mirror of
https://github.com/g-truc/glm.git
synced 2024-11-22 17:04:35 +00:00
Merge pull request #744 from vitali-parkhomenko/feature/extension_for_euler_angles
Extension for Euler angles #744
This commit is contained in:
commit
fdb0e43aa0
@ -9,6 +9,9 @@
|
||||
/// Include <glm/gtx/euler_angles.hpp> to use the features of this extension.
|
||||
///
|
||||
/// Build matrices from Euler angles.
|
||||
///
|
||||
/// Extraction of Euler angles from rotation matrix.
|
||||
/// Based on the original paper 2014 Mike Day - Extracting Euler Angles from a Rotation Matrix.
|
||||
|
||||
#pragma once
|
||||
|
||||
@ -46,6 +49,24 @@ namespace glm
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZ(
|
||||
T const& angleZ);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous derived matrix from the rotation matrix about X-axis.
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> derivedEulerAngleX(
|
||||
T const & angleX, T const & angularVelocityX);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous derived matrix from the rotation matrix about Y-axis.
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> derivedEulerAngleY(
|
||||
T const & angleY, T const & angularVelocityY);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous derived matrix from the rotation matrix about Z-axis.
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> derivedEulerAngleZ(
|
||||
T const & angleZ, T const & angularVelocityZ);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Y).
|
||||
/// @see gtx_euler_angles
|
||||
template<typename T>
|
||||
@ -104,6 +125,86 @@ namespace glm
|
||||
T const& pitch,
|
||||
T const& roll);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Z * X).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXZX(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Y * X).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXYX(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Y).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYXY(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * Z * Y).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYZY(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * Y * Z).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZYZ(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * X * Z).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZXZ(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Z * Y).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXZY(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * Z * X).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYZX(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * Y * X).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZYX(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * X * Y).
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZXY(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3);
|
||||
|
||||
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Z).
|
||||
/// @see gtx_euler_angles
|
||||
template<typename T>
|
||||
@ -140,6 +241,94 @@ namespace glm
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (Y * X * Z) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (X * Z * X) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (X * Y * X) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (Y * X * Y) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (Y * Z * Y) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (Z * Y * Z) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (Z * X * Z) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (X * Z * Y) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (Y * Z * X) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (Z * Y * X) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// Extracts the (Z * X * Y) Euler angles from the rotation matrix M
|
||||
/// @see gtx_euler_angles
|
||||
template <typename T>
|
||||
GLM_FUNC_DECL void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3);
|
||||
|
||||
/// @}
|
||||
}//namespace glm
|
||||
|
||||
|
@ -53,6 +53,57 @@ namespace glm
|
||||
T(0), T(0), T(0), T(1));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleX
|
||||
(
|
||||
T const & angleX,
|
||||
T const & angularVelocityX
|
||||
)
|
||||
{
|
||||
T cosX = glm::cos(angleX) * angularVelocityX;
|
||||
T sinX = glm::sin(angleX) * angularVelocityX;
|
||||
|
||||
return mat<4, 4, T, defaultp>(
|
||||
T(0), T(0), T(0), T(0),
|
||||
T(0),-sinX, cosX, T(0),
|
||||
T(0),-cosX,-sinX, T(0),
|
||||
T(0), T(0), T(0), T(0));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleY
|
||||
(
|
||||
T const & angleY,
|
||||
T const & angularVelocityY
|
||||
)
|
||||
{
|
||||
T cosY = glm::cos(angleY) * angularVelocityY;
|
||||
T sinY = glm::sin(angleY) * angularVelocityY;
|
||||
|
||||
return mat<4, 4, T, defaultp>(
|
||||
-sinY, T(0), -cosY, T(0),
|
||||
T(0), T(0), T(0), T(0),
|
||||
cosY, T(0), -sinY, T(0),
|
||||
T(0), T(0), T(0), T(0));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleZ
|
||||
(
|
||||
T const & angleZ,
|
||||
T const & angularVelocityZ
|
||||
)
|
||||
{
|
||||
T cosZ = glm::cos(angleZ) * angularVelocityZ;
|
||||
T sinZ = glm::sin(angleZ) * angularVelocityZ;
|
||||
|
||||
return mat<4, 4, T, defaultp>(
|
||||
-sinZ, cosZ, T(0), T(0),
|
||||
-cosZ, -sinZ, T(0), T(0),
|
||||
T(0), T(0), T(0), T(0),
|
||||
T(0), T(0), T(0), T(0));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXY
|
||||
(
|
||||
@ -201,6 +252,356 @@ namespace glm
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZX
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c2;
|
||||
Result[0][1] = c1 * s2;
|
||||
Result[0][2] = s1 * s2;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] =-c3 * s2;
|
||||
Result[1][1] = c1 * c2 * c3 - s1 * s3;
|
||||
Result[1][2] = c1 * s3 + c2 * c3 * s1;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = s2 * s3;
|
||||
Result[2][1] =-c3 * s1 - c1 * c2 * s3;
|
||||
Result[2][2] = c1 * c3 - c2 * s1 * s3;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYX
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c2;
|
||||
Result[0][1] = s1 * s2;
|
||||
Result[0][2] =-c1 * s2;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] = s2 * s3;
|
||||
Result[1][1] = c1 * c3 - c2 * s1 * s3;
|
||||
Result[1][2] = c3 * s1 + c1 * c2 * s3;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = c3 * s2;
|
||||
Result[2][1] =-c1 * s3 - c2 * c3 * s1;
|
||||
Result[2][2] = c1 * c2 * c3 - s1 * s3;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYXY
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c1 * c3 - c2 * s1 * s3;
|
||||
Result[0][1] = s2* s3;
|
||||
Result[0][2] =-c3 * s1 - c1 * c2 * s3;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] = s1 * s2;
|
||||
Result[1][1] = c2;
|
||||
Result[1][2] = c1 * s2;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = c1 * s3 + c2 * c3 * s1;
|
||||
Result[2][1] =-c3 * s2;
|
||||
Result[2][2] = c1 * c2 * c3 - s1 * s3;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZY
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c1 * c2 * c3 - s1 * s3;
|
||||
Result[0][1] = c3 * s2;
|
||||
Result[0][2] =-c1 * s3 - c2 * c3 * s1;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] =-c1 * s2;
|
||||
Result[1][1] = c2;
|
||||
Result[1][2] = s1 * s2;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = c3 * s1 + c1 * c2 * s3;
|
||||
Result[2][1] = s2 * s3;
|
||||
Result[2][2] = c1 * c3 - c2 * s1 * s3;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYZ
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c1 * c2 * c3 - s1 * s3;
|
||||
Result[0][1] = c1 * s3 + c2 * c3 * s1;
|
||||
Result[0][2] =-c3 * s2;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] =-c3 * s1 - c1 * c2 * s3;
|
||||
Result[1][1] = c1 * c3 - c2 * s1 * s3;
|
||||
Result[1][2] = s2 * s3;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = c1 * s2;
|
||||
Result[2][1] = s1 * s2;
|
||||
Result[2][2] = c2;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXZ
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c1 * c3 - c2 * s1 * s3;
|
||||
Result[0][1] = c3 * s1 + c1 * c2 * s3;
|
||||
Result[0][2] = s2 *s3;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] =-c1 * s3 - c2 * c3 * s1;
|
||||
Result[1][1] = c1 * c2 * c3 - s1 * s3;
|
||||
Result[1][2] = c3 * s2;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = s1 * s2;
|
||||
Result[2][1] =-c1 * s2;
|
||||
Result[2][2] = c2;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZY
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c2 * c3;
|
||||
Result[0][1] = s1 * s3 + c1 * c3 * s2;
|
||||
Result[0][2] = c3 * s1 * s2 - c1 * s3;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] =-s2;
|
||||
Result[1][1] = c1 * c2;
|
||||
Result[1][2] = c2 * s1;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = c2 * s3;
|
||||
Result[2][1] = c1 * s2 * s3 - c3 * s1;
|
||||
Result[2][2] = c1 * c3 + s1 * s2 *s3;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZX
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c1 * c2;
|
||||
Result[0][1] = s2;
|
||||
Result[0][2] =-c2 * s1;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] = s1 * s3 - c1 * c3 * s2;
|
||||
Result[1][1] = c2 * c3;
|
||||
Result[1][2] = c1 * s3 + c3 * s1 * s2;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = c3 * s1 + c1 * s2 * s3;
|
||||
Result[2][1] =-c2 * s3;
|
||||
Result[2][2] = c1 * c3 - s1 * s2 * s3;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYX
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c1 * c2;
|
||||
Result[0][1] = c2 * s1;
|
||||
Result[0][2] =-s2;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] = c1 * s2 * s3 - c3 * s1;
|
||||
Result[1][1] = c1 * c3 + s1 * s2 * s3;
|
||||
Result[1][2] = c2 * s3;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = s1 * s3 + c1 * c3 * s2;
|
||||
Result[2][1] = c3 * s1 * s2 - c1 * s3;
|
||||
Result[2][2] = c2 * c3;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXY
|
||||
(
|
||||
T const & t1,
|
||||
T const & t2,
|
||||
T const & t3
|
||||
)
|
||||
{
|
||||
T c1 = glm::cos(t1);
|
||||
T s1 = glm::sin(t1);
|
||||
T c2 = glm::cos(t2);
|
||||
T s2 = glm::sin(t2);
|
||||
T c3 = glm::cos(t3);
|
||||
T s3 = glm::sin(t3);
|
||||
|
||||
mat<4, 4, T, defaultp> Result;
|
||||
Result[0][0] = c1 * c3 - s1 * s2 * s3;
|
||||
Result[0][1] = c3 * s1 + c1 * s2 * s3;
|
||||
Result[0][2] =-c2 * s3;
|
||||
Result[0][3] = static_cast<T>(0);
|
||||
Result[1][0] =-c2 * s1;
|
||||
Result[1][1] = c1 * c2;
|
||||
Result[1][2] = s2;
|
||||
Result[1][3] = static_cast<T>(0);
|
||||
Result[2][0] = c1 * s3 + c3 * s1 * s2;
|
||||
Result[2][1] = s1 * s3 - c1 * c3 * s2;
|
||||
Result[2][2] = c2 * c3;
|
||||
Result[2][3] = static_cast<T>(0);
|
||||
Result[3][0] = static_cast<T>(0);
|
||||
Result[3][1] = static_cast<T>(0);
|
||||
Result[3][2] = static_cast<T>(0);
|
||||
Result[3][3] = static_cast<T>(1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> yawPitchRoll
|
||||
(
|
||||
@ -309,4 +710,191 @@ namespace glm
|
||||
t2 = -T2;
|
||||
t3 = -T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(M[2][0], M[2][2]);
|
||||
T C2 = glm::sqrt(M[0][1]*M[0][1] + M[1][1]*M[1][1]);
|
||||
T T2 = glm::atan2<T, defaultp>(-M[2][1], C2);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(S1*M[1][2] - C1*M[1][0], C1*M[0][0] - S1*M[0][2]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(M[0][2], M[0][1]);
|
||||
T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]);
|
||||
T T2 = glm::atan2<T, defaultp>(S2, M[0][0]);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(C1*M[1][2] - S1*M[1][1], C1*M[2][2] - S1*M[2][1]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(M[0][1], -M[0][2]);
|
||||
T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]);
|
||||
T T2 = glm::atan2<T, defaultp>(S2, M[0][0]);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(-C1*M[2][1] - S1*M[2][2], C1*M[1][1] + S1*M[1][2]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(M[1][0], M[1][2]);
|
||||
T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]);
|
||||
T T2 = glm::atan2<T, defaultp>(S2, M[1][1]);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(C1*M[2][0] - S1*M[2][2], C1*M[0][0] - S1*M[0][2]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(M[1][2], -M[1][0]);
|
||||
T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]);
|
||||
T T2 = glm::atan2<T, defaultp>(S2, M[1][1]);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(-S1*M[0][0] - C1*M[0][2], S1*M[2][0] + C1*M[2][2]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(M[2][1], M[2][0]);
|
||||
T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]);
|
||||
T T2 = glm::atan2<T, defaultp>(S2, M[2][2]);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(C1*M[0][1] - S1*M[0][0], C1*M[1][1] - S1*M[1][0]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(M[2][0], -M[2][1]);
|
||||
T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]);
|
||||
T T2 = glm::atan2<T, defaultp>(S2, M[2][2]);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(-C1*M[1][0] - S1*M[1][1], C1*M[0][0] + S1*M[0][1]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(M[1][2], M[1][1]);
|
||||
T C2 = glm::sqrt(M[0][0]*M[0][0] + M[2][0]*M[2][0]);
|
||||
T T2 = glm::atan2<T, defaultp>(-M[1][0], C2);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(S1*M[0][1] - C1*M[0][2], C1*M[2][2] - S1*M[2][1]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(-M[0][2], M[0][0]);
|
||||
T C2 = glm::sqrt(M[1][1]*M[1][1] + M[2][1]*M[2][1]);
|
||||
T T2 = glm::atan2<T, defaultp>(M[0][1], C2);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(S1*M[1][0] + C1*M[1][2], S1*M[2][0] + C1*M[2][2]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(M[0][1], M[0][0]);
|
||||
T C2 = glm::sqrt(M[1][2]*M[1][2] + M[2][2]*M[2][2]);
|
||||
T T2 = glm::atan2<T, defaultp>(-M[0][2], C2);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(S1*M[2][0] - C1*M[2][1], C1*M[1][1] - S1*M[1][0]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
GLM_FUNC_QUALIFIER void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M,
|
||||
T & t1,
|
||||
T & t2,
|
||||
T & t3)
|
||||
{
|
||||
T T1 = glm::atan2<T, defaultp>(-M[1][0], M[1][1]);
|
||||
T C2 = glm::sqrt(M[0][2]*M[0][2] + M[2][2]*M[2][2]);
|
||||
T T2 = glm::atan2<T, defaultp>(M[1][2], C2);
|
||||
T S1 = glm::sin(T1);
|
||||
T C1 = glm::cos(T1);
|
||||
T T3 = glm::atan2<T, defaultp>(C1*M[2][0] + S1*M[2][1], C1*M[0][0] + S1*M[0][1]);
|
||||
t1 = T1;
|
||||
t2 = T2;
|
||||
t3 = T3;
|
||||
}
|
||||
}//namespace glm
|
||||
|
@ -2,10 +2,14 @@
|
||||
|
||||
#define GLM_ENABLE_EXPERIMENTAL
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtx/matrix_cross_product.hpp>
|
||||
#include <glm/gtx/matrix_operation.hpp>
|
||||
#include <glm/gtc/epsilon.hpp>
|
||||
#include <glm/gtx/string_cast.hpp>
|
||||
#include <glm/gtx/euler_angles.hpp>
|
||||
#include <cstdio>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
|
||||
namespace test_eulerAngleX
|
||||
{
|
||||
@ -136,6 +140,62 @@ namespace test_eulerAngleZ
|
||||
}
|
||||
}//namespace test_eulerAngleZ
|
||||
|
||||
namespace test_derivedEulerAngles
|
||||
{
|
||||
bool epsilonEqual(glm::mat4 const& mat1, glm::mat4 const& mat2, glm::mat4::value_type const& epsilon)
|
||||
{
|
||||
return glm::all(glm::epsilonEqual(mat1[0], mat2[0], epsilon)) ?
|
||||
(
|
||||
glm::all(glm::epsilonEqual(mat1[1], mat2[1], epsilon)) ?
|
||||
(
|
||||
glm::all(glm::epsilonEqual(mat1[2], mat2[2], epsilon)) ?
|
||||
(
|
||||
glm::all(glm::epsilonEqual(mat1[3], mat2[3], epsilon)) ? true : false
|
||||
) : false
|
||||
) : false
|
||||
) : false;
|
||||
}
|
||||
|
||||
template<typename RotationFunc, typename TestDerivedFunc>
|
||||
int test(RotationFunc rotationFunc, TestDerivedFunc testDerivedFunc, const glm::vec3& basis)
|
||||
{
|
||||
int Error = 0;
|
||||
|
||||
typedef glm::vec3::value_type value;
|
||||
value const zeroAngle(0.0f);
|
||||
value const Angle(glm::pi<float>() * 0.75f);
|
||||
value const negativeAngle(-Angle);
|
||||
value const zeroAngleVelocity(0.0f);
|
||||
value const AngleVelocity(glm::pi<float>() * 0.27f);
|
||||
value const negativeAngleVelocity(-AngleVelocity);
|
||||
|
||||
typedef std::pair<value,value> AngleAndAngleVelocity;
|
||||
std::vector<AngleAndAngleVelocity> testPairs;
|
||||
testPairs.push_back(AngleAndAngleVelocity(zeroAngle, zeroAngleVelocity));
|
||||
testPairs.push_back(AngleAndAngleVelocity(zeroAngle, AngleVelocity));
|
||||
testPairs.push_back(AngleAndAngleVelocity(zeroAngle, negativeAngleVelocity));
|
||||
testPairs.push_back(AngleAndAngleVelocity(Angle, zeroAngleVelocity));
|
||||
testPairs.push_back(AngleAndAngleVelocity(Angle, AngleVelocity));
|
||||
testPairs.push_back(AngleAndAngleVelocity(Angle, negativeAngleVelocity));
|
||||
testPairs.push_back(AngleAndAngleVelocity(negativeAngle, zeroAngleVelocity));
|
||||
testPairs.push_back(AngleAndAngleVelocity(negativeAngle, AngleVelocity));
|
||||
testPairs.push_back(AngleAndAngleVelocity(negativeAngle, negativeAngleVelocity));
|
||||
|
||||
for (size_t i = 0, size = testPairs.size(); i < size; ++i)
|
||||
{
|
||||
AngleAndAngleVelocity const& pair = testPairs.at(i);
|
||||
|
||||
glm::mat4 const W = glm::matrixCross4(basis * pair.second);
|
||||
glm::mat4 const rotMt = glm::transpose(rotationFunc(pair.first));
|
||||
glm::mat4 const derivedRotM = testDerivedFunc(pair.first, pair.second);
|
||||
|
||||
Error += epsilonEqual(W, derivedRotM * rotMt, 0.00001f) ? 0 : 1;
|
||||
}
|
||||
|
||||
return Error;
|
||||
}
|
||||
}//namespace test_derivedEulerAngles
|
||||
|
||||
namespace test_eulerAngleXY
|
||||
{
|
||||
int test()
|
||||
@ -310,13 +370,140 @@ namespace test_eulerAngleYXZ
|
||||
}
|
||||
}//namespace eulerAngleYXZ
|
||||
|
||||
namespace test_eulerAngles
|
||||
{
|
||||
template<typename TestRotationFunc>
|
||||
int test(TestRotationFunc testRotationFunc, glm::vec3 const& I, glm::vec3 const& J, glm::vec3 const& K)
|
||||
{
|
||||
int Error = 0;
|
||||
|
||||
typedef glm::mat4::value_type value;
|
||||
value const minAngle(-glm::pi<value>());
|
||||
value const maxAngle(glm::pi<value>());
|
||||
value const maxAngleWithDelta(maxAngle - 0.0000001f);
|
||||
value const minMidAngle(-glm::pi<value>() * 0.5f);
|
||||
value const maxMidAngle(glm::pi<value>() * 0.5f);
|
||||
|
||||
std::vector<glm::vec3> testEulerAngles;
|
||||
testEulerAngles.push_back(glm::vec3(1.046f, 0.52f, -0.785f));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, maxAngle));
|
||||
|
||||
for (size_t i = 0, size = testEulerAngles.size(); i < size; ++i)
|
||||
{
|
||||
glm::vec3 const& angles = testEulerAngles.at(i);
|
||||
glm::mat4 const rotationEuler = testRotationFunc(angles.x, angles.y, angles.z);
|
||||
|
||||
glm::mat4 rotationDumb = glm::diagonal4x4(glm::mat4::col_type(1.0f));
|
||||
rotationDumb = glm::rotate(rotationDumb, angles.x, I);
|
||||
rotationDumb = glm::rotate(rotationDumb, angles.y, J);
|
||||
rotationDumb = glm::rotate(rotationDumb, angles.z, K);
|
||||
|
||||
glm::vec4 const V(1.0f,1.0f,1.0f,1.0f);
|
||||
glm::vec4 const V1 = rotationEuler * V;
|
||||
glm::vec4 const V2 = rotationDumb * V;
|
||||
|
||||
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
||||
}
|
||||
|
||||
return Error;
|
||||
}
|
||||
}//namespace test_extractsEulerAngles
|
||||
|
||||
namespace test_extractsEulerAngles
|
||||
{
|
||||
template<typename RotationFunc, typename TestExtractionFunc>
|
||||
int test(RotationFunc rotationFunc, TestExtractionFunc testExtractionFunc)
|
||||
{
|
||||
int Error = 0;
|
||||
|
||||
typedef glm::mat4::value_type value;
|
||||
value const minAngle(-glm::pi<value>());
|
||||
value const maxAngle(glm::pi<value>());
|
||||
value const maxAngleWithDelta(maxAngle - 0.0000001f);
|
||||
value const minMidAngle(-glm::pi<value>() * 0.5f);
|
||||
value const maxMidAngle(glm::pi<value>() * 0.5f);
|
||||
|
||||
std::vector<glm::vec3> testEulerAngles;
|
||||
testEulerAngles.push_back(glm::vec3(1.046f, 0.52f, -0.785f));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngleWithDelta));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, maxAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, minAngle));
|
||||
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, maxAngle));
|
||||
|
||||
for (size_t i = 0, size = testEulerAngles.size(); i < size; ++i)
|
||||
{
|
||||
glm::vec3 const& angles = testEulerAngles.at(i);
|
||||
glm::mat4 const rotation = rotationFunc(angles.x, angles.y, angles.z);
|
||||
|
||||
glm::vec3 extractedEulerAngles(0.0f);
|
||||
testExtractionFunc(rotation, extractedEulerAngles.x, extractedEulerAngles.y, extractedEulerAngles.z);
|
||||
glm::mat4 const extractedRotation = rotationFunc(extractedEulerAngles.x, extractedEulerAngles.y, extractedEulerAngles.z);
|
||||
|
||||
glm::vec4 const V(1.0f,1.0f,1.0f,1.0f);
|
||||
glm::vec4 const V1 = rotation * V;
|
||||
glm::vec4 const V2 = extractedRotation * V;
|
||||
|
||||
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
||||
}
|
||||
|
||||
return Error;
|
||||
}
|
||||
}//namespace test_extractsEulerAngles
|
||||
|
||||
int main()
|
||||
{
|
||||
int Error = 0;
|
||||
|
||||
typedef glm::mat4::value_type value;
|
||||
glm::vec3 const X(1.0f, 0.0f, 0.0f);
|
||||
glm::vec3 const Y(0.0f, 1.0f, 0.0f);
|
||||
glm::vec3 const Z(0.0f, 0.0f, 1.0f);
|
||||
|
||||
Error += test_eulerAngleX::test();
|
||||
Error += test_eulerAngleY::test();
|
||||
Error += test_eulerAngleZ::test();
|
||||
|
||||
Error += test_derivedEulerAngles::test(glm::eulerAngleX<value>, glm::derivedEulerAngleX<value>, X);
|
||||
Error += test_derivedEulerAngles::test(glm::eulerAngleY<value>, glm::derivedEulerAngleY<value>, Y);
|
||||
Error += test_derivedEulerAngles::test(glm::eulerAngleZ<value>, glm::derivedEulerAngleZ<value>, Z);
|
||||
|
||||
Error += test_eulerAngleXY::test();
|
||||
Error += test_eulerAngleYX::test();
|
||||
Error += test_eulerAngleXZ::test();
|
||||
@ -325,5 +512,28 @@ int main()
|
||||
Error += test_eulerAngleZY::test();
|
||||
Error += test_eulerAngleYXZ::test();
|
||||
|
||||
Error += test_eulerAngles::test(glm::eulerAngleXZX<value>, X, Z, X);
|
||||
Error += test_eulerAngles::test(glm::eulerAngleXYX<value>, X, Y, X);
|
||||
Error += test_eulerAngles::test(glm::eulerAngleYXY<value>, Y, X, Y);
|
||||
Error += test_eulerAngles::test(glm::eulerAngleYZY<value>, Y, Z, Y);
|
||||
Error += test_eulerAngles::test(glm::eulerAngleZYZ<value>, Z, Y, Z);
|
||||
Error += test_eulerAngles::test(glm::eulerAngleZXZ<value>, Z, X, Z);
|
||||
Error += test_eulerAngles::test(glm::eulerAngleXZY<value>, X, Z, Y);
|
||||
Error += test_eulerAngles::test(glm::eulerAngleYZX<value>, Y, Z, X);
|
||||
Error += test_eulerAngles::test(glm::eulerAngleZYX<value>, Z, Y, X);
|
||||
Error += test_eulerAngles::test(glm::eulerAngleZXY<value>, Z, X, Y);
|
||||
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleYXZ<value>, glm::extractEulerAngleYXZ<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleXZX<value>, glm::extractEulerAngleXZX<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleXYX<value>, glm::extractEulerAngleXYX<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleYXY<value>, glm::extractEulerAngleYXY<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleYZY<value>, glm::extractEulerAngleYZY<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleZYZ<value>, glm::extractEulerAngleZYZ<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleZXZ<value>, glm::extractEulerAngleZXZ<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleXZY<value>, glm::extractEulerAngleXZY<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleYZX<value>, glm::extractEulerAngleYZX<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleZYX<value>, glm::extractEulerAngleZYX<value>);
|
||||
Error += test_extractsEulerAngles::test(glm::eulerAngleZXY<value>, glm::extractEulerAngleZXY<value>);
|
||||
|
||||
return Error;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user