glm/test/gtc/gtc_round.cpp
2024-02-28 11:45:24 +01:00

468 lines
9.2 KiB
C++

#include <glm/gtc/round.hpp>
#include <glm/gtc/type_precision.hpp>
#include <glm/gtc/vec1.hpp>
#include <glm/gtc/epsilon.hpp>
#include <vector>
#include <ctime>
#include <cstdio>
namespace isPowerOfTwo
{
#if GLM_COMPILER & GLM_COMPILER_CLANG
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wpadded"
#endif
template<typename genType>
struct type
{
genType Value;
bool Return;
};
#if GLM_COMPILER & GLM_COMPILER_CLANG
# pragma clang diagnostic pop
#endif
static int test_int16()
{
type<glm::int16> const Data[] =
{
{0x0001, true},
{0x0002, true},
{0x0004, true},
{0x0080, true},
{0x0000, true},
{0x0003, false}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
static int test_uint16()
{
type<glm::uint16> const Data[] =
{
{0x0001, true},
{0x0002, true},
{0x0004, true},
{0x0000, true},
{0x0000, true},
{0x0003, false}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
static int test_int32()
{
type<int> const Data[] =
{
{0x00000001, true},
{0x00000002, true},
{0x00000004, true},
{0x0000000f, false},
{0x00000000, true},
{0x00000003, false}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
glm::bvec1 Result = glm::isPowerOfTwo(glm::ivec1(Data[i].Value));
Error += glm::all(glm::equal(glm::bvec1(Data[i].Return), Result)) ? 0 : 1;
}
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
glm::bvec2 Result = glm::isPowerOfTwo(glm::ivec2(Data[i].Value));
Error += glm::all(glm::equal(glm::bvec2(Data[i].Return), Result)) ? 0 : 1;
}
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
glm::bvec3 Result = glm::isPowerOfTwo(glm::ivec3(Data[i].Value));
Error += glm::all(glm::equal(glm::bvec3(Data[i].Return), Result)) ? 0 : 1;
}
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
glm::bvec4 Result = glm::isPowerOfTwo(glm::ivec4(Data[i].Value));
Error += glm::all(glm::equal(glm::bvec4(Data[i].Return), Result)) ? 0 : 1;
}
return Error;
}
static int test_uint32()
{
type<glm::uint> const Data[] =
{
{0x00000001, true},
{0x00000002, true},
{0x00000004, true},
{0x80000000, true},
{0x00000000, true},
{0x00000003, false}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
static int test()
{
int Error(0);
Error += test_int16();
Error += test_uint16();
Error += test_int32();
Error += test_uint32();
return Error;
}
}//isPowerOfTwo
namespace ceilPowerOfTwo_advanced
{
template<typename genIUType>
GLM_FUNC_QUALIFIER
static genIUType highestBitValue(genIUType Value)
{
genIUType tmp = Value;
genIUType result = genIUType(0);
while(tmp)
{
result = (tmp & (~tmp + 1)); // grab lowest bit
tmp &= ~result; // clear lowest bit
}
return result;
}
template<typename genType>
GLM_FUNC_QUALIFIER
static genType ceilPowerOfTwo_loop(genType value)
{
return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
}
template<typename genType>
struct type
{
genType Value;
genType Return;
};
static int test_int32()
{
type<glm::int32> const Data[] =
{
{0x0000ffff, 0x00010000},
{-3, -4},
{-8, -8},
{0x00000001, 0x00000001},
{0x00000002, 0x00000002},
{0x00000004, 0x00000004},
{0x00000007, 0x00000008},
{0x0000fff0, 0x00010000},
{0x0000f000, 0x00010000},
{0x08000000, 0x08000000},
{0x00000000, 0x00000000},
{0x00000003, 0x00000004}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i)
{
glm::int32 Result = glm::ceilPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
static int test_uint32()
{
type<glm::uint32> const Data[] =
{
{0x00000001, 0x00000001},
{0x00000002, 0x00000002},
{0x00000004, 0x00000004},
{0x00000007, 0x00000008},
{0x0000ffff, 0x00010000},
{0x0000fff0, 0x00010000},
{0x0000f000, 0x00010000},
{0x80000000, 0x80000000},
{0x00000000, 0x00000000},
{0x00000003, 0x00000004}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i)
{
glm::uint32 Result = glm::ceilPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
static int perf()
{
int Error(0);
std::vector<glm::uint> v;
v.resize(10000);
std::clock_t Timestramp0 = std::clock();
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
v[i] = ceilPowerOfTwo_loop(i);
std::clock_t Timestramp1 = std::clock();
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
v[i] = glm::ceilPowerOfTwo(i);
std::clock_t Timestramp2 = std::clock();
std::printf("ceilPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0));
std::printf("glm::ceilPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1));
return Error;
}
static int test()
{
int Error(0);
Error += test_int32();
Error += test_uint32();
return Error;
}
}//namespace ceilPowerOfTwo_advanced
namespace roundPowerOfTwo
{
static int test()
{
int Error = 0;
glm::uint32 const A = glm::roundPowerOfTwo(7u);
Error += A == 8u ? 0 : 1;
glm::uint32 const B = glm::roundPowerOfTwo(15u);
Error += B == 16u ? 0 : 1;
glm::uint32 const C = glm::roundPowerOfTwo(31u);
Error += C == 32u ? 0 : 1;
glm::uint32 const D = glm::roundPowerOfTwo(9u);
Error += D == 8u ? 0 : 1;
glm::uint32 const E = glm::roundPowerOfTwo(17u);
Error += E == 16u ? 0 : 1;
glm::uint32 const F = glm::roundPowerOfTwo(33u);
Error += F == 32u ? 0 : 1;
return Error;
}
}//namespace roundPowerOfTwo
namespace floorPowerOfTwo
{
static int test()
{
int Error = 0;
glm::uint32 const A = glm::floorPowerOfTwo(7u);
Error += A == 4u ? 0 : 1;
glm::uint32 const B = glm::floorPowerOfTwo(15u);
Error += B == 8u ? 0 : 1;
glm::uint32 const C = glm::floorPowerOfTwo(31u);
Error += C == 16u ? 0 : 1;
return Error;
}
}//namespace floorPowerOfTwo
namespace ceilPowerOfTwo
{
static int test()
{
int Error = 0;
glm::uint32 const A = glm::ceilPowerOfTwo(7u);
Error += A == 8u ? 0 : 1;
glm::uint32 const B = glm::ceilPowerOfTwo(15u);
Error += B == 16u ? 0 : 1;
glm::uint32 const C = glm::ceilPowerOfTwo(31u);
Error += C == 32u ? 0 : 1;
return Error;
}
}//namespace ceilPowerOfTwo
namespace floorMultiple
{
template<typename genType>
struct type
{
genType Source;
genType Multiple;
genType Return;
genType Epsilon;
};
static int test_float()
{
type<glm::float64> const Data[] =
{
{3.4, 0.3, 3.3, 0.0001},
{-1.4, 0.3, -1.5, 0.0001},
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i)
{
glm::float64 Result = glm::floorMultiple(Data[i].Source, Data[i].Multiple);
Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1;
}
return Error;
}
static int test()
{
int Error(0);
Error += test_float();
return Error;
}
}//namespace floorMultiple
namespace ceilMultiple
{
template<typename genType>
struct type
{
genType Source;
genType Multiple;
genType Return;
genType Epsilon;
};
static int test_float()
{
type<glm::float64> const Data[] =
{
{3.4, 0.3, 3.6, 0.0001},
{-1.4, 0.3, -1.2, 0.0001},
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i)
{
glm::float64 Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple);
Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1;
}
return Error;
}
static int test_int()
{
type<int> const Data[] =
{
{3, 4, 4, 0},
{7, 4, 8, 0},
{5, 4, 8, 0},
{1, 4, 4, 0},
{1, 3, 3, 0},
{4, 3, 6, 0},
{4, 1, 4, 0},
{1, 1, 1, 0},
{7, 1, 7, 0},
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
int Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
static int test()
{
int Error(0);
Error += test_int();
Error += test_float();
return Error;
}
}//namespace ceilMultiple
int main()
{
int Error(0);
Error += isPowerOfTwo::test();
Error += floorPowerOfTwo::test();
Error += roundPowerOfTwo::test();
Error += ceilPowerOfTwo::test();
Error += ceilPowerOfTwo_advanced::test();
Error += ceilPowerOfTwo_advanced::perf();
Error += floorMultiple::test();
Error += ceilMultiple::test();
return Error;
}