#define GLM_ENABLE_EXPERIMENTAL #include #include #include #include #include #include static int test_axisAngle() { int Error = 0; glm::mat4 m1(-0.9946f, 0.0f, -0.104531f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.104531f, 0.0f, -0.9946f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); glm::mat4 m2(-0.992624f, 0.0f, -0.121874f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.121874f, 0.0f, -0.992624f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); glm::mat4 const m1rot = glm::extractMatrixRotation(m1); glm::mat4 const dltRotation = m2 * glm::transpose(m1rot); glm::vec3 dltAxis(0.0f); float dltAngle = 0.0f; glm::axisAngle(dltRotation, dltAxis, dltAngle); std::cout << "dltAxis: (" << dltAxis.x << ", " << dltAxis.y << ", " << dltAxis.z << "), dltAngle: " << dltAngle << std::endl; glm::quat q = glm::quat_cast(dltRotation); std::cout << "q: (" << q.x << ", " << q.y << ", " << q.z << ", " << q.w << ")" << std::endl; float yaw = glm::yaw(q); std::cout << "Yaw: " << yaw << std::endl; return Error; } template static int testForAxisAngle(glm::vec<3, T, glm::defaultp> const axisTrue, T const angleTrue) { T const eps = std::sqrt(std::numeric_limits::epsilon()); glm::mat<4, 4, T, glm::defaultp> const matTrue = glm::axisAngleMatrix(axisTrue, angleTrue); glm::vec<3, T, glm::defaultp> axis; T angle; glm::axisAngle(matTrue, axis, angle); glm::mat<4, 4, T, glm::defaultp> const matRebuilt = glm::axisAngleMatrix(axis, angle); glm::mat<4, 4, T, glm::defaultp> const errMat = matTrue - matRebuilt; T const maxErr = glm::compMax(glm::vec<4, T, glm::defaultp>( glm::compMax(glm::abs(errMat[0])), glm::compMax(glm::abs(errMat[1])), glm::compMax(glm::abs(errMat[2])), glm::compMax(glm::abs(errMat[3])) )); return maxErr < eps ? 0 : 1; } static int test_axisAngle2() { int Error = 0; Error += testForAxisAngle(glm::vec3(0.0f, 1.0f, 0.0f), 0.0f); Error += testForAxisAngle(glm::vec3(0.358f, 0.0716f, 0.9309f), 0.00001f); Error += testForAxisAngle(glm::vec3(1.0f, 0.0f, 0.0f), 0.0001f); Error += testForAxisAngle(glm::vec3(0.0f, 0.0f, 1.0f), 0.001f); Error += testForAxisAngle(glm::vec3(0.0f, 0.0f, 1.0f), 0.001f); Error += testForAxisAngle(glm::vec3(0.0f, 1.0f, 0.0f), 0.005f); Error += testForAxisAngle(glm::vec3(0.0f, 0.0f, 1.0f), 0.005f); Error += testForAxisAngle(glm::vec3(0.358f, 0.0716f, 0.9309f), 0.03f); Error += testForAxisAngle(glm::vec3(0.358f, 0.0716f, 0.9309f), 0.0003f); Error += testForAxisAngle(glm::vec3(0.0f, 0.0f, 1.0f), 0.01f); Error += testForAxisAngle(glm::dvec3(0.0f, 1.0f, 0.0f), 0.00005); Error += testForAxisAngle(glm::dvec3(-1.0f, 0.0f, 0.0f), 0.000001); Error += testForAxisAngle(glm::dvec3(0.7071f, 0.7071f, 0.0f), 0.5); Error += testForAxisAngle(glm::dvec3(0.7071f, 0.0f, 0.7071f), 0.0002); Error += testForAxisAngle(glm::dvec3(0.7071f, 0.0f, 0.7071f), 0.00002); Error += testForAxisAngle(glm::dvec3(0.7071f, 0.0f, 0.7071f), 0.000002); Error += testForAxisAngle(glm::dvec3(0.7071f, 0.0f, 0.7071f), 0.0000002); Error += testForAxisAngle(glm::vec3(0.0f, 0.7071f, 0.7071f), 1.3f); Error += testForAxisAngle(glm::vec3(0.0f, 0.7071f, 0.7071f), 6.3f); Error += testForAxisAngle(glm::vec3(1.0f, 0.0f, 0.0f), -0.23456f); Error += testForAxisAngle(glm::vec3(1.0f, 0.0f, 0.0f), glm::pi()); Error += testForAxisAngle(glm::vec3(0.0f, 1.0f, 0.0f), -glm::pi()); Error += testForAxisAngle(glm::vec3(0.358f, 0.0716f, 0.9309f), -glm::pi()); Error += testForAxisAngle(glm::vec3(1.0f, 0.0f, 0.0f), glm::pi() + 2e-6f); Error += testForAxisAngle(glm::vec3(1.0f, 0.0f, 0.0f), glm::pi() + 1e-4f); Error += testForAxisAngle(glm::vec3(0.0f, 1.0f, 0.0f), -glm::pi() + 1e-3f); Error += testForAxisAngle(glm::vec3(0.358f, 0.0716f, 0.9309f), -glm::pi() + 5e-3f); return Error; } static int test_rotate() { glm::mat4 m2(1.0); float myAngle = 1.0f; m2 = glm::rotate(m2, myAngle, glm::vec3(1.0f, 0.0f, 0.0f)); glm::vec3 m2Axis; float m2Angle; glm::axisAngle(m2, m2Axis, m2Angle); return 0; } int main() { int Error = 0; Error += test_axisAngle(); Error += test_axisAngle2(); Error += test_rotate(); return Error; }