y, extractedEulerAngles.z);
glm::mat4 const extractedRotation = rotationFunc(extractedEulerAngles.x, extractedEulerAngles.y, extractedEulerAngles.z);
glm::vec4 const V(1.0f,1.0f,1.0f,1.0f);
glm::vec4 const V1 = rotation * V;
glm::vec4 const V2 = extractedRotation * V;
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
}
return Error;
}
}//namespace test_extractsEulerAngles
int main()
{
int Error = 0;
typedef glm::mat4::value_type value;
glm::vec3 const X(1.0f, 0.0f, 0.0f);
glm::vec3 const Y(0.0f, 1.0f, 0.0f);
glm::vec3 const Z(0.0f, 0.0f, 1.0f);
Error += test_eulerAngleX::test();
Error += test_eulerAngleY::test();
Error += test_eulerAngleZ::test();
Error += test_derivedEulerAngles::test(glm::eulerAngleX<value>, glm::derivedEulerAngleX<value>, X);
Error += test_derivedEulerAngles::test(glm::eulerAngleY<value>, glm::derivedEulerAngleY<value>, Y);
Error += test_derivedEulerAngles::test(glm::eulerAngleZ<value>, glm::derivedEulerAngleZ<value>, Z);
Error += test_eulerAngleXY::test();
Error += test_eulerAngleYX::test();
Error += test_eulerAngleXZ::test();
@ -325,5 +512,28 @@ int main()
Error += test_eulerAngleZY::test();
Error += test_eulerAngleYXZ::test();
Error += test_eulerAngles::test(glm::eulerAngleXZX<value>, X, Z, X);
Error += test_eulerAngles::test(glm::eulerAngleXYX<value>, X, Y, X);
Error += test_eulerAngles::test(glm::eulerAngleYXY<value>, Y, X, Y);
Error += test_eulerAngles::test(glm::eulerAngleYZY<value>, Y, Z, Y);
Error += test_eulerAngles::test(glm::eulerAngleZYZ<value>, Z, Y, Z);
Error += test_eulerAngles::test(glm::eulerAngleZXZ<value>, Z, X, Z);
Error += test_eulerAngles::test(glm::eulerAngleXZY<value>, X, Z, Y);
Error += test_eulerAngles::test(glm::eulerAngleYZX<value>, Y, Z, X);
Error += test_eulerAngles::test(glm::eulerAngleZYX<value>, Z, Y, X);
Error += test_eulerAngles::test(glm::eulerAngleZXY<value>, Z, X, Y);
Error += test_extractsEulerAngles::test(glm::eulerAngleYXZ<value>, glm::extractEulerAngleYXZ<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleXZX<value>, glm::extractEulerAngleXZX<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleXYX<value>, glm::extractEulerAngleXYX<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleYXY<value>, glm::extractEulerAngleYXY<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleYZY<value>, glm::extractEulerAngleYZY<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleZYZ<value>, glm::extractEulerAngleZYZ<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleZXZ<value>, glm::extractEulerAngleZXZ<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleXZY<value>, glm::extractEulerAngleXZY<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleYZX<value>, glm::extractEulerAngleYZX<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleZYX<value>, glm::extractEulerAngleZYX<value>);
Error += test_extractsEulerAngles::test(glm::eulerAngleZXY<value>, glm::extractEulerAngleZXY<value>);
return Error;
}