/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// Restrictions: /// By making use of the Software for military purposes, you choose to make /// a Bunny unhappy. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @file test/gtc/gtc_integer.cpp /// @date 2014-11-17 / 2014-11-25 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #define GLM_FORCE_INLINE #include #include #include #include #include #include #include #include #include #include #include #include namespace log2_ { int test() { int Error = 0; int A0 = static_cast(glm::log2(16.f)); glm::ivec1 B0(glm::log2(glm::vec1(16.f))); glm::ivec2 C0(glm::log2(glm::vec2(16.f))); glm::ivec3 D0(glm::log2(glm::vec3(16.f))); glm::ivec4 E0(glm::log2(glm::vec4(16.f))); int A1 = glm::log2(int(16)); glm::ivec1 B1 = glm::log2(glm::ivec1(16)); glm::ivec2 C1 = glm::log2(glm::ivec2(16)); glm::ivec3 D1 = glm::log2(glm::ivec3(16)); glm::ivec4 E1 = glm::log2(glm::ivec4(16)); Error += A0 == A1 ? 0 : 1; Error += glm::all(glm::equal(B0, B1)) ? 0 : 1; Error += glm::all(glm::equal(C0, C1)) ? 0 : 1; Error += glm::all(glm::equal(D0, D1)) ? 0 : 1; Error += glm::all(glm::equal(E0, E1)) ? 0 : 1; glm::uint64 A2 = glm::log2(glm::uint64(16)); glm::u64vec1 B2 = glm::log2(glm::u64vec1(16)); glm::u64vec2 C2 = glm::log2(glm::u64vec2(16)); glm::u64vec3 D2 = glm::log2(glm::u64vec3(16)); glm::u64vec4 E2 = glm::log2(glm::u64vec4(16)); Error += A2 == glm::uint64(4) ? 0 : 1; Error += glm::all(glm::equal(B2, glm::u64vec1(4))) ? 0 : 1; Error += glm::all(glm::equal(C2, glm::u64vec2(4))) ? 0 : 1; Error += glm::all(glm::equal(D2, glm::u64vec3(4))) ? 0 : 1; Error += glm::all(glm::equal(E2, glm::u64vec4(4))) ? 0 : 1; return Error; } int perf() { int Error = 0; std::size_t const Count(100000000); { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(int i = 0; i < static_cast(Count); ++i) Result[i] = glm::log2(static_cast(i)); std::clock_t End = clock(); printf("glm::log2: %d clocks\n", End - Begin); } { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(int i = 0; i < static_cast(Count); ++i) Result[i] = glm::log2(glm::ivec4(i)); std::clock_t End = clock(); printf("glm::log2: %d clocks\n", End - Begin); } # if GLM_HAS_BITSCAN_WINDOWS { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(std::size_t i = 0; i < Count; ++i) { glm::tvec4 Tmp(glm::uninitialize); _BitScanReverse(&Tmp.x, i); _BitScanReverse(&Tmp.y, i); _BitScanReverse(&Tmp.z, i); _BitScanReverse(&Tmp.w, i); Result[i] = glm::ivec4(Tmp); } std::clock_t End = clock(); printf("glm::log2 inlined: %d clocks\n", End - Begin); } { std::vector > Result; Result.resize(Count); std::clock_t Begin = clock(); for(std::size_t i = 0; i < Count; ++i) { _BitScanReverse(&Result[i].x, i); _BitScanReverse(&Result[i].y, i); _BitScanReverse(&Result[i].z, i); _BitScanReverse(&Result[i].w, i); } std::clock_t End = clock(); printf("glm::log2 inlined no cast: %d clocks\n", End - Begin); } { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(std::size_t i = 0; i < Count; ++i) { _BitScanReverse(reinterpret_cast(&Result[i].x), i); _BitScanReverse(reinterpret_cast(&Result[i].y), i); _BitScanReverse(reinterpret_cast(&Result[i].z), i); _BitScanReverse(reinterpret_cast(&Result[i].w), i); } std::clock_t End = clock(); printf("glm::log2 reinterpret: %d clocks\n", End - Begin); } # endif//GLM_HAS_BITSCAN_WINDOWS { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(std::size_t i = 0; i < Count; ++i) Result[i] = glm::log2(static_cast(i)); std::clock_t End = clock(); printf("glm::log2: %d clocks\n", End - Begin); } { std::vector Result; Result.resize(Count); std::clock_t Begin = clock(); for(int i = 0; i < static_cast(Count); ++i) Result[i] = glm::log2(glm::vec4(i)); std::clock_t End = clock(); printf("glm::log2: %d clocks\n", End - Begin); } return Error; } }//namespace log2_ namespace mod_ { int test() { int Error(0); { float A(3.0); float B(2.0f); float C = glm::mod(A, B); Error += glm::abs(C - 1.0f) < 0.00001f ? 0 : 1; } { glm::vec4 A(3.0); float B(2.0f); glm::vec4 C = glm::mod(A, B); Error += glm::all(glm::epsilonEqual(C, glm::vec4(1.0f), 0.00001f)) ? 0 : 1; } { glm::vec4 A(3.0); glm::vec4 B(2.0f); glm::vec4 C = glm::mod(A, B); Error += glm::all(glm::epsilonEqual(C, glm::vec4(1.0f), 0.00001f)) ? 0 : 1; } { int A(3); int B(2); int C = glm::mod(A, B); Error += C == 1 ? 0 : 1; } { glm::ivec4 A(3); int B(2); glm::ivec4 C = glm::mod(A, B); Error += glm::all(glm::equal(C, glm::ivec4(1))) ? 0 : 1; } { glm::ivec4 A(3); glm::ivec4 B(2); glm::ivec4 C = glm::mod(A, B); Error += glm::all(glm::equal(C, glm::ivec4(1))) ? 0 : 1; } return Error; } }//namespace mod_ int main() { int Error(0); Error += ::log2_::test(); Error += ::mod_::test(); # ifdef NDEBUG Error += ::log2_::perf(); # endif//NDEBUG return Error; }