#define GLM_ENABLE_EXPERIMENTAL #include #include #include #include #include #include #include int test_quat_fastMix() { int Error = 0; glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1)); glm::quat B = glm::angleAxis(glm::pi() * 0.5f, glm::vec3(0, 0, 1)); glm::quat C = glm::fastMix(A, B, 0.5f); glm::quat D = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1; return Error; } int test_quat_shortMix() { int Error(0); glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1)); glm::quat B = glm::angleAxis(glm::pi() * 0.5f, glm::vec3(0, 0, 1)); glm::quat C = glm::shortMix(A, B, 0.5f); glm::quat D = glm::angleAxis(glm::pi() * 0.25f, glm::vec3(0, 0, 1)); Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1; Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1; return Error; } int test_orientation() { int Error = 0; { glm::quat q(1.0f, 0.0f, 0.0f, 1.0f); float p = glm::roll(q); Error += glm::epsilonEqual(p, glm::pi() * 0.5f, 0.0001f) ? 0 : 1; } { glm::quat q(1.0f, 0.0f, 0.0f, 1.0f); float p = glm::pitch(q); Error += glm::epsilonEqual(p, 0.f, 0.0001f) ? 0 : 1; } { glm::quat q(1.0f, 0.0f, 0.0f, 1.0f); float p = glm::yaw(q); Error += glm::epsilonEqual(p, 0.f, 0.0001f) ? 0 : 1; } return Error; } int test_rotation() { int Error(0); glm::vec3 v(1, 0, 0); glm::vec3 u(0, 1, 0); glm::quat Rotation = glm::rotation(v, u); float Angle = glm::angle(Rotation); Error += glm::abs(Angle - glm::pi() * 0.5f) < glm::epsilon() ? 0 : 1; return Error; } int test_log() { int Error(0); glm::quat q; glm::quat p = glm::log(q); glm::quat r = glm::exp(p); return Error; } int test_quat_lookAt() { int Error(0); glm::vec3 eye(0.0f); glm::vec3 center(1.1f, -2.0f, 3.1416f); glm::vec3 up(-0.17f, 7.23f, -1.744f); // Test left-handed implementation glm::quat test_quat_LH = glm::quatLookAtLH(glm::normalize(center - eye), up); glm::quat test_mat_LH = glm::conjugate(glm::quat_cast(glm::lookAtLH(eye, center, up))); Error += static_cast(glm::abs(glm::length(test_quat_LH) - 1.0f) > glm::epsilon()); Error += static_cast(glm::min(glm::length(test_quat_LH + (-test_mat_LH)), glm::length(test_quat_LH + test_mat_RH)) > glm::epsilon()); // Test right-handed implementation glm::quat test_quat_RH = glm::quatLookAtRH(glm::normalize(center - eye), up); glm::quat test_mat_RH = glm::conjugate(glm::quat_cast(glm::lookAtRH(eye, center, up))); Error += static_cast(glm::abs(glm::length(test_quat_RH) - 1.0f) > glm::epsilon()); Error += static_cast(glm::min(glm::length(test_quat_RH + (-test_mat_RH)), glm::length(test_quat_RH + test_mat_RH)) > glm::epsilon()); return Error; } int main() { int Error = 0; Error += test_log(); Error += test_rotation(); Error += test_orientation(); Error += test_quat_fastMix(); Error += test_quat_shortMix(); Error += test_quat_lookAt(); return Error; }