mirror of
https://github.com/g-truc/glm.git
synced 2024-11-24 01:24:34 +00:00
393 lines
8.5 KiB
C++
393 lines
8.5 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
/// OpenGL Mathematics (glm.g-truc.net)
|
|
///
|
|
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
|
|
/// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
/// of this software and associated documentation files (the "Software"), to deal
|
|
/// in the Software without restriction, including without limitation the rights
|
|
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
/// copies of the Software, and to permit persons to whom the Software is
|
|
/// furnished to do so, subject to the following conditions:
|
|
///
|
|
/// The above copyright notice and this permission notice shall be included in
|
|
/// all copies or substantial portions of the Software.
|
|
///
|
|
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
/// THE SOFTWARE.
|
|
///
|
|
/// @file test/gtc/gtc_round.cpp
|
|
/// @date 2014-11-03 / 2014-11-03
|
|
/// @author Christophe Riccio
|
|
///
|
|
/// @see core (dependence)
|
|
/// @see gtc_round (dependence)
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <glm/gtc/round.hpp>
|
|
#include <glm/gtc/type_precision.hpp>
|
|
#include <glm/gtc/vec1.hpp>
|
|
#include <glm/gtc/epsilon.hpp>
|
|
#include <vector>
|
|
#include <ctime>
|
|
#include <cstdio>
|
|
|
|
namespace isPowerOfTwo
|
|
{
|
|
template <typename genType>
|
|
struct type
|
|
{
|
|
genType Value;
|
|
bool Return;
|
|
};
|
|
|
|
int test_int16()
|
|
{
|
|
type<glm::int16> const Data[] =
|
|
{
|
|
{0x0001, true},
|
|
{0x0002, true},
|
|
{0x0004, true},
|
|
{0x0080, true},
|
|
{0x0000, true},
|
|
{0x0003, false}
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
|
|
{
|
|
bool Result = glm::isPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_uint16()
|
|
{
|
|
type<glm::uint16> const Data[] =
|
|
{
|
|
{0x0001, true},
|
|
{0x0002, true},
|
|
{0x0004, true},
|
|
{0x0000, true},
|
|
{0x0000, true},
|
|
{0x0003, false}
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
|
|
{
|
|
bool Result = glm::isPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_int32()
|
|
{
|
|
type<int> const Data[] =
|
|
{
|
|
{0x00000001, true},
|
|
{0x00000002, true},
|
|
{0x00000004, true},
|
|
{0x0000000f, false},
|
|
{0x00000000, true},
|
|
{0x00000003, false}
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
|
|
{
|
|
bool Result = glm::isPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
|
|
{
|
|
glm::bvec1 Result = glm::isPowerOfTwo(glm::ivec1(Data[i].Value));
|
|
Error += glm::all(glm::equal(glm::bvec1(Data[i].Return), Result)) ? 0 : 1;
|
|
}
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
|
|
{
|
|
glm::bvec2 Result = glm::isPowerOfTwo(glm::ivec2(Data[i].Value));
|
|
Error += glm::all(glm::equal(glm::bvec2(Data[i].Return), Result)) ? 0 : 1;
|
|
}
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
|
|
{
|
|
glm::bvec3 Result = glm::isPowerOfTwo(glm::ivec3(Data[i].Value));
|
|
Error += glm::all(glm::equal(glm::bvec3(Data[i].Return), Result)) ? 0 : 1;
|
|
}
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
|
|
{
|
|
glm::bvec4 Result = glm::isPowerOfTwo(glm::ivec4(Data[i].Value));
|
|
Error += glm::all(glm::equal(glm::bvec4(Data[i].Return), Result)) ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_uint32()
|
|
{
|
|
type<glm::uint> const Data[] =
|
|
{
|
|
{0x00000001, true},
|
|
{0x00000002, true},
|
|
{0x00000004, true},
|
|
{0x80000000, true},
|
|
{0x00000000, true},
|
|
{0x00000003, false}
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
|
|
{
|
|
bool Result = glm::isPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error(0);
|
|
|
|
Error += test_int16();
|
|
Error += test_uint16();
|
|
Error += test_int32();
|
|
Error += test_uint32();
|
|
|
|
return Error;
|
|
}
|
|
}//isPowerOfTwo
|
|
|
|
namespace ceilPowerOfTwo
|
|
{
|
|
template <typename genIUType>
|
|
GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value)
|
|
{
|
|
genIUType tmp = Value;
|
|
genIUType result = genIUType(0);
|
|
while(tmp)
|
|
{
|
|
result = (tmp & (~tmp + 1)); // grab lowest bit
|
|
tmp &= ~result; // clear lowest bit
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType ceilPowerOfTwo_loop(genType value)
|
|
{
|
|
return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
|
|
}
|
|
|
|
template <typename genType>
|
|
struct type
|
|
{
|
|
genType Value;
|
|
genType Return;
|
|
};
|
|
|
|
int test_int32()
|
|
{
|
|
type<glm::int32> const Data[] =
|
|
{
|
|
{0x0000ffff, 0x00010000},
|
|
{-3, -4},
|
|
{-8, -8},
|
|
{0x00000001, 0x00000001},
|
|
{0x00000002, 0x00000002},
|
|
{0x00000004, 0x00000004},
|
|
{0x00000007, 0x00000008},
|
|
{0x0000fff0, 0x00010000},
|
|
{0x0000f000, 0x00010000},
|
|
{0x08000000, 0x08000000},
|
|
{0x00000000, 0x00000000},
|
|
{0x00000003, 0x00000004}
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i)
|
|
{
|
|
glm::int32 Result = glm::ceilPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_uint32()
|
|
{
|
|
type<glm::uint32> const Data[] =
|
|
{
|
|
{0x00000001, 0x00000001},
|
|
{0x00000002, 0x00000002},
|
|
{0x00000004, 0x00000004},
|
|
{0x00000007, 0x00000008},
|
|
{0x0000ffff, 0x00010000},
|
|
{0x0000fff0, 0x00010000},
|
|
{0x0000f000, 0x00010000},
|
|
{0x80000000, 0x80000000},
|
|
{0x00000000, 0x00000000},
|
|
{0x00000003, 0x00000004}
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i)
|
|
{
|
|
glm::uint32 Result = glm::ceilPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int perf()
|
|
{
|
|
int Error(0);
|
|
|
|
std::vector<glm::uint> v;
|
|
v.resize(100000000);
|
|
|
|
std::clock_t Timestramp0 = std::clock();
|
|
|
|
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
|
|
v[i] = ceilPowerOfTwo_loop(i);
|
|
|
|
std::clock_t Timestramp1 = std::clock();
|
|
|
|
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
|
|
v[i] = glm::ceilPowerOfTwo(i);
|
|
|
|
std::clock_t Timestramp2 = std::clock();
|
|
|
|
std::printf("ceilPowerOfTwo_loop: %d clocks\n", static_cast<unsigned int>(Timestramp1 - Timestramp0));
|
|
std::printf("glm::ceilPowerOfTwo: %d clocks\n", static_cast<unsigned int>(Timestramp2 - Timestramp1));
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error(0);
|
|
|
|
Error += test_int32();
|
|
Error += test_uint32();
|
|
|
|
return Error;
|
|
}
|
|
}//namespace ceilPowerOfTwo
|
|
|
|
namespace floorMultiple
|
|
{
|
|
template <typename genType>
|
|
struct type
|
|
{
|
|
genType Source;
|
|
genType Multiple;
|
|
genType Return;
|
|
genType Epsilon;
|
|
};
|
|
|
|
int test_float()
|
|
{
|
|
type<glm::float64> const Data[] =
|
|
{
|
|
{3.4, 0.3, 3.3, 0.0001},
|
|
{-1.4, 0.3, -1.5, 0.0001},
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i)
|
|
{
|
|
glm::float64 Result = glm::floorMultiple(Data[i].Source, Data[i].Multiple);
|
|
Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error(0);
|
|
|
|
Error += test_float();
|
|
|
|
return Error;
|
|
}
|
|
}//namespace floorMultiple
|
|
|
|
namespace ceilMultiple
|
|
{
|
|
template <typename genType>
|
|
struct type
|
|
{
|
|
genType Source;
|
|
genType Multiple;
|
|
genType Return;
|
|
genType Epsilon;
|
|
};
|
|
|
|
int test_float()
|
|
{
|
|
type<glm::float64> const Data[] =
|
|
{
|
|
{3.4, 0.3, 3.6, 0.0001},
|
|
{-1.4, 0.3, -1.2, 0.0001},
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i)
|
|
{
|
|
glm::float64 Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple);
|
|
Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error(0);
|
|
|
|
Error += test_float();
|
|
|
|
return Error;
|
|
}
|
|
}//namespace ceilMultiple
|
|
|
|
int main()
|
|
{
|
|
int Error(0);
|
|
|
|
Error += isPowerOfTwo::test();
|
|
Error += ceilPowerOfTwo::test();
|
|
|
|
# ifdef NDEBUG
|
|
Error += ceilPowerOfTwo::perf();
|
|
# endif//NDEBUG
|
|
|
|
Error += floorMultiple::test();
|
|
Error += ceilMultiple::test();
|
|
|
|
return Error;
|
|
}
|