glm/test/ext/ext_vector_integer.cpp
2019-08-08 11:09:59 +02:00

548 lines
12 KiB
C++

#include <glm/ext/vector_integer.hpp>
#include <glm/ext/scalar_int_sized.hpp>
#include <glm/ext/scalar_uint_sized.hpp>
#include <vector>
#include <ctime>
#include <cstdio>
namespace isPowerOfTwo
{
template<typename genType>
struct type
{
genType Value;
bool Return;
};
template <glm::length_t L>
int test_int16()
{
type<glm::int16> const Data[] =
{
{ 0x0001, true },
{ 0x0002, true },
{ 0x0004, true },
{ 0x0080, true },
{ 0x0000, true },
{ 0x0003, false }
};
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
{
glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::int16>(Data[i].Value));
Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1;
}
return Error;
}
template <glm::length_t L>
int test_uint16()
{
type<glm::uint16> const Data[] =
{
{ 0x0001, true },
{ 0x0002, true },
{ 0x0004, true },
{ 0x0000, true },
{ 0x0000, true },
{ 0x0003, false }
};
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
{
glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::uint16>(Data[i].Value));
Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1;
}
return Error;
}
template <glm::length_t L>
int test_int32()
{
type<int> const Data[] =
{
{ 0x00000001, true },
{ 0x00000002, true },
{ 0x00000004, true },
{ 0x0000000f, false },
{ 0x00000000, true },
{ 0x00000003, false }
};
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::int32>(Data[i].Value));
Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1;
}
return Error;
}
template <glm::length_t L>
int test_uint32()
{
type<glm::uint> const Data[] =
{
{ 0x00000001, true },
{ 0x00000002, true },
{ 0x00000004, true },
{ 0x80000000, true },
{ 0x00000000, true },
{ 0x00000003, false }
};
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
{
glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::uint32>(Data[i].Value));
Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += test_int16<1>();
Error += test_int16<2>();
Error += test_int16<3>();
Error += test_int16<4>();
Error += test_uint16<1>();
Error += test_uint16<2>();
Error += test_uint16<3>();
Error += test_uint16<4>();
Error += test_int32<1>();
Error += test_int32<2>();
Error += test_int32<3>();
Error += test_int32<4>();
Error += test_uint32<1>();
Error += test_uint32<2>();
Error += test_uint32<3>();
Error += test_uint32<4>();
return Error;
}
}//isPowerOfTwo
namespace prevPowerOfTwo
{
template <glm::length_t L, typename T>
int run()
{
int Error = 0;
glm::vec<L, T> const A = glm::prevPowerOfTwo(glm::vec<L, T>(7));
Error += A == glm::vec<L, T>(4) ? 0 : 1;
glm::vec<L, T> const B = glm::prevPowerOfTwo(glm::vec<L, T>(15));
Error += B == glm::vec<L, T>(8) ? 0 : 1;
glm::vec<L, T> const C = glm::prevPowerOfTwo(glm::vec<L, T>(31));
Error += C == glm::vec<L, T>(16) ? 0 : 1;
glm::vec<L, T> const D = glm::prevPowerOfTwo(glm::vec<L, T>(32));
Error += D == glm::vec<L, T>(32) ? 0 : 1;
return Error;
}
int test()
{
int Error = 0;
Error += run<1, glm::int8>();
Error += run<2, glm::int8>();
Error += run<3, glm::int8>();
Error += run<4, glm::int8>();
Error += run<1, glm::int16>();
Error += run<2, glm::int16>();
Error += run<3, glm::int16>();
Error += run<4, glm::int16>();
Error += run<1, glm::int32>();
Error += run<2, glm::int32>();
Error += run<3, glm::int32>();
Error += run<4, glm::int32>();
Error += run<1, glm::int64>();
Error += run<2, glm::int64>();
Error += run<3, glm::int64>();
Error += run<4, glm::int64>();
Error += run<1, glm::uint8>();
Error += run<2, glm::uint8>();
Error += run<3, glm::uint8>();
Error += run<4, glm::uint8>();
Error += run<1, glm::uint16>();
Error += run<2, glm::uint16>();
Error += run<3, glm::uint16>();
Error += run<4, glm::uint16>();
Error += run<1, glm::uint32>();
Error += run<2, glm::uint32>();
Error += run<3, glm::uint32>();
Error += run<4, glm::uint32>();
Error += run<1, glm::uint64>();
Error += run<2, glm::uint64>();
Error += run<3, glm::uint64>();
Error += run<4, glm::uint64>();
return Error;
}
}//namespace prevPowerOfTwo
namespace nextPowerOfTwo
{
template <glm::length_t L, typename T>
int run()
{
int Error = 0;
glm::vec<L, T> const A = glm::nextPowerOfTwo(glm::vec<L, T>(7));
Error += A == glm::vec<L, T>(8) ? 0 : 1;
glm::vec<L, T> const B = glm::nextPowerOfTwo(glm::vec<L, T>(15));
Error += B == glm::vec<L, T>(16) ? 0 : 1;
glm::vec<L, T> const C = glm::nextPowerOfTwo(glm::vec<L, T>(31));
Error += C == glm::vec<L, T>(32) ? 0 : 1;
glm::vec<L, T> const D = glm::nextPowerOfTwo(glm::vec<L, T>(32));
Error += D == glm::vec<L, T>(32) ? 0 : 1;
return Error;
}
int test()
{
int Error = 0;
Error += run<1, glm::int8>();
Error += run<2, glm::int8>();
Error += run<3, glm::int8>();
Error += run<4, glm::int8>();
Error += run<1, glm::int16>();
Error += run<2, glm::int16>();
Error += run<3, glm::int16>();
Error += run<4, glm::int16>();
Error += run<1, glm::int32>();
Error += run<2, glm::int32>();
Error += run<3, glm::int32>();
Error += run<4, glm::int32>();
Error += run<1, glm::int64>();
Error += run<2, glm::int64>();
Error += run<3, glm::int64>();
Error += run<4, glm::int64>();
Error += run<1, glm::uint8>();
Error += run<2, glm::uint8>();
Error += run<3, glm::uint8>();
Error += run<4, glm::uint8>();
Error += run<1, glm::uint16>();
Error += run<2, glm::uint16>();
Error += run<3, glm::uint16>();
Error += run<4, glm::uint16>();
Error += run<1, glm::uint32>();
Error += run<2, glm::uint32>();
Error += run<3, glm::uint32>();
Error += run<4, glm::uint32>();
Error += run<1, glm::uint64>();
Error += run<2, glm::uint64>();
Error += run<3, glm::uint64>();
Error += run<4, glm::uint64>();
return Error;
}
}//namespace nextPowerOfTwo
namespace prevMultiple
{
template<typename genIUType>
struct type
{
genIUType Source;
genIUType Multiple;
genIUType Return;
};
template <glm::length_t L, typename T>
int run()
{
type<T> const Data[] =
{
{ 8, 3, 6 },
{ 7, 7, 7 }
};
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
glm::vec<L, T> const Result0 = glm::prevMultiple(glm::vec<L, T>(Data[i].Source), Data[i].Multiple);
Error += glm::vec<L, T>(Data[i].Return) == Result0 ? 0 : 1;
glm::vec<L, T> const Result1 = glm::prevMultiple(glm::vec<L, T>(Data[i].Source), glm::vec<L, T>(Data[i].Multiple));
Error += glm::vec<L, T>(Data[i].Return) == Result1 ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += run<1, glm::int8>();
Error += run<2, glm::int8>();
Error += run<3, glm::int8>();
Error += run<4, glm::int8>();
Error += run<1, glm::int16>();
Error += run<2, glm::int16>();
Error += run<3, glm::int16>();
Error += run<4, glm::int16>();
Error += run<1, glm::int32>();
Error += run<2, glm::int32>();
Error += run<3, glm::int32>();
Error += run<4, glm::int32>();
Error += run<1, glm::int64>();
Error += run<2, glm::int64>();
Error += run<3, glm::int64>();
Error += run<4, glm::int64>();
Error += run<1, glm::uint8>();
Error += run<2, glm::uint8>();
Error += run<3, glm::uint8>();
Error += run<4, glm::uint8>();
Error += run<1, glm::uint16>();
Error += run<2, glm::uint16>();
Error += run<3, glm::uint16>();
Error += run<4, glm::uint16>();
Error += run<1, glm::uint32>();
Error += run<2, glm::uint32>();
Error += run<3, glm::uint32>();
Error += run<4, glm::uint32>();
Error += run<1, glm::uint64>();
Error += run<2, glm::uint64>();
Error += run<3, glm::uint64>();
Error += run<4, glm::uint64>();
return Error;
}
}//namespace prevMultiple
namespace nextMultiple
{
template<typename genIUType>
struct type
{
genIUType Source;
genIUType Multiple;
genIUType Return;
};
template <glm::length_t L, typename T>
int run()
{
type<T> const Data[] =
{
{ 3, 4, 4 },
{ 6, 3, 6 },
{ 5, 3, 6 },
{ 7, 7, 7 },
{ 0, 1, 0 },
{ 8, 3, 9 }
};
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
glm::vec<L, T> const Result0 = glm::nextMultiple(glm::vec<L, T>(Data[i].Source), glm::vec<L, T>(Data[i].Multiple));
Error += glm::vec<L, T>(Data[i].Return) == Result0 ? 0 : 1;
glm::vec<L, T> const Result1 = glm::nextMultiple(glm::vec<L, T>(Data[i].Source), Data[i].Multiple);
Error += glm::vec<L, T>(Data[i].Return) == Result1 ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += run<1, glm::int8>();
Error += run<2, glm::int8>();
Error += run<3, glm::int8>();
Error += run<4, glm::int8>();
Error += run<1, glm::int16>();
Error += run<2, glm::int16>();
Error += run<3, glm::int16>();
Error += run<4, glm::int16>();
Error += run<1, glm::int32>();
Error += run<2, glm::int32>();
Error += run<3, glm::int32>();
Error += run<4, glm::int32>();
Error += run<1, glm::int64>();
Error += run<2, glm::int64>();
Error += run<3, glm::int64>();
Error += run<4, glm::int64>();
Error += run<1, glm::uint8>();
Error += run<2, glm::uint8>();
Error += run<3, glm::uint8>();
Error += run<4, glm::uint8>();
Error += run<1, glm::uint16>();
Error += run<2, glm::uint16>();
Error += run<3, glm::uint16>();
Error += run<4, glm::uint16>();
Error += run<1, glm::uint32>();
Error += run<2, glm::uint32>();
Error += run<3, glm::uint32>();
Error += run<4, glm::uint32>();
Error += run<1, glm::uint64>();
Error += run<2, glm::uint64>();
Error += run<3, glm::uint64>();
Error += run<4, glm::uint64>();
return Error;
}
}//namespace nextMultiple
namespace findNSB
{
template<typename T>
struct type
{
T Source;
int SignificantBitCount;
int Return;
};
template <glm::length_t L, typename T>
int run()
{
type<T> const Data[] =
{
{ 0x00, 1,-1 },
{ 0x01, 2,-1 },
{ 0x02, 2,-1 },
{ 0x06, 3,-1 },
{ 0x01, 1, 0 },
{ 0x03, 1, 0 },
{ 0x03, 2, 1 },
{ 0x07, 2, 1 },
{ 0x05, 2, 2 },
{ 0x0D, 2, 2 }
};
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
glm::vec<L, int> const Result0 = glm::findNSB<L, T, glm::defaultp>(glm::vec<L, T>(Data[i].Source), glm::vec<L, int>(Data[i].SignificantBitCount));
Error += glm::vec<L, int>(Data[i].Return) == Result0 ? 0 : 1;
assert(!Error);
}
return Error;
}
int test()
{
int Error = 0;
Error += run<1, glm::uint8>();
Error += run<2, glm::uint8>();
Error += run<3, glm::uint8>();
Error += run<4, glm::uint8>();
Error += run<1, glm::uint16>();
Error += run<2, glm::uint16>();
Error += run<3, glm::uint16>();
Error += run<4, glm::uint16>();
Error += run<1, glm::uint32>();
Error += run<2, glm::uint32>();
Error += run<3, glm::uint32>();
Error += run<4, glm::uint32>();
Error += run<1, glm::uint64>();
Error += run<2, glm::uint64>();
Error += run<3, glm::uint64>();
Error += run<4, glm::uint64>();
Error += run<1, glm::int8>();
Error += run<2, glm::int8>();
Error += run<3, glm::int8>();
Error += run<4, glm::int8>();
Error += run<1, glm::int16>();
Error += run<2, glm::int16>();
Error += run<3, glm::int16>();
Error += run<4, glm::int16>();
Error += run<1, glm::int32>();
Error += run<2, glm::int32>();
Error += run<3, glm::int32>();
Error += run<4, glm::int32>();
Error += run<1, glm::int64>();
Error += run<2, glm::int64>();
Error += run<3, glm::int64>();
Error += run<4, glm::int64>();
return Error;
}
}//namespace findNSB
int main()
{
int Error = 0;
Error += isPowerOfTwo::test();
Error += prevPowerOfTwo::test();
Error += nextPowerOfTwo::test();
Error += prevMultiple::test();
Error += nextMultiple::test();
Error += findNSB::test();
return Error;
}