mirror of
https://github.com/g-truc/glm.git
synced 2024-11-17 15:24:35 +00:00
540 lines
22 KiB
C++
540 lines
22 KiB
C++
// Code sample from Filippo Ramaciotti
|
|
|
|
#define GLM_ENABLE_EXPERIMENTAL
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
#include <glm/gtx/matrix_cross_product.hpp>
|
|
#include <glm/gtx/matrix_operation.hpp>
|
|
#include <glm/gtc/epsilon.hpp>
|
|
#include <glm/gtx/string_cast.hpp>
|
|
#include <glm/gtx/euler_angles.hpp>
|
|
#include <cstdio>
|
|
#include <vector>
|
|
#include <utility>
|
|
|
|
namespace test_eulerAngleX
|
|
{
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
float const Angle(glm::pi<float>() * 0.5f);
|
|
glm::vec3 const X(1.0f, 0.0f, 0.0f);
|
|
|
|
glm::vec4 const Y(0.0f, 1.0f, 0.0f, 1.0f);
|
|
glm::vec4 const Y1 = glm::rotate(glm::mat4(1.0f), Angle, X) * Y;
|
|
glm::vec4 const Y2 = glm::eulerAngleX(Angle) * Y;
|
|
glm::vec4 const Y3 = glm::eulerAngleXY(Angle, 0.0f) * Y;
|
|
glm::vec4 const Y4 = glm::eulerAngleYX(0.0f, Angle) * Y;
|
|
glm::vec4 const Y5 = glm::eulerAngleXZ(Angle, 0.0f) * Y;
|
|
glm::vec4 const Y6 = glm::eulerAngleZX(0.0f, Angle) * Y;
|
|
glm::vec4 const Y7 = glm::eulerAngleYXZ(0.0f, Angle, 0.0f) * Y;
|
|
Error += glm::all(glm::epsilonEqual(Y1, Y2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Y1, Y3, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Y1, Y4, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Y1, Y5, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Y1, Y6, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Y1, Y7, 0.00001f)) ? 0 : 1;
|
|
|
|
glm::vec4 const Z(0.0f, 0.0f, 1.0f, 1.0f);
|
|
glm::vec4 const Z1 = glm::rotate(glm::mat4(1.0f), Angle, X) * Z;
|
|
glm::vec4 const Z2 = glm::eulerAngleX(Angle) * Z;
|
|
glm::vec4 const Z3 = glm::eulerAngleXY(Angle, 0.0f) * Z;
|
|
glm::vec4 const Z4 = glm::eulerAngleYX(0.0f, Angle) * Z;
|
|
glm::vec4 const Z5 = glm::eulerAngleXZ(Angle, 0.0f) * Z;
|
|
glm::vec4 const Z6 = glm::eulerAngleZX(0.0f, Angle) * Z;
|
|
glm::vec4 const Z7 = glm::eulerAngleYXZ(0.0f, Angle, 0.0f) * Z;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z3, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z4, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z5, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z6, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z7, 0.00001f)) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_eulerAngleX
|
|
|
|
namespace test_eulerAngleY
|
|
{
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
float const Angle(glm::pi<float>() * 0.5f);
|
|
glm::vec3 const Y(0.0f, 1.0f, 0.0f);
|
|
|
|
glm::vec4 const X(1.0f, 0.0f, 0.0f, 1.0f);
|
|
glm::vec4 const X1 = glm::rotate(glm::mat4(1.0f), Angle, Y) * X;
|
|
glm::vec4 const X2 = glm::eulerAngleY(Angle) * X;
|
|
glm::vec4 const X3 = glm::eulerAngleYX(Angle, 0.0f) * X;
|
|
glm::vec4 const X4 = glm::eulerAngleXY(0.0f, Angle) * X;
|
|
glm::vec4 const X5 = glm::eulerAngleYZ(Angle, 0.0f) * X;
|
|
glm::vec4 const X6 = glm::eulerAngleZY(0.0f, Angle) * X;
|
|
glm::vec4 const X7 = glm::eulerAngleYXZ(Angle, 0.0f, 0.0f) * X;
|
|
Error += glm::all(glm::epsilonEqual(X1, X2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X3, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X4, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X5, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X6, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X7, 0.00001f)) ? 0 : 1;
|
|
|
|
glm::vec4 const Z(0.0f, 0.0f, 1.0f, 1.0f);
|
|
glm::vec4 const Z1 = glm::eulerAngleY(Angle) * Z;
|
|
glm::vec4 const Z2 = glm::rotate(glm::mat4(1.0f), Angle, Y) * Z;
|
|
glm::vec4 const Z3 = glm::eulerAngleYX(Angle, 0.0f) * Z;
|
|
glm::vec4 const Z4 = glm::eulerAngleXY(0.0f, Angle) * Z;
|
|
glm::vec4 const Z5 = glm::eulerAngleYZ(Angle, 0.0f) * Z;
|
|
glm::vec4 const Z6 = glm::eulerAngleZY(0.0f, Angle) * Z;
|
|
glm::vec4 const Z7 = glm::eulerAngleYXZ(Angle, 0.0f, 0.0f) * Z;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z3, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z4, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z5, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z6, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z7, 0.00001f)) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_eulerAngleY
|
|
|
|
namespace test_eulerAngleZ
|
|
{
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
float const Angle(glm::pi<float>() * 0.5f);
|
|
glm::vec3 const Z(0.0f, 0.0f, 1.0f);
|
|
|
|
glm::vec4 const X(1.0f, 0.0f, 0.0f, 1.0f);
|
|
glm::vec4 const X1 = glm::rotate(glm::mat4(1.0f), Angle, Z) * X;
|
|
glm::vec4 const X2 = glm::eulerAngleZ(Angle) * X;
|
|
glm::vec4 const X3 = glm::eulerAngleZX(Angle, 0.0f) * X;
|
|
glm::vec4 const X4 = glm::eulerAngleXZ(0.0f, Angle) * X;
|
|
glm::vec4 const X5 = glm::eulerAngleZY(Angle, 0.0f) * X;
|
|
glm::vec4 const X6 = glm::eulerAngleYZ(0.0f, Angle) * X;
|
|
glm::vec4 const X7 = glm::eulerAngleYXZ(0.0f, 0.0f, Angle) * X;
|
|
Error += glm::all(glm::epsilonEqual(X1, X2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X3, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X4, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X5, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X6, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(X1, X7, 0.00001f)) ? 0 : 1;
|
|
|
|
glm::vec4 const Y(1.0f, 0.0f, 0.0f, 1.0f);
|
|
glm::vec4 const Z1 = glm::rotate(glm::mat4(1.0f), Angle, Z) * Y;
|
|
glm::vec4 const Z2 = glm::eulerAngleZ(Angle) * Y;
|
|
glm::vec4 const Z3 = glm::eulerAngleZX(Angle, 0.0f) * Y;
|
|
glm::vec4 const Z4 = glm::eulerAngleXZ(0.0f, Angle) * Y;
|
|
glm::vec4 const Z5 = glm::eulerAngleZY(Angle, 0.0f) * Y;
|
|
glm::vec4 const Z6 = glm::eulerAngleYZ(0.0f, Angle) * Y;
|
|
glm::vec4 const Z7 = glm::eulerAngleYXZ(0.0f, 0.0f, Angle) * Y;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z3, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z4, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z5, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z6, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(Z1, Z7, 0.00001f)) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_eulerAngleZ
|
|
|
|
namespace test_derivedEulerAngles
|
|
{
|
|
bool epsilonEqual(glm::mat4 const& mat1, glm::mat4 const& mat2, glm::mat4::value_type const& epsilon)
|
|
{
|
|
return glm::all(glm::epsilonEqual(mat1[0], mat2[0], epsilon)) ?
|
|
(
|
|
glm::all(glm::epsilonEqual(mat1[1], mat2[1], epsilon)) ?
|
|
(
|
|
glm::all(glm::epsilonEqual(mat1[2], mat2[2], epsilon)) ?
|
|
(
|
|
glm::all(glm::epsilonEqual(mat1[3], mat2[3], epsilon)) ? true : false
|
|
) : false
|
|
) : false
|
|
) : false;
|
|
}
|
|
|
|
template<typename RotationFunc, typename TestDerivedFunc>
|
|
int test(RotationFunc rotationFunc, TestDerivedFunc testDerivedFunc, const glm::vec3& basis)
|
|
{
|
|
int Error = 0;
|
|
|
|
typedef glm::vec3::value_type value;
|
|
value const zeroAngle(0.0f);
|
|
value const Angle(glm::pi<float>() * 0.75f);
|
|
value const negativeAngle(-Angle);
|
|
value const zeroAngleVelocity(0.0f);
|
|
value const AngleVelocity(glm::pi<float>() * 0.27f);
|
|
value const negativeAngleVelocity(-AngleVelocity);
|
|
|
|
typedef std::pair<value,value> AngleAndAngleVelocity;
|
|
std::vector<AngleAndAngleVelocity> testPairs;
|
|
testPairs.push_back(AngleAndAngleVelocity(zeroAngle, zeroAngleVelocity));
|
|
testPairs.push_back(AngleAndAngleVelocity(zeroAngle, AngleVelocity));
|
|
testPairs.push_back(AngleAndAngleVelocity(zeroAngle, negativeAngleVelocity));
|
|
testPairs.push_back(AngleAndAngleVelocity(Angle, zeroAngleVelocity));
|
|
testPairs.push_back(AngleAndAngleVelocity(Angle, AngleVelocity));
|
|
testPairs.push_back(AngleAndAngleVelocity(Angle, negativeAngleVelocity));
|
|
testPairs.push_back(AngleAndAngleVelocity(negativeAngle, zeroAngleVelocity));
|
|
testPairs.push_back(AngleAndAngleVelocity(negativeAngle, AngleVelocity));
|
|
testPairs.push_back(AngleAndAngleVelocity(negativeAngle, negativeAngleVelocity));
|
|
|
|
for (size_t i = 0, size = testPairs.size(); i < size; ++i)
|
|
{
|
|
AngleAndAngleVelocity const& pair = testPairs.at(i);
|
|
|
|
glm::mat4 const W = glm::matrixCross4(basis * pair.second);
|
|
glm::mat4 const rotMt = glm::transpose(rotationFunc(pair.first));
|
|
glm::mat4 const derivedRotM = testDerivedFunc(pair.first, pair.second);
|
|
|
|
Error += epsilonEqual(W, derivedRotM * rotMt, 0.00001f) ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_derivedEulerAngles
|
|
|
|
namespace test_eulerAngleXY
|
|
{
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
glm::vec4 const V(1.0f);
|
|
|
|
float const AngleX(glm::pi<float>() * 0.5f);
|
|
float const AngleY(glm::pi<float>() * 0.25f);
|
|
|
|
glm::vec3 const axisX(1.0f, 0.0f, 0.0f);
|
|
glm::vec3 const axisY(0.0f, 1.0f, 0.0f);
|
|
|
|
glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleX, axisX) * glm::rotate(glm::mat4(1.0f), AngleY, axisY)) * V;
|
|
glm::vec4 const V2 = glm::eulerAngleXY(AngleX, AngleY) * V;
|
|
glm::vec4 const V3 = glm::eulerAngleX(AngleX) * glm::eulerAngleY(AngleY) * V;
|
|
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_eulerAngleXY
|
|
|
|
namespace test_eulerAngleYX
|
|
{
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
glm::vec4 const V(1.0f);
|
|
|
|
float const AngleX(glm::pi<float>() * 0.5f);
|
|
float const AngleY(glm::pi<float>() * 0.25f);
|
|
|
|
glm::vec3 const axisX(1.0f, 0.0f, 0.0f);
|
|
glm::vec3 const axisY(0.0f, 1.0f, 0.0f);
|
|
|
|
glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleY, axisY) * glm::rotate(glm::mat4(1.0f), AngleX, axisX)) * V;
|
|
glm::vec4 const V2 = glm::eulerAngleYX(AngleY, AngleX) * V;
|
|
glm::vec4 const V3 = glm::eulerAngleY(AngleY) * glm::eulerAngleX(AngleX) * V;
|
|
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_eulerAngleYX
|
|
|
|
namespace test_eulerAngleXZ
|
|
{
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
glm::vec4 const V(1.0f);
|
|
|
|
float const AngleX(glm::pi<float>() * 0.5f);
|
|
float const AngleZ(glm::pi<float>() * 0.25f);
|
|
|
|
glm::vec3 const axisX(1.0f, 0.0f, 0.0f);
|
|
glm::vec3 const axisZ(0.0f, 0.0f, 1.0f);
|
|
|
|
glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleX, axisX) * glm::rotate(glm::mat4(1.0f), AngleZ, axisZ)) * V;
|
|
glm::vec4 const V2 = glm::eulerAngleXZ(AngleX, AngleZ) * V;
|
|
glm::vec4 const V3 = glm::eulerAngleX(AngleX) * glm::eulerAngleZ(AngleZ) * V;
|
|
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_eulerAngleXZ
|
|
|
|
namespace test_eulerAngleZX
|
|
{
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
glm::vec4 const V(1.0f);
|
|
|
|
float const AngleX(glm::pi<float>() * 0.5f);
|
|
float const AngleZ(glm::pi<float>() * 0.25f);
|
|
|
|
glm::vec3 const axisX(1.0f, 0.0f, 0.0f);
|
|
glm::vec3 const axisZ(0.0f, 0.0f, 1.0f);
|
|
|
|
glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleZ, axisZ) * glm::rotate(glm::mat4(1.0f), AngleX, axisX)) * V;
|
|
glm::vec4 const V2 = glm::eulerAngleZX(AngleZ, AngleX) * V;
|
|
glm::vec4 const V3 = glm::eulerAngleZ(AngleZ) * glm::eulerAngleX(AngleX) * V;
|
|
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_eulerAngleZX
|
|
|
|
namespace test_eulerAngleYZ
|
|
{
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
glm::vec4 const V(1.0f);
|
|
|
|
float const AngleY(glm::pi<float>() * 0.5f);
|
|
float const AngleZ(glm::pi<float>() * 0.25f);
|
|
|
|
glm::vec3 const axisX(1.0f, 0.0f, 0.0f);
|
|
glm::vec3 const axisY(0.0f, 1.0f, 0.0f);
|
|
glm::vec3 const axisZ(0.0f, 0.0f, 1.0f);
|
|
|
|
glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleY, axisY) * glm::rotate(glm::mat4(1.0f), AngleZ, axisZ)) * V;
|
|
glm::vec4 const V2 = glm::eulerAngleYZ(AngleY, AngleZ) * V;
|
|
glm::vec4 const V3 = glm::eulerAngleY(AngleY) * glm::eulerAngleZ(AngleZ) * V;
|
|
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_eulerAngleYZ
|
|
|
|
namespace test_eulerAngleZY
|
|
{
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
glm::vec4 const V(1.0f);
|
|
|
|
float const AngleY(glm::pi<float>() * 0.5f);
|
|
float const AngleZ(glm::pi<float>() * 0.25f);
|
|
|
|
glm::vec3 const axisX(1.0f, 0.0f, 0.0f);
|
|
glm::vec3 const axisY(0.0f, 1.0f, 0.0f);
|
|
glm::vec3 const axisZ(0.0f, 0.0f, 1.0f);
|
|
|
|
glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleZ, axisZ) * glm::rotate(glm::mat4(1.0f), AngleY, axisY)) * V;
|
|
glm::vec4 const V2 = glm::eulerAngleZY(AngleZ, AngleY) * V;
|
|
glm::vec4 const V3 = glm::eulerAngleZ(AngleZ) * glm::eulerAngleY(AngleY) * V;
|
|
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
|
Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_eulerAngleZY
|
|
|
|
namespace test_eulerAngleYXZ
|
|
{
|
|
int test()
|
|
{
|
|
glm::f32 first = 1.046f;
|
|
glm::f32 second = 0.52f;
|
|
glm::f32 third = -0.785f;
|
|
|
|
glm::fmat4 rotationEuler = glm::eulerAngleYXZ(first, second, third);
|
|
|
|
glm::fmat4 rotationInvertedY = glm::eulerAngleY(-1.f*first) * glm::eulerAngleX(second) * glm::eulerAngleZ(third);
|
|
glm::fmat4 rotationDumb = glm::fmat4();
|
|
rotationDumb = glm::rotate(rotationDumb, first, glm::fvec3(0,1,0));
|
|
rotationDumb = glm::rotate(rotationDumb, second, glm::fvec3(1,0,0));
|
|
rotationDumb = glm::rotate(rotationDumb, third, glm::fvec3(0,0,1));
|
|
|
|
std::printf("%s\n", glm::to_string(glm::fmat3(rotationEuler)).c_str());
|
|
std::printf("%s\n", glm::to_string(glm::fmat3(rotationDumb)).c_str());
|
|
std::printf("%s\n", glm::to_string(glm::fmat3(rotationInvertedY)).c_str());
|
|
|
|
std::printf("\nRESIDUAL\n");
|
|
std::printf("%s\n", glm::to_string(glm::fmat3(rotationEuler-(rotationDumb))).c_str());
|
|
std::printf("%s\n", glm::to_string(glm::fmat3(rotationEuler-(rotationInvertedY))).c_str());
|
|
|
|
return 0;
|
|
}
|
|
}//namespace eulerAngleYXZ
|
|
|
|
namespace test_eulerAngles
|
|
{
|
|
template<typename TestRotationFunc>
|
|
int test(TestRotationFunc testRotationFunc, glm::vec3 const& I, glm::vec3 const& J, glm::vec3 const& K)
|
|
{
|
|
int Error = 0;
|
|
|
|
typedef glm::mat4::value_type value;
|
|
value const minAngle(-glm::pi<value>());
|
|
value const maxAngle(glm::pi<value>());
|
|
value const maxAngleWithDelta(maxAngle - 0.0000001f);
|
|
value const minMidAngle(-glm::pi<value>() * 0.5f);
|
|
value const maxMidAngle(glm::pi<value>() * 0.5f);
|
|
|
|
std::vector<glm::vec3> testEulerAngles;
|
|
testEulerAngles.push_back(glm::vec3(1.046f, 0.52f, -0.785f));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, maxAngle));
|
|
|
|
for (size_t i = 0, size = testEulerAngles.size(); i < size; ++i)
|
|
{
|
|
glm::vec3 const& angles = testEulerAngles.at(i);
|
|
glm::mat4 const rotationEuler = testRotationFunc(angles.x, angles.y, angles.z);
|
|
|
|
glm::mat4 rotationDumb = glm::diagonal4x4(glm::mat4::col_type(1.0f));
|
|
rotationDumb = glm::rotate(rotationDumb, angles.x, I);
|
|
rotationDumb = glm::rotate(rotationDumb, angles.y, J);
|
|
rotationDumb = glm::rotate(rotationDumb, angles.z, K);
|
|
|
|
glm::vec4 const V(1.0f,1.0f,1.0f,1.0f);
|
|
glm::vec4 const V1 = rotationEuler * V;
|
|
glm::vec4 const V2 = rotationDumb * V;
|
|
|
|
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_extractsEulerAngles
|
|
|
|
namespace test_extractsEulerAngles
|
|
{
|
|
template<typename RotationFunc, typename TestExtractionFunc>
|
|
int test(RotationFunc rotationFunc, TestExtractionFunc testExtractionFunc)
|
|
{
|
|
int Error = 0;
|
|
|
|
typedef glm::mat4::value_type value;
|
|
value const minAngle(-glm::pi<value>());
|
|
value const maxAngle(glm::pi<value>());
|
|
value const maxAngleWithDelta(maxAngle - 0.0000001f);
|
|
value const minMidAngle(-glm::pi<value>() * 0.5f);
|
|
value const maxMidAngle(glm::pi<value>() * 0.5f);
|
|
|
|
std::vector<glm::vec3> testEulerAngles;
|
|
testEulerAngles.push_back(glm::vec3(1.046f, 0.52f, -0.785f));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngleWithDelta));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, maxAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, minAngle));
|
|
testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, maxAngle));
|
|
|
|
for (size_t i = 0, size = testEulerAngles.size(); i < size; ++i)
|
|
{
|
|
glm::vec3 const& angles = testEulerAngles.at(i);
|
|
glm::mat4 const rotation = rotationFunc(angles.x, angles.y, angles.z);
|
|
|
|
glm::vec3 extractedEulerAngles(0.0f);
|
|
testExtractionFunc(rotation, extractedEulerAngles.x, extractedEulerAngles.y, extractedEulerAngles.z);
|
|
glm::mat4 const extractedRotation = rotationFunc(extractedEulerAngles.x, extractedEulerAngles.y, extractedEulerAngles.z);
|
|
|
|
glm::vec4 const V(1.0f,1.0f,1.0f,1.0f);
|
|
glm::vec4 const V1 = rotation * V;
|
|
glm::vec4 const V2 = extractedRotation * V;
|
|
|
|
Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
}//namespace test_extractsEulerAngles
|
|
|
|
int main()
|
|
{
|
|
int Error = 0;
|
|
|
|
typedef glm::mat4::value_type value;
|
|
glm::vec3 const X(1.0f, 0.0f, 0.0f);
|
|
glm::vec3 const Y(0.0f, 1.0f, 0.0f);
|
|
glm::vec3 const Z(0.0f, 0.0f, 1.0f);
|
|
|
|
Error += test_eulerAngleX::test();
|
|
Error += test_eulerAngleY::test();
|
|
Error += test_eulerAngleZ::test();
|
|
|
|
Error += test_derivedEulerAngles::test(glm::eulerAngleX<value>, glm::derivedEulerAngleX<value>, X);
|
|
Error += test_derivedEulerAngles::test(glm::eulerAngleY<value>, glm::derivedEulerAngleY<value>, Y);
|
|
Error += test_derivedEulerAngles::test(glm::eulerAngleZ<value>, glm::derivedEulerAngleZ<value>, Z);
|
|
|
|
Error += test_eulerAngleXY::test();
|
|
Error += test_eulerAngleYX::test();
|
|
Error += test_eulerAngleXZ::test();
|
|
Error += test_eulerAngleZX::test();
|
|
Error += test_eulerAngleYZ::test();
|
|
Error += test_eulerAngleZY::test();
|
|
Error += test_eulerAngleYXZ::test();
|
|
|
|
Error += test_eulerAngles::test(glm::eulerAngleXZX<value>, X, Z, X);
|
|
Error += test_eulerAngles::test(glm::eulerAngleXYX<value>, X, Y, X);
|
|
Error += test_eulerAngles::test(glm::eulerAngleYXY<value>, Y, X, Y);
|
|
Error += test_eulerAngles::test(glm::eulerAngleYZY<value>, Y, Z, Y);
|
|
Error += test_eulerAngles::test(glm::eulerAngleZYZ<value>, Z, Y, Z);
|
|
Error += test_eulerAngles::test(glm::eulerAngleZXZ<value>, Z, X, Z);
|
|
Error += test_eulerAngles::test(glm::eulerAngleXZY<value>, X, Z, Y);
|
|
Error += test_eulerAngles::test(glm::eulerAngleYZX<value>, Y, Z, X);
|
|
Error += test_eulerAngles::test(glm::eulerAngleZYX<value>, Z, Y, X);
|
|
Error += test_eulerAngles::test(glm::eulerAngleZXY<value>, Z, X, Y);
|
|
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleYXZ<value>, glm::extractEulerAngleYXZ<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleXZX<value>, glm::extractEulerAngleXZX<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleXYX<value>, glm::extractEulerAngleXYX<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleYXY<value>, glm::extractEulerAngleYXY<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleYZY<value>, glm::extractEulerAngleYZY<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleZYZ<value>, glm::extractEulerAngleZYZ<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleZXZ<value>, glm::extractEulerAngleZXZ<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleXZY<value>, glm::extractEulerAngleXZY<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleYZX<value>, glm::extractEulerAngleYZX<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleZYX<value>, glm::extractEulerAngleZYX<value>);
|
|
Error += test_extractsEulerAngles::test(glm::eulerAngleZXY<value>, glm::extractEulerAngleZXY<value>);
|
|
|
|
return Error;
|
|
}
|