glm/glm/gtc/matrix_inverse.inl
2013-12-24 13:45:14 +01:00

164 lines
6.5 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_inverse
/// @file glm/gtc/matrix_inverse.inl
/// @date 2005-12-21 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "../mat2x2.hpp"
#include "../mat3x3.hpp"
#include "../mat4x4.hpp"
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> affineInverse
(
detail::tmat3x3<T, P> const & m
)
{
detail::tmat3x3<T, P> Result(m);
Result[2] = detail::tvec3<T, P>(0, 0, 1);
Result = transpose(Result);
detail::tvec3<T, P> Translation = Result * detail::tvec3<T, P>(-detail::tvec2<T, P>(m[2]), m[2][2]);
Result[2] = Translation;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> affineInverse
(
detail::tmat4x4<T, P> const & m
)
{
detail::tmat4x4<T, P> Result(m);
Result[3] = detail::tvec4<T, P>(0, 0, 0, 1);
Result = transpose(Result);
detail::tvec4<T, P> Translation = Result * detail::tvec4<T, P>(-detail::tvec3<T, P>(m[3]), m[3][3]);
Result[3] = Translation;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat2x2<T, P> inverseTranspose
(
detail::tmat2x2<T, P> const & m
)
{
T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
detail::tmat2x2<T, P> Inverse(
+ m[1][1] / Determinant,
- m[0][1] / Determinant,
- m[1][0] / Determinant,
+ m[0][0] / Determinant);
return Inverse;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> inverseTranspose
(
detail::tmat3x3<T, P> const & m
)
{
T Determinant =
+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
detail::tmat3x3<T, P> Inverse;
Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
Inverse /= Determinant;
return Inverse;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> inverseTranspose
(
detail::tmat4x4<T, P> const & m
)
{
T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
detail::tmat4x4<T, P> Inverse;
Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
T Determinant =
+ m[0][0] * Inverse[0][0]
+ m[0][1] * Inverse[0][1]
+ m[0][2] * Inverse[0][2]
+ m[0][3] * Inverse[0][3];
Inverse /= Determinant;
return Inverse;
}
}//namespace glm