mirror of
https://github.com/g-truc/glm.git
synced 2024-12-02 04:34:34 +00:00
226 lines
6.9 KiB
C++
226 lines
6.9 KiB
C++
/// @ref gtx_intersect
|
|
/// @file glm/gtx/intersect.inl
|
|
|
|
namespace glm
|
|
{
|
|
template<typename genType>
|
|
GLM_FUNC_QUALIFIER bool intersectRayPlane
|
|
(
|
|
genType const& orig, genType const& dir,
|
|
genType const& planeOrig, genType const& planeNormal,
|
|
typename genType::value_type & intersectionDistance
|
|
)
|
|
{
|
|
typename genType::value_type d = glm::dot(dir, planeNormal);
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
|
|
if(d < -Epsilon)
|
|
{
|
|
intersectionDistance = glm::dot(planeOrig - orig, planeNormal) / d;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER bool intersectRayTriangle
|
|
(
|
|
vec<3, T, Q> const& orig, vec<3, T, Q> const& dir,
|
|
vec<3, T, Q> const& vert0, vec<3, T, Q> const& vert1, vec<3, T, Q> const& vert2,
|
|
vec<2, T, Q>& baryPosition, T& distance
|
|
)
|
|
{
|
|
// find vectors for two edges sharing vert0
|
|
vec<3, T, Q> const edge1 = vert1 - vert0;
|
|
vec<3, T, Q> const edge2 = vert2 - vert0;
|
|
|
|
// begin calculating determinant - also used to calculate U parameter
|
|
vec<3, T, Q> const p = glm::cross(dir, edge2);
|
|
|
|
// if determinant is near zero, ray lies in plane of triangle
|
|
T const det = glm::dot(edge1, p);
|
|
|
|
vec<3, T, Q> qvec(0);
|
|
|
|
if(det > std::numeric_limits<T>::epsilon())
|
|
{
|
|
// calculate distance from vert0 to ray origin
|
|
vec<3, T, Q> const dist = orig - vert0;
|
|
|
|
// calculate U parameter and test bounds
|
|
baryPosition.x = glm::dot(dist, p);
|
|
if(baryPosition.x < static_cast<T>(0) || baryPosition.x > det)
|
|
return false;
|
|
|
|
// prepare to test V parameter
|
|
qvec = glm::cross(dist, edge1);
|
|
|
|
// calculate V parameter and test bounds
|
|
baryPosition.y = glm::dot(dir, qvec);
|
|
if((baryPosition.y < static_cast<T>(0)) || ((baryPosition.x + baryPosition.y) > det))
|
|
return false;
|
|
}
|
|
else if(det < -std::numeric_limits<T>::epsilon())
|
|
{
|
|
// calculate distance from vert0 to ray origin
|
|
vec<3, T, Q> const dist = orig - vert0;
|
|
|
|
// calculate U parameter and test bounds
|
|
baryPosition.x = glm::dot(dist, p);
|
|
if((baryPosition.x > static_cast<T>(0)) || (baryPosition.x < det))
|
|
return false;
|
|
|
|
// prepare to test V parameter
|
|
qvec = glm::cross(dist, edge1);
|
|
|
|
// calculate V parameter and test bounds
|
|
baryPosition.y = glm::dot(dir, qvec);
|
|
if((baryPosition.y > static_cast<T>(0)) || (baryPosition.x + baryPosition.y < det))
|
|
return false;
|
|
}
|
|
else
|
|
return false; // ray is parallel to the plane of the triangle
|
|
|
|
T inv_det = static_cast<T>(1) / det;
|
|
|
|
// calculate distance, ray intersects triangle
|
|
distance = glm::dot(edge2, qvec) * inv_det;
|
|
baryPosition *= inv_det;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
if(a < Epsilon && a > -Epsilon)
|
|
return false;
|
|
|
|
typename genType::value_type f = typename genType::value_type(1.0f) / a;
|
|
|
|
genType s = orig - v0;
|
|
baryPosition.x = f * glm::dot(s, p);
|
|
if(baryPosition.x < typename genType::value_type(0.0f))
|
|
return false;
|
|
if(baryPosition.x > typename genType::value_type(1.0f))
|
|
return false;
|
|
|
|
genType q = glm::cross(s, e1);
|
|
baryPosition.y = f * glm::dot(dir, q);
|
|
if(baryPosition.y < typename genType::value_type(0.0f))
|
|
return false;
|
|
if(baryPosition.y + baryPosition.x > typename genType::value_type(1.0f))
|
|
return false;
|
|
|
|
baryPosition.z = f * glm::dot(e2, q);
|
|
|
|
return baryPosition.z >= typename genType::value_type(0.0f);
|
|
}
|
|
*/
|
|
|
|
template<typename genType>
|
|
GLM_FUNC_QUALIFIER bool intersectLineTriangle
|
|
(
|
|
genType const& orig, genType const& dir,
|
|
genType const& vert0, genType const& vert1, genType const& vert2,
|
|
genType & position
|
|
)
|
|
{
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
|
|
genType edge1 = vert1 - vert0;
|
|
genType edge2 = vert2 - vert0;
|
|
|
|
genType pvec = cross(dir, edge2);
|
|
|
|
float det = dot(edge1, pvec);
|
|
|
|
if (det > -Epsilon && det < Epsilon)
|
|
return false;
|
|
float inv_det = typename genType::value_type(1) / det;
|
|
|
|
genType tvec = orig - vert0;
|
|
|
|
position.y = dot(tvec, pvec) * inv_det;
|
|
if (position.y < typename genType::value_type(0) || position.y > typename genType::value_type(1))
|
|
return false;
|
|
|
|
genType qvec = cross(tvec, edge1);
|
|
|
|
position.z = dot(dir, qvec) * inv_det;
|
|
if (position.z < typename genType::value_type(0) || position.y + position.z > typename genType::value_type(1))
|
|
return false;
|
|
|
|
position.x = dot(edge2, qvec) * inv_det;
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename genType>
|
|
GLM_FUNC_QUALIFIER bool intersectRaySphere
|
|
(
|
|
genType const& rayStarting, genType const& rayNormalizedDirection,
|
|
genType const& sphereCenter, const typename genType::value_type sphereRadiusSquered,
|
|
typename genType::value_type & intersectionDistance
|
|
)
|
|
{
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
genType diff = sphereCenter - rayStarting;
|
|
typename genType::value_type t0 = dot(diff, rayNormalizedDirection);
|
|
typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
|
|
if( dSquared > sphereRadiusSquered )
|
|
{
|
|
return false;
|
|
}
|
|
typename genType::value_type t1 = sqrt( sphereRadiusSquered - dSquared );
|
|
intersectionDistance = t0 > t1 + Epsilon ? t0 - t1 : t0 + t1;
|
|
return intersectionDistance > Epsilon;
|
|
}
|
|
|
|
template<typename genType>
|
|
GLM_FUNC_QUALIFIER bool intersectRaySphere
|
|
(
|
|
genType const& rayStarting, genType const& rayNormalizedDirection,
|
|
genType const& sphereCenter, const typename genType::value_type sphereRadius,
|
|
genType & intersectionPosition, genType & intersectionNormal
|
|
)
|
|
{
|
|
typename genType::value_type distance;
|
|
if( intersectRaySphere( rayStarting, rayNormalizedDirection, sphereCenter, sphereRadius * sphereRadius, distance ) )
|
|
{
|
|
intersectionPosition = rayStarting + rayNormalizedDirection * distance;
|
|
intersectionNormal = (intersectionPosition - sphereCenter) / sphereRadius;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename genType>
|
|
GLM_FUNC_QUALIFIER bool intersectLineSphere
|
|
(
|
|
genType const& point0, genType const& point1,
|
|
genType const& sphereCenter, typename genType::value_type sphereRadius,
|
|
genType & intersectionPoint1, genType & intersectionNormal1,
|
|
genType & intersectionPoint2, genType & intersectionNormal2
|
|
)
|
|
{
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
genType dir = normalize(point1 - point0);
|
|
genType diff = sphereCenter - point0;
|
|
typename genType::value_type t0 = dot(diff, dir);
|
|
typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
|
|
if( dSquared > sphereRadius * sphereRadius )
|
|
{
|
|
return false;
|
|
}
|
|
typename genType::value_type t1 = sqrt( sphereRadius * sphereRadius - dSquared );
|
|
if( t0 < t1 + Epsilon )
|
|
t1 = -t1;
|
|
intersectionPoint1 = point0 + dir * (t0 - t1);
|
|
intersectionNormal1 = (intersectionPoint1 - sphereCenter) / sphereRadius;
|
|
intersectionPoint2 = point0 + dir * (t0 + t1);
|
|
intersectionNormal2 = (intersectionPoint2 - sphereCenter) / sphereRadius;
|
|
return true;
|
|
}
|
|
}//namespace glm
|