#ifndef GLM_FORCE_PURE #define GLM_FORCE_DEFAULT_ALIGNED_GENTYPES #endif #include #include #include #if GLM_LANG & GLM_LANG_CXX0X_FLAG # include #endif std::size_t const TestSamples = 10000; int test_linearRand() { int Error = 0; glm::int32 const Min = 16; glm::int32 const Max = 32; { glm::u8vec2 AMin(std::numeric_limits::max()); glm::u8vec2 AMax(std::numeric_limits::min()); { for(std::size_t i = 0; i < TestSamples; ++i) { glm::u8vec2 A = glm::linearRand(glm::u8vec2(Min), glm::u8vec2(Max)); AMin = glm::min(AMin, A); AMax = glm::max(AMax, A); if(!glm::all(glm::lessThanEqual(A, glm::u8vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(A, glm::u8vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(AMin, glm::u8vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(AMax, glm::u8vec2(Max))) ? 0 : 1; assert(!Error); } glm::u16vec2 BMin(std::numeric_limits::max()); glm::u16vec2 BMax(std::numeric_limits::min()); { for(std::size_t i = 0; i < TestSamples; ++i) { glm::u16vec2 B = glm::linearRand(glm::u16vec2(Min), glm::u16vec2(Max)); BMin = glm::min(BMin, B); BMax = glm::max(BMax, B); if(!glm::all(glm::lessThanEqual(B, glm::u16vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(B, glm::u16vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(BMin, glm::u16vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(BMax, glm::u16vec2(Max))) ? 0 : 1; assert(!Error); } glm::u32vec2 CMin(std::numeric_limits::max()); glm::u32vec2 CMax(std::numeric_limits::min()); { for(std::size_t i = 0; i < TestSamples; ++i) { glm::u32vec2 C = glm::linearRand(glm::u32vec2(Min), glm::u32vec2(Max)); CMin = glm::min(CMin, C); CMax = glm::max(CMax, C); if(!glm::all(glm::lessThanEqual(C, glm::u32vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(C, glm::u32vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(CMin, glm::u32vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(CMax, glm::u32vec2(Max))) ? 0 : 1; assert(!Error); } glm::u64vec2 DMin(std::numeric_limits::max()); glm::u64vec2 DMax(std::numeric_limits::min()); { for(std::size_t i = 0; i < TestSamples; ++i) { glm::u64vec2 D = glm::linearRand(glm::u64vec2(Min), glm::u64vec2(Max)); DMin = glm::min(DMin, D); DMax = glm::max(DMax, D); if(!glm::all(glm::lessThanEqual(D, glm::u64vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(D, glm::u64vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(DMin, glm::u64vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(DMax, glm::u64vec2(Max))) ? 0 : 1; assert(!Error); } } { glm::i8vec2 AMin(std::numeric_limits::max()); glm::i8vec2 AMax(std::numeric_limits::min()); { for(std::size_t i = 0; i < TestSamples; ++i) { glm::i8vec2 A = glm::linearRand(glm::i8vec2(Min), glm::i8vec2(Max)); AMin = glm::min(AMin, A); AMax = glm::max(AMax, A); if(!glm::all(glm::lessThanEqual(A, glm::i8vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(A, glm::i8vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(AMin, glm::i8vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(AMax, glm::i8vec2(Max))) ? 0 : 1; assert(!Error); } glm::i16vec2 BMin(std::numeric_limits::max()); glm::i16vec2 BMax(std::numeric_limits::min()); { for(std::size_t i = 0; i < TestSamples; ++i) { glm::i16vec2 B = glm::linearRand(glm::i16vec2(Min), glm::i16vec2(Max)); BMin = glm::min(BMin, B); BMax = glm::max(BMax, B); if(!glm::all(glm::lessThanEqual(B, glm::i16vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(B, glm::i16vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(BMin, glm::i16vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(BMax, glm::i16vec2(Max))) ? 0 : 1; assert(!Error); } glm::i32vec2 CMin(std::numeric_limits::max()); glm::i32vec2 CMax(std::numeric_limits::min()); { for(std::size_t i = 0; i < TestSamples; ++i) { glm::i32vec2 C = glm::linearRand(glm::i32vec2(Min), glm::i32vec2(Max)); CMin = glm::min(CMin, C); CMax = glm::max(CMax, C); if(!glm::all(glm::lessThanEqual(C, glm::i32vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(C, glm::i32vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(CMin, glm::i32vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(CMax, glm::i32vec2(Max))) ? 0 : 1; assert(!Error); } glm::i64vec2 DMin(std::numeric_limits::max()); glm::i64vec2 DMax(std::numeric_limits::min()); { for(std::size_t i = 0; i < TestSamples; ++i) { glm::i64vec2 D = glm::linearRand(glm::i64vec2(Min), glm::i64vec2(Max)); DMin = glm::min(DMin, D); DMax = glm::max(DMax, D); if(!glm::all(glm::lessThanEqual(D, glm::i64vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(D, glm::i64vec2(Min)))) ++Error; assert(!Error); } Error += glm::all(glm::equal(DMin, glm::i64vec2(Min))) ? 0 : 1; Error += glm::all(glm::equal(DMax, glm::i64vec2(Max))) ? 0 : 1; assert(!Error); } } for(std::size_t i = 0; i < TestSamples; ++i) { glm::f32vec2 const A(glm::linearRand(glm::f32vec2(static_cast(Min)), glm::f32vec2(static_cast(Max)))); if(!glm::all(glm::lessThanEqual(A, glm::f32vec2(static_cast(Max))))) ++Error; if(!glm::all(glm::greaterThanEqual(A, glm::f32vec2(static_cast(Min))))) ++Error; glm::f64vec2 const B(glm::linearRand(glm::f64vec2(Min), glm::f64vec2(Max))); if(!glm::all(glm::lessThanEqual(B, glm::f64vec2(Max)))) ++Error; if(!glm::all(glm::greaterThanEqual(B, glm::f64vec2(Min)))) ++Error; assert(!Error); } { float ResultFloat = 0.0f; double ResultDouble = 0.0; for(std::size_t i = 0; i < TestSamples; ++i) { ResultFloat += glm::linearRand(-1.0f, 1.0f); ResultDouble += glm::linearRand(-1.0, 1.0); } Error += glm::epsilonEqual(ResultFloat, 0.0f, 0.0001f); Error += glm::epsilonEqual(ResultDouble, 0.0, 0.0001); assert(!Error); } return Error; } int test_circularRand() { int Error = 0; { std::size_t Max = TestSamples; float ResultFloat = 0.0f; double ResultDouble = 0.0; double Radius = 2.0; for(std::size_t i = 0; i < Max; ++i) { ResultFloat += glm::length(glm::circularRand(1.0f)); ResultDouble += glm::length(glm::circularRand(Radius)); } Error += glm::epsilonEqual(ResultFloat, float(Max), 0.01f) ? 0 : 1; Error += glm::epsilonEqual(ResultDouble, double(Max) * double(Radius), 0.01) ? 0 : 1; assert(!Error); } return Error; } int test_sphericalRand() { int Error = 0; { std::size_t Max = TestSamples; float ResultFloatA = 0.0f; float ResultFloatB = 0.0f; float ResultFloatC = 0.0f; double ResultDoubleA = 0.0; double ResultDoubleB = 0.0; double ResultDoubleC = 0.0; for(std::size_t i = 0; i < Max; ++i) { ResultFloatA += glm::length(glm::sphericalRand(1.0f)); ResultDoubleA += glm::length(glm::sphericalRand(1.0)); ResultFloatB += glm::length(glm::sphericalRand(2.0f)); ResultDoubleB += glm::length(glm::sphericalRand(2.0)); ResultFloatC += glm::length(glm::sphericalRand(3.0f)); ResultDoubleC += glm::length(glm::sphericalRand(3.0)); } Error += glm::epsilonEqual(ResultFloatA, float(Max), 0.01f) ? 0 : 1; Error += glm::epsilonEqual(ResultDoubleA, double(Max), 0.0001) ? 0 : 1; Error += glm::epsilonEqual(ResultFloatB, float(Max * 2), 0.01f) ? 0 : 1; Error += glm::epsilonEqual(ResultDoubleB, double(Max * 2), 0.0001) ? 0 : 1; Error += glm::epsilonEqual(ResultFloatC, float(Max * 3), 0.01f) ? 0 : 1; Error += glm::epsilonEqual(ResultDoubleC, double(Max * 3), 0.01) ? 0 : 1; assert(!Error); } return Error; } int test_diskRand() { int Error = 0; { float ResultFloat = 0.0f; double ResultDouble = 0.0; for(std::size_t i = 0; i < TestSamples; ++i) { ResultFloat += glm::length(glm::diskRand(2.0f)); ResultDouble += glm::length(glm::diskRand(2.0)); } Error += ResultFloat < float(TestSamples) * 2.f ? 0 : 1; Error += ResultDouble < double(TestSamples) * 2.0 ? 0 : 1; assert(!Error); } return Error; } int test_ballRand() { int Error = 0; { float ResultFloat = 0.0f; double ResultDouble = 0.0; for(std::size_t i = 0; i < TestSamples; ++i) { ResultFloat += glm::length(glm::ballRand(2.0f)); ResultDouble += glm::length(glm::ballRand(2.0)); } Error += ResultFloat < float(TestSamples) * 2.f ? 0 : 1; Error += ResultDouble < double(TestSamples) * 2.0 ? 0 : 1; assert(!Error); } return Error; } /* #if(GLM_LANG & GLM_LANG_CXX0X_FLAG) int test_grid() { int Error = 0; typedef std::array colors; typedef std::array grid; grid Grid; colors Colors; grid GridBest; colors ColorsBest; while(true) { for(std::size_t i = 0; i < Grid.size(); ++i) Grid[i] = int(glm::linearRand(0.0, 8.0 * 8.0 * 8.0 - 1.0) / 64.0); for(std::size_t i = 0; i < Grid.size(); ++i) ++Colors[Grid[i]]; bool Exit = true; for(std::size_t i = 0; i < Colors.size(); ++i) { if(Colors[i] == 8) continue; Exit = false; break; } if(Exit == true) break; } return Error; } #endif */ int main() { int Error = 0; Error += test_linearRand(); Error += test_circularRand(); Error += test_sphericalRand(); Error += test_diskRand(); Error += test_ballRand(); /* #if(GLM_LANG & GLM_LANG_CXX0X_FLAG) Error += test_grid(); #endif */ return Error; }