#include #include #include #include #include #include #if GLM_LANG & GLM_LANG_CXX11_FLAG #include namespace isPowerOfTwo { template struct type { genType Value; bool Return; }; int test_int16() { type const Data[] = { {0x0001, true}, {0x0002, true}, {0x0004, true}, {0x0080, true}, {0x0000, true}, {0x0003, false} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test_uint16() { type const Data[] = { {0x0001, true}, {0x0002, true}, {0x0004, true}, {0x0000, true}, {0x0000, true}, {0x0003, false} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test_int32() { type const Data[] = { {0x00000001, true}, {0x00000002, true}, {0x00000004, true}, {0x0000000f, false}, {0x00000000, true}, {0x00000003, false} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test_uint32() { type const Data[] = { {0x00000001, true}, {0x00000002, true}, {0x00000004, true}, {0x80000000, true}, {0x00000000, true}, {0x00000003, false} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { bool Result = glm::isPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test() { int Error = 0; Error += test_int16(); Error += test_uint16(); Error += test_int32(); Error += test_uint32(); return Error; } }//isPowerOfTwo namespace nextPowerOfTwo_advanced { template GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) { genIUType tmp = Value; genIUType result = genIUType(0); while(tmp) { result = (tmp & (~tmp + 1)); // grab lowest bit tmp &= ~result; // clear lowest bit } return result; } template GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value) { return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; } template struct type { genType Value; genType Return; }; int test_int32() { type const Data[] = { {0x0000ffff, 0x00010000}, {-3, -4}, {-8, -8}, {0x00000001, 0x00000001}, {0x00000002, 0x00000002}, {0x00000004, 0x00000004}, {0x00000007, 0x00000008}, {0x0000fff0, 0x00010000}, {0x0000f000, 0x00010000}, {0x08000000, 0x08000000}, {0x00000000, 0x00000000}, {0x00000003, 0x00000004} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test_uint32() { type const Data[] = { {0x00000001, 0x00000001}, {0x00000002, 0x00000002}, {0x00000004, 0x00000004}, {0x00000007, 0x00000008}, {0x0000ffff, 0x00010000}, {0x0000fff0, 0x00010000}, {0x0000f000, 0x00010000}, {0x80000000, 0x80000000}, {0x00000000, 0x00000000}, {0x00000003, 0x00000004} }; int Error(0); for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int perf() { int Error(0); std::vector v; v.resize(100000000); std::clock_t Timestramp0 = std::clock(); for(glm::uint32 i = 0, n = static_cast(v.size()); i < n; ++i) v[i] = nextPowerOfTwo_loop(i); std::clock_t Timestramp1 = std::clock(); for(glm::uint32 i = 0, n = static_cast(v.size()); i < n; ++i) v[i] = glm::nextPowerOfTwo(i); std::clock_t Timestramp2 = std::clock(); std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast(Timestramp1 - Timestramp0)); std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast(Timestramp2 - Timestramp1)); return Error; } int test() { int Error(0); Error += test_int32(); Error += test_uint32(); return Error; } }//namespace nextPowerOfTwo_advanced namespace prevPowerOfTwo { template int run() { int Error = 0; T const A = glm::prevPowerOfTwo(static_cast(7)); Error += A == static_cast(4) ? 0 : 1; T const B = glm::prevPowerOfTwo(static_cast(15)); Error += B == static_cast(8) ? 0 : 1; T const C = glm::prevPowerOfTwo(static_cast(31)); Error += C == static_cast(16) ? 0 : 1; T const D = glm::prevPowerOfTwo(static_cast(32)); Error += D == static_cast(32) ? 0 : 1; return Error; } int test() { int Error = 0; Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); return Error; } }//namespace prevPowerOfTwo namespace nextPowerOfTwo { template int run() { int Error = 0; T const A = glm::nextPowerOfTwo(static_cast(7)); Error += A == static_cast(8) ? 0 : 1; T const B = glm::nextPowerOfTwo(static_cast(15)); Error += B == static_cast(16) ? 0 : 1; T const C = glm::nextPowerOfTwo(static_cast(31)); Error += C == static_cast(32) ? 0 : 1; T const D = glm::nextPowerOfTwo(static_cast(32)); Error += D == static_cast(32) ? 0 : 1; return Error; } int test() { int Error = 0; Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); return Error; } }//namespace nextPowerOfTwo namespace prevMultiple { template struct type { genIUType Source; genIUType Multiple; genIUType Return; }; template int run() { type const Data[] = { {8, 3, 6}, {7, 7, 7} }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple); Error += Data[i].Return == Result ? 0 : 1; } return Error; } int test() { int Error = 0; Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); Error += run(); return Error; } }//namespace prevMultiple namespace nextMultiple { static glm::uint const Multiples = 128; int perf_nextMultiple(glm::uint Samples) { std::vector Results(Samples * Multiples); std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); for(glm::uint Source = 0; Source < Samples; ++Source) for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) { Results[Source * Multiples + Multiple] = glm::nextMultiple(Source, Multiples); } std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); std::printf("- glm::nextMultiple Time %d microseconds\n", static_cast(std::chrono::duration_cast(t1 - t0).count())); glm::uint Result = 0; for(std::size_t i = 0, n = Results.size(); i < n; ++i) Result += Results[i]; return Result > 0 ? 0 : 1; } template GLM_FUNC_QUALIFIER T nextMultipleMod(T Source, T Multiple) { T const Tmp = Source - static_cast(1); return Tmp + (Multiple - (Tmp % Multiple)); } int perf_nextMultipleMod(glm::uint Samples) { std::vector Results(Samples * Multiples); std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) for (glm::uint Source = 0; Source < Samples; ++Source) { Results[Source * Multiples + Multiple] = nextMultipleMod(Source, Multiples); } std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); std::printf("- nextMultipleMod Time %d microseconds\n", static_cast(std::chrono::duration_cast(t1 - t0).count())); glm::uint Result = 0; for(std::size_t i = 0, n = Results.size(); i < n; ++i) Result += Results[i]; return Result > 0 ? 0 : 1; } template GLM_FUNC_QUALIFIER T nextMultipleNeg(T Source, T Multiple) { if(Source > static_cast(0)) { T const Tmp = Source - static_cast(1); return Tmp + (Multiple - (Tmp % Multiple)); } else return Source + (-Source % Multiple); } int perf_nextMultipleNeg(glm::uint Samples) { std::vector Results(Samples * Multiples); std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); for(glm::uint Source = 0; Source < Samples; ++Source) for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) { Results[Source * Multiples + Multiple] = nextMultipleNeg(Source, Multiples); } std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); std::printf("- nextMultipleNeg Time %d microseconds\n", static_cast(std::chrono::duration_cast(t1 - t0).count())); glm::uint Result = 0; for (std::size_t i = 0, n = Results.size(); i < n; ++i) Result += Results[i]; return Result > 0 ? 0 : 1; } template GLM_FUNC_QUALIFIER T nextMultipleUFloat(T Source, T Multiple) { return Source + (Multiple - std::fmod(Source, Multiple)); } int perf_nextMultipleUFloat(glm::uint Samples) { std::vector Results(Samples * Multiples); std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); for(glm::uint Source = 0; Source < Samples; ++Source) for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) { Results[Source * Multiples + Multiple] = nextMultipleUFloat(static_cast(Source), static_cast(Multiples)); } std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); std::printf("- nextMultipleUFloat Time %d microseconds\n", static_cast(std::chrono::duration_cast(t1 - t0).count())); float Result = 0; for (std::size_t i = 0, n = Results.size(); i < n; ++i) Result += Results[i]; return Result > 0.0f ? 0 : 1; } template GLM_FUNC_QUALIFIER T nextMultipleFloat(T Source, T Multiple) { if(Source > static_cast(0)) return Source + (Multiple - std::fmod(Source, Multiple)); else return Source + std::fmod(-Source, Multiple); } int perf_nextMultipleFloat(glm::uint Samples) { std::vector Results(Samples * Multiples); std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); for(glm::uint Source = 0; Source < Samples; ++Source) for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) { Results[Source * Multiples + Multiple] = nextMultipleFloat(static_cast(Source), static_cast(Multiples)); } std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); std::printf("- nextMultipleFloat Time %d microseconds\n", static_cast(std::chrono::duration_cast(t1 - t0).count())); float Result = 0; for (std::size_t i = 0, n = Results.size(); i < n; ++i) Result += Results[i]; return Result > 0.0f ? 0 : 1; } template struct type { genIUType Source; genIUType Multiple; genIUType Return; }; template int test_uint() { type const Data[] = { { 3, 4, 4 }, { 6, 3, 6 }, { 5, 3, 6 }, { 7, 7, 7 }, { 0, 1, 0 }, { 8, 3, 9 } }; int Error = 0; for(std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { T const Result0 = glm::nextMultiple(Data[i].Source, Data[i].Multiple); Error += Data[i].Return == Result0 ? 0 : 1; assert(!Error); T const Result1 = nextMultipleMod(Data[i].Source, Data[i].Multiple); Error += Data[i].Return == Result1 ? 0 : 1; assert(!Error); } return Error; } int perf() { int Error = 0; glm::uint const Samples = 10000; for(int i = 0; i < 4; ++i) { std::printf("Run %d :\n", i); Error += perf_nextMultiple(Samples); Error += perf_nextMultipleMod(Samples); Error += perf_nextMultipleNeg(Samples); Error += perf_nextMultipleUFloat(Samples); Error += perf_nextMultipleFloat(Samples); std::printf("\n"); } return Error; } int test() { int Error = 0; Error += test_uint(); Error += test_uint(); Error += test_uint(); Error += test_uint(); Error += test_uint(); Error += test_uint(); Error += test_uint(); Error += test_uint(); return Error; } }//namespace nextMultiple namespace findNSB { template struct type { T Source; int SignificantBitCount; int Return; }; template int run() { type const Data[] = { { 0x00, 1,-1 }, { 0x01, 2,-1 }, { 0x02, 2,-1 }, { 0x06, 3,-1 }, { 0x01, 1, 0 }, { 0x03, 1, 0 }, { 0x03, 2, 1 }, { 0x07, 2, 1 }, { 0x05, 2, 2 }, { 0x0D, 2, 2 } }; int Error = 0; for (std::size_t i = 0, n = sizeof(Data) / sizeof(type); i < n; ++i) { int const Result0 = glm::findNSB(Data[i].Source, Data[i].SignificantBitCount); Error += Data[i].Return == Result0 ? 0 : 1; assert(!Error); } return Error; } int test() { int Error = 0; Error += run(); Error += run(); Error += run(); Error += run(); /* Error += run(); Error += run(); Error += run(); Error += run(); */ return Error; } }//namespace findNSB int main() { int Error = 0; Error += findNSB::test(); Error += isPowerOfTwo::test(); Error += prevPowerOfTwo::test(); Error += nextPowerOfTwo::test(); Error += nextPowerOfTwo_advanced::test(); Error += prevMultiple::test(); Error += nextMultiple::test(); # ifdef NDEBUG Error += nextPowerOfTwo_advanced::perf(); Error += nextMultiple::perf(); # endif//NDEBUG return Error; } #else int main() { return 0; } #endif