/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// Restrictions: /// By making use of the Software for military purposes, you choose to make /// a Bunny unhappy. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @file test/gtc/gtc_quaternion.cpp /// @date 2010-09-16 / 2014-11-25 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #define GLM_META_PROG_HELPERS #include #include #include #include int test_quat_angle() { int Error = 0; { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; float A = glm::angle(N); Error += glm::epsilonEqual(A, glm::pi() * 0.25f, 0.01f) ? 0 : 1; } { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::normalize(glm::vec3(0, 1, 1))); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; float A = glm::angle(N); Error += glm::epsilonEqual(A, glm::pi() * 0.25f, 0.01f) ? 0 : 1; } { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::normalize(glm::vec3(1, 2, 3))); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; float A = glm::angle(N); Error += glm::epsilonEqual(A, glm::pi() * 0.25f, 0.01f) ? 0 : 1; } return Error; } int test_quat_angleAxis() { int Error = 0; glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1)); glm::quat B = glm::angleAxis(glm::pi() * 0.5f, glm::vec3(0, 0, 1)); glm::quat C = glm::mix(A, B, 0.5f); glm::quat D = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1; return Error; } int test_quat_mix() { int Error = 0; glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1)); glm::quat B = glm::angleAxis(glm::pi() * 0.5f, glm::vec3(0, 0, 1)); glm::quat C = glm::mix(A, B, 0.5f); glm::quat D = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1; return Error; } int test_quat_precision() { int Error = 0; Error += sizeof(glm::lowp_quat) <= sizeof(glm::mediump_quat) ? 0 : 1; Error += sizeof(glm::mediump_quat) <= sizeof(glm::highp_quat) ? 0 : 1; return Error; } int test_quat_normalize() { int Error(0); { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; } { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 2)); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; } { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(1, 2, 3)); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; } return Error; } int test_quat_euler() { int Error(0); { glm::quat q(1.0f, 0.0f, 0.0f, 1.0f); float Roll = glm::roll(q); float Pitch = glm::pitch(q); float Yaw = glm::yaw(q); glm::vec3 Angles = glm::eulerAngles(q); } { glm::dquat q(1.0f, 0.0f, 0.0f, 1.0f); double Roll = glm::roll(q); double Pitch = glm::pitch(q); double Yaw = glm::yaw(q); glm::dvec3 Angles = glm::eulerAngles(q); } return Error; } int test_quat_slerp() { int Error(0); float const Epsilon = 0.0001f;//glm::epsilon(); float sqrt2 = sqrt(2.0f)/2.0f; glm::quat id; glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f); glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f); // Testing a == 0 // Must be id glm::quat id2 = glm::slerp(id, Y90rot, 0.0f); Error += glm::all(glm::epsilonEqual(id, id2, Epsilon)) ? 0 : 1; // Testing a == 1 // Must be 90° rotation on Y : 0 0.7 0 0.7 glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f); Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot2, Epsilon)) ? 0 : 1; // Testing standard, easy case // Must be 45° rotation on Y : 0 0.38 0 0.92 glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f); // Testing reverse case // Must be 45° rotation on Y : 0 0.38 0 0.92 glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f); // Testing against full circle around the sphere instead of shortest path // Must be 45° rotation on Y // certainly not a 135° rotation glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f); float Y45angle3 = glm::angle(Y45rot3); Error += glm::epsilonEqual(Y45angle3, glm::pi() * 0.25f, Epsilon) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1; // Same, but inverted // Must also be 45° rotation on Y : 0 0.38 0 0.92 // -0 -0.38 -0 -0.92 is ok too glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f); Error += glm::all(glm::epsilonEqual(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1; // Testing q1 = q2 // Must be 90° rotation on Y : 0 0.7 0 0.7 glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f); Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot3, Epsilon)) ? 0 : 1; // Testing 180° rotation // Must be 90° rotation on almost any axis that is on the XZ plane glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f); float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78; Error += glm::epsilonEqual(XZ90angle, glm::pi() * 0.25f, Epsilon) ? 0 : 1; // Testing almost equal quaternions (this test should pass through the linear interpolation) // Must be 0 0.00X 0 0.99999 glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f); // Testing quaternions with opposite sign { glm::quat a(-1, 0, 0, 0); glm::quat result = glm::slerp(a, id, 0.5f); Error += glm::epsilonEqual(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1; } return Error; } int test_quat_mul() { int Error(0); glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0))); glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0))); glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1)); glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2); glm::quat temp5 = glm::normalize(temp1 * temp2); glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5); # ifndef GLM_FORCE_NO_CTOR_INIT { glm::quat temp7; temp7 *= temp5; temp7 *= glm::inverse(temp5); Error += temp7 != glm::quat(); } # endif return Error; } int test_quat_two_axis_ctr() { int Error(0); glm::quat q1(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0)); glm::vec3 v1 = q1 * glm::vec3(1, 0, 0); Error += glm::all(glm::epsilonEqual(v1, glm::vec3(0, 1, 0), 0.0001f)) ? 0 : 1; glm::quat q2 = q1 * q1; glm::vec3 v2 = q2 * glm::vec3(1, 0, 0); Error += glm::all(glm::epsilonEqual(v2, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1; return Error; } int test_quat_type() { glm::quat A; glm::dquat B; glm::dquat C(A); return 0; } int test_quat_mul_vec() { int Error(0); glm::quat q = glm::angleAxis(glm::pi() * 0.5f, glm::vec3(0, 0, 1)); glm::vec3 v(1, 0, 0); glm::vec3 u(q * v); glm::vec3 w(u * q); Error += glm::all(glm::epsilonEqual(v, w, 0.01f)) ? 0 : 1; return Error; } int test_quat_ctr() { int Error(0); # if GLM_HAS_TRIVIAL_QUERIES // Error += std::is_trivially_default_constructible::value ? 0 : 1; // Error += std::is_trivially_default_constructible::value ? 0 : 1; // Error += std::is_trivially_copy_assignable::value ? 0 : 1; // Error += std::is_trivially_copy_assignable::value ? 0 : 1; Error += std::is_trivially_copyable::value ? 0 : 1; Error += std::is_trivially_copyable::value ? 0 : 1; Error += std::is_copy_constructible::value ? 0 : 1; Error += std::is_copy_constructible::value ? 0 : 1; # endif # if GLM_HAS_INITIALIZER_LISTS { glm::quat A{0, 1, 2, 3}; std::vector B{ {0, 1, 2, 3}, {0, 1, 2, 3}}; } # endif//GLM_HAS_INITIALIZER_LISTS return Error; } int main() { int Error(0); #ifdef GLM_META_PROG_HELPERS assert(glm::quat::components == 4); assert(glm::quat::components == glm::quat().length()); #endif Error += test_quat_ctr(); Error += test_quat_mul_vec(); Error += test_quat_two_axis_ctr(); Error += test_quat_mul(); Error += test_quat_precision(); Error += test_quat_type(); Error += test_quat_angle(); Error += test_quat_angleAxis(); Error += test_quat_mix(); Error += test_quat_normalize(); Error += test_quat_euler(); Error += test_quat_slerp(); return Error; }