0.9.9 API documentation
quaternion_geometric.hpp
Go to the documentation of this file.
1 
15 #pragma once
16 
17 // Dependency:
18 #include "../geometric.hpp"
19 #include "../exponential.hpp"
20 #include "../ext/vector_relational.hpp"
21 
22 #if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)
23 # pragma message("GLM: GLM_EXT_quaternion_geometric extension included")
24 #endif
25 
26 namespace glm
27 {
30 
37  template<typename T, qualifier Q>
38  GLM_FUNC_DECL T length(qua<T, Q> const& q);
39 
46  template<typename T, qualifier Q>
47  GLM_FUNC_DECL qua<T, Q> normalize(qua<T, Q> const& q);
48 
55  template<typename T, qualifier Q>
56  GLM_FUNC_DECL T dot(qua<T, Q> const& x, qua<T, Q> const& y);
57 
64  template<typename T, qualifier Q>
65  GLM_FUNC_QUALIFIER qua<T, Q> cross(qua<T, Q> const& q1, qua<T, Q> const& q2);
66 
68 } //namespace glm
69 
70 #include "quaternion_geometric.inl"
GLM_FUNC_DECL T dot(qua< T, Q > const &x, qua< T, Q > const &y)
Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ...
GLM_FUNC_DECL qua< T, Q > normalize(qua< T, Q > const &q)
Returns the normalized quaternion.
Definition: common.hpp:20
GLM_FUNC_QUALIFIER qua< T, Q > cross(qua< T, Q > const &q1, qua< T, Q > const &q2)
Compute a cross product.
GLM_FUNC_DECL T length(qua< T, Q > const &q)
Returns the norm of a quaternions.