#include #include #include #include #include #include #include namespace isPowerOfTwo { #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wpadded" #endif template struct type { genType Value; bool Return; }; #if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic pop #endif static int test_int16() { type const Data[] = { {0x0001, true}, {0x0002, true}, {0x0004, true}, {0x0080, true}, {0x0000, true}, {0x0003, false} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } static int test_uint16() { type const Data[] = { {0x0001, true}, {0x0002, true}, {0x0004, true}, {0x0000, true}, {0x0000, true}, {0x0003, false} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } static int test_int32() { type const Data[] = { {0x00000001, true}, {0x00000002, true}, {0x00000004, true}, {0x0000000f, false}, {0x00000000, true}, {0x00000003, false} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::bvec1 Result = glm::isPowerOfTwo(glm::ivec1(Data[i].Value)); Error += glm::all(glm::equal(glm::bvec1(Data[i].Return), Result)) ? 0 : 1; } for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::bvec2 Result = glm::isPowerOfTwo(glm::ivec2(Data[i].Value)); Error += glm::all(glm::equal(glm::bvec2(Data[i].Return), Result)) ? 0 : 1; } for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::bvec3 Result = glm::isPowerOfTwo(glm::ivec3(Data[i].Value)); Error += glm::all(glm::equal(glm::bvec3(Data[i].Return), Result)) ? 0 : 1; } for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::bvec4 Result = glm::isPowerOfTwo(glm::ivec4(Data[i].Value)); Error += glm::all(glm::equal(glm::bvec4(Data[i].Return), Result)) ? 0 : 1; } return Error; } static int test_uint32() { type const Data[] = { {0x00000001, true}, {0x00000002, true}, {0x00000004, true}, {0x80000000, true}, {0x00000000, true}, {0x00000003, false} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } static int test() { int Error(0); Error += test_int16(); Error += test_uint16(); Error += test_int32(); Error += test_uint32(); return Error; } }//isPowerOfTwo namespace ceilPowerOfTwo_advanced { template GLM_FUNC_QUALIFIER static genIUType highestBitValue(genIUType Value) { genIUType tmp = Value; genIUType result = genIUType(0); while(tmp) { result = (tmp & (~tmp + 1)); // grab lowest bit tmp &= ~result; // clear lowest bit } return result; } template GLM_FUNC_QUALIFIER static genType ceilPowerOfTwo_loop(genType value) { return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; } template struct type { genType Value; genType Return; }; static int test_int32() { type const Data[] = { {0x0000ffff, 0x00010000}, {-3, -4}, {-8, -8}, {0x00000001, 0x00000001}, {0x00000002, 0x00000002}, {0x00000004, 0x00000004}, {0x00000007, 0x00000008}, {0x0000fff0, 0x00010000}, {0x0000f000, 0x00010000}, {0x08000000, 0x08000000}, {0x00000000, 0x00000000}, {0x00000003, 0x00000004} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::int32 Result = glm::ceilPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } static int test_uint32() { type const Data[] = { {0x00000001, 0x00000001}, {0x00000002, 0x00000002}, {0x00000004, 0x00000004}, {0x00000007, 0x00000008}, {0x0000ffff, 0x00010000}, {0x0000fff0, 0x00010000}, {0x0000f000, 0x00010000}, {0x80000000, 0x80000000}, {0x00000000, 0x00000000}, {0x00000003, 0x00000004} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::uint32 Result = glm::ceilPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } static int perf() { int Error(0); std::vector v; v.resize(100000000); std::clock_t Timestramp0 = std::clock(); for(glm::uint32 i = 0, n = static_cast(v.size()); i < n; ++i) v[i] = ceilPowerOfTwo_loop(i); std::clock_t Timestramp1 = std::clock(); for(glm::uint32 i = 0, n = static_cast(v.size()); i < n; ++i) v[i] = glm::ceilPowerOfTwo(i); std::clock_t Timestramp2 = std::clock(); std::printf("ceilPowerOfTwo_loop: %d clocks\n", static_cast(Timestramp1 - Timestramp0)); std::printf("glm::ceilPowerOfTwo: %d clocks\n", static_cast(Timestramp2 - Timestramp1)); return Error; } static int test() { int Error(0); Error += test_int32(); Error += test_uint32(); return Error; } }//namespace ceilPowerOfTwo_advanced namespace roundPowerOfTwo { static int test() { int Error = 0; glm::uint32 const A = glm::roundPowerOfTwo(7u); Error += A == 8u ? 0 : 1; glm::uint32 const B = glm::roundPowerOfTwo(15u); Error += B == 16u ? 0 : 1; glm::uint32 const C = glm::roundPowerOfTwo(31u); Error += C == 32u ? 0 : 1; glm::uint32 const D = glm::roundPowerOfTwo(9u); Error += D == 8u ? 0 : 1; glm::uint32 const E = glm::roundPowerOfTwo(17u); Error += E == 16u ? 0 : 1; glm::uint32 const F = glm::roundPowerOfTwo(33u); Error += F == 32u ? 0 : 1; return Error; } }//namespace roundPowerOfTwo namespace floorPowerOfTwo { static int test() { int Error = 0; glm::uint32 const A = glm::floorPowerOfTwo(7u); Error += A == 4u ? 0 : 1; glm::uint32 const B = glm::floorPowerOfTwo(15u); Error += B == 8u ? 0 : 1; glm::uint32 const C = glm::floorPowerOfTwo(31u); Error += C == 16u ? 0 : 1; return Error; } }//namespace floorPowerOfTwo namespace ceilPowerOfTwo { static int test() { int Error = 0; glm::uint32 const A = glm::ceilPowerOfTwo(7u); Error += A == 8u ? 0 : 1; glm::uint32 const B = glm::ceilPowerOfTwo(15u); Error += B == 16u ? 0 : 1; glm::uint32 const C = glm::ceilPowerOfTwo(31u); Error += C == 32u ? 0 : 1; return Error; } }//namespace ceilPowerOfTwo namespace floorMultiple { template struct type { genType Source; genType Multiple; genType Return; genType Epsilon; }; static int test_float() { type const Data[] = { {3.4, 0.3, 3.3, 0.0001}, {-1.4, 0.3, -1.5, 0.0001}, }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::float64 Result = glm::floorMultiple(Data[i].Source, Data[i].Multiple); Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1; } return Error; } static int test() { int Error(0); Error += test_float(); return Error; } }//namespace floorMultiple namespace ceilMultiple { template struct type { genType Source; genType Multiple; genType Return; genType Epsilon; }; static int test_float() { type const Data[] = { {3.4, 0.3, 3.6, 0.0001}, {-1.4, 0.3, -1.2, 0.0001}, }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::float64 Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple); Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1; } return Error; } static int test_int() { type const Data[] = { {3, 4, 4, 0}, {7, 4, 8, 0}, {5, 4, 8, 0}, {1, 4, 4, 0}, {1, 3, 3, 0}, {4, 3, 6, 0}, {4, 1, 4, 0}, {1, 1, 1, 0}, {7, 1, 7, 0}, }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { int Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple); Error += Data[i].Return == Result ? 0 : 1; } return Error; } static int test() { int Error(0); Error += test_int(); Error += test_float(); return Error; } }//namespace ceilMultiple int main() { int Error(0); Error += isPowerOfTwo::test(); Error += floorPowerOfTwo::test(); Error += roundPowerOfTwo::test(); Error += ceilPowerOfTwo::test(); Error += ceilPowerOfTwo_advanced::test(); Error += ceilPowerOfTwo_advanced::perf(); Error += floorMultiple::test(); Error += ceilMultiple::test(); return Error; }