/////////////////////////////////////////////////////////////////////////////////////////////////// // OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /////////////////////////////////////////////////////////////////////////////////////////////////// // Created : 2011-09-19 // Updated : 2011-09-19 // Licence : This source is under MIT licence // File : test/gtc/random.cpp /////////////////////////////////////////////////////////////////////////////////////////////////// #include #include #include #if(GLM_LANG & GLM_LANG_CXX0X_FLAG) # include #endif int test_linearRand() { int Error = 0; { float ResultFloat = 0.0f; double ResultDouble = 0.0f; for(std::size_t i = 0; i < 100000; ++i) { ResultFloat += glm::linearRand(-1.0f, 1.0f); ResultDouble += glm::linearRand(-1.0, 1.0); } Error += glm::epsilonEqual(ResultFloat, 0.0f, 0.0001f); Error += glm::epsilonEqual(ResultDouble, 0.0, 0.0001); assert(!Error); } return Error; } int test_circularRand() { int Error = 0; { std::size_t Max = 100000; float ResultFloat = 0.0f; double ResultDouble = 0.0f; double Radius = 2.0f; for(std::size_t i = 0; i < Max; ++i) { ResultFloat += glm::length(glm::circularRand(1.0f)); ResultDouble += glm::length(glm::circularRand(Radius)); } Error += glm::epsilonEqual(ResultFloat, float(Max), 0.01f) ? 0 : 1; Error += glm::epsilonEqual(ResultDouble, double(Max) * double(Radius), 0.01) ? 0 : 1; assert(!Error); } return Error; } int test_sphericalRand() { int Error = 0; { std::size_t Max = 100000; float ResultFloatA = 0.0f; float ResultFloatB = 0.0f; float ResultFloatC = 0.0f; double ResultDoubleA = 0.0f; double ResultDoubleB = 0.0f; double ResultDoubleC = 0.0f; for(std::size_t i = 0; i < Max; ++i) { ResultFloatA += glm::length(glm::sphericalRand(1.0f)); ResultDoubleA += glm::length(glm::sphericalRand(1.0)); ResultFloatB += glm::length(glm::sphericalRand(2.0f)); ResultDoubleB += glm::length(glm::sphericalRand(2.0)); ResultFloatC += glm::length(glm::sphericalRand(3.0f)); ResultDoubleC += glm::length(glm::sphericalRand(3.0)); } Error += glm::epsilonEqual(ResultFloatA, float(Max), 0.01f) ? 0 : 1; Error += glm::epsilonEqual(ResultDoubleA, double(Max), 0.0001) ? 0 : 1; Error += glm::epsilonEqual(ResultFloatB, float(Max * 2), 0.01f) ? 0 : 1; Error += glm::epsilonEqual(ResultDoubleB, double(Max * 2), 0.0001) ? 0 : 1; Error += glm::epsilonEqual(ResultFloatC, float(Max * 3), 0.01f) ? 0 : 1; Error += glm::epsilonEqual(ResultDoubleC, double(Max * 3), 0.01) ? 0 : 1; assert(!Error); } return Error; } int test_diskRand() { int Error = 0; { float ResultFloat = 0.0f; double ResultDouble = 0.0f; for(std::size_t i = 0; i < 100000; ++i) { ResultFloat += glm::length(glm::diskRand(2.0f)); ResultDouble += glm::length(glm::diskRand(2.0)); } Error += ResultFloat < 200000.f ? 0 : 1; Error += ResultDouble < 200000.0 ? 0 : 1; assert(!Error); } return Error; } int test_ballRand() { int Error = 0; { float ResultFloat = 0.0f; double ResultDouble = 0.0f; for(std::size_t i = 0; i < 100000; ++i) { ResultFloat += glm::length(glm::ballRand(2.0f)); ResultDouble += glm::length(glm::ballRand(2.0)); } Error += ResultFloat < 200000.f ? 0 : 1; Error += ResultDouble < 200000.0 ? 0 : 1; assert(!Error); } return Error; } /* #if(GLM_LANG & GLM_LANG_CXX0X_FLAG) int test_grid() { int Error = 0; typedef std::array colors; typedef std::array grid; grid Grid; colors Colors; grid GridBest; colors ColorsBest; while(true) { for(std::size_t i = 0; i < Grid.size(); ++i) Grid[i] = int(glm::linearRand(0.0, 8.0 * 8.0 * 8.0 - 1.0) / 64.0); for(std::size_t i = 0; i < Grid.size(); ++i) ++Colors[Grid[i]]; bool Exit = true; for(std::size_t i = 0; i < Colors.size(); ++i) { if(Colors[i] == 8) continue; Exit = false; break; } if(Exit == true) break; } return Error; } #endif */ int main() { int Error = 0; Error += test_linearRand(); Error += test_circularRand(); Error += test_sphericalRand(); Error += test_diskRand(); Error += test_ballRand(); /* #if(GLM_LANG & GLM_LANG_CXX0X_FLAG) Error += test_grid(); #endif */ return Error; }