#include #include #include #include #include int test_quat_angle() { int Error = 0; { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; float A = glm::angle(N); Error += glm::epsilonEqual(A, glm::pi() * 0.25f, 0.01f) ? 0 : 1; } { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::normalize(glm::vec3(0, 1, 1))); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; float A = glm::angle(N); Error += glm::epsilonEqual(A, glm::pi() * 0.25f, 0.01f) ? 0 : 1; } { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::normalize(glm::vec3(1, 2, 3))); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; float A = glm::angle(N); Error += glm::epsilonEqual(A, glm::pi() * 0.25f, 0.01f) ? 0 : 1; } return Error; } int test_quat_angleAxis() { int Error = 0; glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f)); glm::quat B = glm::angleAxis(glm::pi() * 0.5f, glm::vec3(0, 0, 1)); glm::quat C = glm::mix(A, B, 0.5f); glm::quat D = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1; return Error; } int test_quat_mix() { int Error = 0; glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f)); glm::quat B = glm::angleAxis(glm::pi() * 0.5f, glm::vec3(0, 0, 1)); glm::quat C = glm::mix(A, B, 0.5f); glm::quat D = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1; return Error; } int test_quat_precision() { int Error = 0; Error += sizeof(glm::lowp_quat) <= sizeof(glm::mediump_quat) ? 0 : 1; Error += sizeof(glm::mediump_quat) <= sizeof(glm::highp_quat) ? 0 : 1; return Error; } int test_quat_normalize() { int Error(0); { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; } { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 2)); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; } { glm::quat Q = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(1, 2, 3)); glm::quat N = glm::normalize(Q); float L = glm::length(N); Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; } return Error; } int test_quat_euler() { int Error = 0; { glm::quat q(1.0f, 0.0f, 0.0f, 1.0f); float Roll = glm::roll(q); float Pitch = glm::pitch(q); float Yaw = glm::yaw(q); glm::vec3 Angles = glm::eulerAngles(q); Error += glm::all(glm::epsilonEqual(Angles, glm::vec3(Pitch, Yaw, Roll), 0.000001f)) ? 0 : 1; } { glm::dquat q(1.0, 0.0, 0.0, 1.0); double Roll = glm::roll(q); double Pitch = glm::pitch(q); double Yaw = glm::yaw(q); glm::dvec3 Angles = glm::eulerAngles(q); Error += glm::all(glm::epsilonEqual(Angles, glm::dvec3(Pitch, Yaw, Roll), 0.000001)) ? 0 : 1; } return Error; } int test_quat_slerp() { int Error = 0; float const Epsilon = 0.0001f;//glm::epsilon(); float sqrt2 = std::sqrt(2.0f)/2.0f; glm::quat id(static_cast(1), static_cast(0), static_cast(0), static_cast(0)); glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f); glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f); // Testing a == 0 // Must be id glm::quat id2 = glm::slerp(id, Y90rot, 0.0f); Error += glm::all(glm::epsilonEqual(id, id2, Epsilon)) ? 0 : 1; // Testing a == 1 // Must be 90° rotation on Y : 0 0.7 0 0.7 glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f); Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot2, Epsilon)) ? 0 : 1; // Testing standard, easy case // Must be 45° rotation on Y : 0 0.38 0 0.92 glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f); // Testing reverse case // Must be 45° rotation on Y : 0 0.38 0 0.92 glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f); // Testing against full circle around the sphere instead of shortest path // Must be 45° rotation on Y // certainly not a 135° rotation glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f); float Y45angle3 = glm::angle(Y45rot3); Error += glm::epsilonEqual(Y45angle3, glm::pi() * 0.25f, Epsilon) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1; // Same, but inverted // Must also be 45° rotation on Y : 0 0.38 0 0.92 // -0 -0.38 -0 -0.92 is ok too glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f); Error += glm::all(glm::epsilonEqual(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1; // Testing q1 = q2 // Must be 90° rotation on Y : 0 0.7 0 0.7 glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f); Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot3, Epsilon)) ? 0 : 1; // Testing 180° rotation // Must be 90° rotation on almost any axis that is on the XZ plane glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f); float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78; Error += glm::epsilonEqual(XZ90angle, glm::pi() * 0.25f, Epsilon) ? 0 : 1; // Testing almost equal quaternions (this test should pass through the linear interpolation) // Must be 0 0.00X 0 0.99999 glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f); // Testing quaternions with opposite sign { glm::quat a(-1, 0, 0, 0); glm::quat result = glm::slerp(a, id, 0.5f); Error += glm::epsilonEqual(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1; } return Error; } int test_quat_mul() { int Error = 0; glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0))); glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0))); glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1)); glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2); glm::quat temp5 = glm::normalize(temp1 * temp2); glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5); glm::quat temp7(1.0f, glm::vec3(0.0, 1.0, 0.0)); temp7 *= temp5; temp7 *= glm::inverse(temp5); Error += temp7 != glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)); return Error; } int test_quat_two_axis_ctr() { int Error = 0; glm::quat const q1(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0)); glm::vec3 const v1 = q1 * glm::vec3(1, 0, 0); Error += glm::all(glm::epsilonEqual(v1, glm::vec3(0, 1, 0), 0.0001f)) ? 0 : 1; glm::quat const q2 = q1 * q1; glm::vec3 const v2 = q2 * glm::vec3(1, 0, 0); Error += glm::all(glm::epsilonEqual(v2, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1; glm::quat const q3(glm::vec3(1, 0, 0), glm::vec3(-1, 0, 0)); glm::vec3 const v3 = q3 * glm::vec3(1, 0, 0); Error += glm::all(glm::epsilonEqual(v3, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1; glm::quat const q4(glm::vec3(0, 1, 0), glm::vec3(0, -1, 0)); glm::vec3 const v4 = q4 * glm::vec3(0, 1, 0); Error += glm::all(glm::epsilonEqual(v4, glm::vec3(0, -1, 0), 0.0001f)) ? 0 : 1; glm::quat const q5(glm::vec3(0, 0, 1), glm::vec3(0, 0, -1)); glm::vec3 const v5 = q5 * glm::vec3(0, 0, 1); Error += glm::all(glm::epsilonEqual(v5, glm::vec3(0, 0, -1), 0.0001f)) ? 0 : 1; return Error; } int test_quat_mul_vec() { int Error(0); glm::quat q = glm::angleAxis(glm::pi() * 0.5f, glm::vec3(0, 0, 1)); glm::vec3 v(1, 0, 0); glm::vec3 u(q * v); glm::vec3 w(u * q); Error += glm::all(glm::epsilonEqual(v, w, 0.01f)) ? 0 : 1; return Error; } int test_quat_ctr() { int Error(0); # if GLM_HAS_TRIVIAL_QUERIES // Error += std::is_trivially_default_constructible::value ? 0 : 1; // Error += std::is_trivially_default_constructible::value ? 0 : 1; // Error += std::is_trivially_copy_assignable::value ? 0 : 1; // Error += std::is_trivially_copy_assignable::value ? 0 : 1; Error += std::is_trivially_copyable::value ? 0 : 1; Error += std::is_trivially_copyable::value ? 0 : 1; Error += std::is_copy_constructible::value ? 0 : 1; Error += std::is_copy_constructible::value ? 0 : 1; # endif # if GLM_HAS_INITIALIZER_LISTS { glm::quat A{0, 1, 2, 3}; std::vector B{ {0, 1, 2, 3}, {0, 1, 2, 3}}; } # endif//GLM_HAS_INITIALIZER_LISTS return Error; } int test_size() { int Error = 0; Error += 16 == sizeof(glm::quat) ? 0 : 1; Error += 32 == sizeof(glm::dquat) ? 0 : 1; Error += glm::quat().length() == 4 ? 0 : 1; Error += glm::dquat().length() == 4 ? 0 : 1; Error += glm::quat::length() == 4 ? 0 : 1; Error += glm::dquat::length() == 4 ? 0 : 1; return Error; } static int test_constexpr() { #if GLM_HAS_CONSTEXPR static_assert(glm::quat::length() == 4, "GLM: Failed constexpr"); static_assert(glm::quat(1.0f, glm::vec3(0.0f)).w > 0.0f, "GLM: Failed constexpr"); #endif return 0; } int test_identity() { int Error = 0; glm::quat const Q = glm::identity(); Error += glm::all(glm::equal(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 0 : 1; Error += glm::any(glm::notEqual(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 1 : 0; glm::mat4 const M = glm::identity(); glm::mat4 const N(1.0f); Error += glm::all(glm::equal(M[0], N[0], 0.0001f)) ? 0 : 1; Error += glm::all(glm::equal(M[1], N[1], 0.0001f)) ? 0 : 1; Error += glm::all(glm::equal(M[2], N[2], 0.0001f)) ? 0 : 1; Error += glm::all(glm::equal(M[3], N[3], 0.0001f)) ? 0 : 1; return Error; } int main() { int Error = 0; Error += test_quat_ctr(); Error += test_quat_mul_vec(); Error += test_quat_two_axis_ctr(); Error += test_quat_mul(); Error += test_quat_precision(); Error += test_quat_angle(); Error += test_quat_angleAxis(); Error += test_quat_mix(); Error += test_quat_normalize(); Error += test_quat_euler(); Error += test_quat_slerp(); Error += test_size(); Error += test_constexpr(); Error += test_identity(); return Error; }