/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// Restrictions: /// By making use of the Software for military purposes, you choose to make /// a Bunny unhappy. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @file test/gtx/gtx_simd_mat4.cpp /// @date 2010-09-16 / 2014-11-25 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #if(GLM_ARCH != GLM_ARCH_PURE) std::vector test_detA(std::vector const & Data) { std::vector Test(Data.size()); std::clock_t TimeStart = clock(); for(std::size_t i = 0; i < Test.size() - 1; ++i) Test[i] = glm::determinant(Data[i]); std::clock_t TimeEnd = clock(); printf("Det A: %ld\n", TimeEnd - TimeStart); return Test; } std::vector test_detB(std::vector const & Data) { std::vector Test(Data.size()); std::clock_t TimeStart = clock(); for(std::size_t i = 0; i < Test.size() - 1; ++i) { _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); glm::simdMat4 m(Data[i]); glm::simdVec4 d(glm::detail::sse_slow_det_ps((__m128 const * const)&m)); glm::vec4 v;//(d); Test[i] = v.x; } std::clock_t TimeEnd = clock(); printf("Det B: %ld\n", TimeEnd - TimeStart); return Test; } std::vector test_detC(std::vector const & Data) { std::vector Test(Data.size()); std::clock_t TimeStart = clock(); for(std::size_t i = 0; i < Test.size() - 1; ++i) { _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); glm::simdMat4 m(Data[i]); glm::simdVec4 d(glm::detail::sse_det_ps((__m128 const * const)&m)); glm::vec4 v;//(d); Test[i] = v.x; } std::clock_t TimeEnd = clock(); printf("Det C: %ld\n", TimeEnd - TimeStart); return Test; } std::vector test_detD(std::vector const & Data) { std::vector Test(Data.size()); std::clock_t TimeStart = clock(); for(std::size_t i = 0; i < Test.size() - 1; ++i) { _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); glm::simdMat4 m(Data[i]); glm::simdVec4 d(glm::detail::sse_detd_ps((__m128 const * const)&m)); glm::vec4 v;//(d); Test[i] = v.x; } std::clock_t TimeEnd = clock(); printf("Det D: %ld\n", TimeEnd - TimeStart); return Test; } void test_invA(std::vector const & Data, std::vector & Out) { //std::vector Test(Data.size()); Out.resize(Data.size()); std::clock_t TimeStart = clock(); for(std::size_t i = 0; i < Out.size() - 1; ++i) { Out[i] = glm::inverse(Data[i]); } std::clock_t TimeEnd = clock(); printf("Inv A: %ld\n", TimeEnd - TimeStart); } void test_invC(std::vector const & Data, std::vector & Out) { //std::vector Test(Data.size()); Out.resize(Data.size()); std::clock_t TimeStart = clock(); for(std::size_t i = 0; i < Out.size() - 1; ++i) { _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); glm::simdMat4 m(Data[i]); glm::simdMat4 o; glm::detail::sse_inverse_fast_ps((__m128 const * const)&m, (__m128 *)&o); Out[i] = *(glm::mat4*)&o; } std::clock_t TimeEnd = clock(); printf("Inv C: %ld\n", TimeEnd - TimeStart); } void test_invD(std::vector const & Data, std::vector & Out) { //std::vector Test(Data.size()); Out.resize(Data.size()); std::clock_t TimeStart = clock(); for(std::size_t i = 0; i < Out.size() - 1; ++i) { _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); glm::simdMat4 m(Data[i]); glm::simdMat4 o; glm::detail::sse_inverse_ps((__m128 const * const)&m, (__m128 *)&o); Out[i] = *(glm::mat4*)&o; } std::clock_t TimeEnd = clock(); printf("Inv D: %ld\n", TimeEnd - TimeStart); } void test_mulA(std::vector const & Data, std::vector & Out) { //std::vector Test(Data.size()); Out.resize(Data.size()); std::clock_t TimeStart = clock(); for(std::size_t i = 0; i < Out.size() - 1; ++i) { Out[i] = Data[i] * Data[i]; } std::clock_t TimeEnd = clock(); printf("Mul A: %ld\n", TimeEnd - TimeStart); } void test_mulD(std::vector const & Data, std::vector & Out) { //std::vector Test(Data.size()); Out.resize(Data.size()); std::clock_t TimeStart = clock(); for(std::size_t i = 0; i < Out.size() - 1; ++i) { _mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); glm::simdMat4 m(Data[i]); glm::simdMat4 o; glm::detail::sse_mul_ps((__m128 const * const)&m, (__m128 const * const)&m, (__m128*)&o); Out[i] = *(glm::mat4*)&o; } std::clock_t TimeEnd = clock(); printf("Mul D: %ld\n", TimeEnd - TimeStart); } int test_compute_glm() { return 0; } int test_compute_gtx() { std::vector Output(1000000); std::clock_t TimeStart = clock(); for(std::size_t k = 0; k < Output.size(); ++k) { float i = float(k) / 1000.f + 0.001f; glm::vec3 A = glm::normalize(glm::vec3(i)); glm::vec3 B = glm::cross(A, glm::normalize(glm::vec3(1, 1, 2))); glm::mat4 C = glm::rotate(glm::mat4(1.0f), i, B); glm::mat4 D = glm::scale(C, glm::vec3(0.8f, 1.0f, 1.2f)); glm::mat4 E = glm::translate(D, glm::vec3(1.4f, 1.2f, 1.1f)); glm::mat4 F = glm::perspective(i, 1.5f, 0.1f, 1000.f); glm::mat4 G = glm::inverse(F * E); glm::vec3 H = glm::unProject(glm::vec3(i), G, F, E[3]); glm::vec3 I = glm::any(glm::isnan(glm::project(H, G, F, E[3]))) ? glm::vec3(2) : glm::vec3(1); glm::mat4 J = glm::lookAt(glm::normalize(glm::max(B, glm::vec3(0.001f))), H, I); glm::mat4 K = glm::transpose(J); glm::quat L = glm::normalize(glm::quat_cast(K)); glm::vec4 M = L * glm::smoothstep(K[3], J[3], glm::vec4(i)); glm::mat4 N = glm::mat4(glm::normalize(glm::max(M, glm::vec4(0.001f))), K[3], J[3], glm::vec4(i)); glm::mat4 O = N * glm::inverse(N); glm::vec4 P = O * glm::reflect(N[3], glm::vec4(A, 1.0f)); glm::vec4 Q = glm::vec4(glm::dot(M, P)); glm::vec4 R = glm::quat(Q.w, glm::vec3(Q)) * P; Output[k] = R; } std::clock_t TimeEnd = clock(); printf("test_compute_gtx: %ld\n", TimeEnd - TimeStart); return 0; } int main() { int Error = 0; std::vector Data(64 * 64 * 1); for(std::size_t i = 0; i < Data.size(); ++i) Data[i] = glm::mat4( glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f))), glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f))), glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f))), glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f)))); { std::vector TestInvA; test_invA(Data, TestInvA); } { std::vector TestInvC; test_invC(Data, TestInvC); } { std::vector TestInvD; test_invD(Data, TestInvD); } { std::vector TestA; test_mulA(Data, TestA); } { std::vector TestD; test_mulD(Data, TestD); } { std::vector TestDetA = test_detA(Data); std::vector TestDetB = test_detB(Data); std::vector TestDetD = test_detD(Data); std::vector TestDetC = test_detC(Data); for(std::size_t i = 0; i < TestDetA.size(); ++i) if(TestDetA[i] != TestDetB[i] && TestDetC[i] != TestDetB[i] && TestDetC[i] != TestDetD[i]) return 1; } // shuffle test glm::simdVec4 A(1.0f, 2.0f, 3.0f, 4.0f); glm::simdVec4 B(5.0f, 6.0f, 7.0f, 8.0f); //__m128 C = _mm_shuffle_ps(A.Data, B.Data, _MM_SHUFFLE(1, 0, 1, 0)); Error += test_compute_glm(); Error += test_compute_gtx(); float Det = glm::determinant(glm::simdMat4(1.0)); Error += Det == 1.0f ? 0 : 1; glm::simdMat4 D = glm::matrixCompMult(glm::simdMat4(1.0), glm::simdMat4(1.0)); return Error; } #else int main() { int Error = 0; return Error; } #endif//(GLM_ARCH != GLM_ARCH_PURE)