mirror of
https://github.com/g-truc/glm.git
synced 2024-11-10 12:41:54 +00:00
345 lines
9.8 KiB
C++
345 lines
9.8 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
||
/// OpenGL Mathematics (glm.g-truc.net)
|
||
///
|
||
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
|
||
/// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
/// of this software and associated documentation files (the "Software"), to deal
|
||
/// in the Software without restriction, including without limitation the rights
|
||
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
/// copies of the Software, and to permit persons to whom the Software is
|
||
/// furnished to do so, subject to the following conditions:
|
||
///
|
||
/// The above copyright notice and this permission notice shall be included in
|
||
/// all copies or substantial portions of the Software.
|
||
///
|
||
/// Restrictions:
|
||
/// By making use of the Software for military purposes, you choose to make
|
||
/// a Bunny unhappy.
|
||
///
|
||
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
/// THE SOFTWARE.
|
||
///
|
||
/// @file test/gtc/gtc_quaternion.cpp
|
||
/// @date 2010-09-16 / 2014-11-25
|
||
/// @author Christophe Riccio
|
||
///////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#define GLM_META_PROG_HELPERS
|
||
#include <glm/gtc/quaternion.hpp>
|
||
#include <glm/gtc/epsilon.hpp>
|
||
#include <glm/vector_relational.hpp>
|
||
#include <vector>
|
||
|
||
int test_quat_angle()
|
||
{
|
||
int Error = 0;
|
||
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
|
||
float A = glm::angle(N);
|
||
Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
|
||
}
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1)));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
|
||
float A = glm::angle(N);
|
||
Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
|
||
}
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3)));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
|
||
float A = glm::angle(N);
|
||
Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
|
||
}
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_angleAxis()
|
||
{
|
||
int Error = 0;
|
||
|
||
glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1));
|
||
glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
|
||
glm::quat C = glm::mix(A, B, 0.5f);
|
||
glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
|
||
|
||
Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
|
||
Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
|
||
Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
|
||
Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_mix()
|
||
{
|
||
int Error = 0;
|
||
|
||
glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1));
|
||
glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
|
||
glm::quat C = glm::mix(A, B, 0.5f);
|
||
glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
|
||
|
||
Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
|
||
Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
|
||
Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
|
||
Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_precision()
|
||
{
|
||
int Error = 0;
|
||
|
||
Error += sizeof(glm::lowp_quat) <= sizeof(glm::mediump_quat) ? 0 : 1;
|
||
Error += sizeof(glm::mediump_quat) <= sizeof(glm::highp_quat) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_normalize()
|
||
{
|
||
int Error(0);
|
||
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
|
||
}
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
|
||
}
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
|
||
}
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_euler()
|
||
{
|
||
int Error(0);
|
||
|
||
{
|
||
glm::quat q(1.0f, 0.0f, 0.0f, 1.0f);
|
||
float Roll = glm::roll(q);
|
||
float Pitch = glm::pitch(q);
|
||
float Yaw = glm::yaw(q);
|
||
glm::vec3 Angles = glm::eulerAngles(q);
|
||
}
|
||
|
||
{
|
||
glm::dquat q(1.0f, 0.0f, 0.0f, 1.0f);
|
||
double Roll = glm::roll(q);
|
||
double Pitch = glm::pitch(q);
|
||
double Yaw = glm::yaw(q);
|
||
glm::dvec3 Angles = glm::eulerAngles(q);
|
||
}
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_slerp()
|
||
{
|
||
int Error(0);
|
||
|
||
float const Epsilon = 0.0001f;//glm::epsilon<float>();
|
||
|
||
float sqrt2 = sqrt(2.0f)/2.0f;
|
||
glm::quat id;
|
||
glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
|
||
glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
|
||
|
||
// Testing a == 0
|
||
// Must be id
|
||
glm::quat id2 = glm::slerp(id, Y90rot, 0.0f);
|
||
Error += glm::all(glm::epsilonEqual(id, id2, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing a == 1
|
||
// Must be 90<39> rotation on Y : 0 0.7 0 0.7
|
||
glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f);
|
||
Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot2, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing standard, easy case
|
||
// Must be 45<34> rotation on Y : 0 0.38 0 0.92
|
||
glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f);
|
||
|
||
// Testing reverse case
|
||
// Must be 45<34> rotation on Y : 0 0.38 0 0.92
|
||
glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f);
|
||
|
||
// Testing against full circle around the sphere instead of shortest path
|
||
// Must be 45<34> rotation on Y
|
||
// certainly not a 135<33> rotation
|
||
glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f);
|
||
float Y45angle3 = glm::angle(Y45rot3);
|
||
Error += glm::epsilonEqual(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
|
||
Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1;
|
||
|
||
// Same, but inverted
|
||
// Must also be 45<34> rotation on Y : 0 0.38 0 0.92
|
||
// -0 -0.38 -0 -0.92 is ok too
|
||
glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f);
|
||
Error += glm::all(glm::epsilonEqual(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing q1 = q2
|
||
// Must be 90<39> rotation on Y : 0 0.7 0 0.7
|
||
glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f);
|
||
Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot3, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing 180<38> rotation
|
||
// Must be 90<39> rotation on almost any axis that is on the XZ plane
|
||
glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f);
|
||
float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
|
||
Error += glm::epsilonEqual(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
|
||
|
||
// Testing almost equal quaternions (this test should pass through the linear interpolation)
|
||
// Must be 0 0.00X 0 0.99999
|
||
glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f);
|
||
|
||
// Testing quaternions with opposite sign
|
||
{
|
||
glm::quat a(-1, 0, 0, 0);
|
||
|
||
glm::quat result = glm::slerp(a, id, 0.5f);
|
||
|
||
Error += glm::epsilonEqual(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1;
|
||
}
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_mul()
|
||
{
|
||
int Error(0);
|
||
|
||
glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)));
|
||
glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0)));
|
||
|
||
glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1));
|
||
glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2);
|
||
|
||
glm::quat temp5 = glm::normalize(temp1 * temp2);
|
||
glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5);
|
||
|
||
{
|
||
glm::quat temp7;
|
||
|
||
temp7 *= temp5;
|
||
temp7 *= glm::inverse(temp5);
|
||
|
||
Error += temp7 != glm::quat();
|
||
}
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_two_axis_ctr()
|
||
{
|
||
int Error(0);
|
||
|
||
glm::quat q1(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0));
|
||
glm::vec3 v1 = q1 * glm::vec3(1, 0, 0);
|
||
Error += glm::all(glm::epsilonEqual(v1, glm::vec3(0, 1, 0), 0.0001f)) ? 0 : 1;
|
||
|
||
glm::quat q2 = q1 * q1;
|
||
glm::vec3 v2 = q2 * glm::vec3(1, 0, 0);
|
||
Error += glm::all(glm::epsilonEqual(v2, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_type()
|
||
{
|
||
glm::quat A;
|
||
glm::dquat B;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int test_quat_mul_vec()
|
||
{
|
||
int Error(0);
|
||
|
||
glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
|
||
glm::vec3 v(1, 0, 0);
|
||
glm::vec3 u(q * v);
|
||
glm::vec3 w(u * q);
|
||
|
||
Error += glm::all(glm::epsilonEqual(v, w, 0.01f)) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_ctr()
|
||
{
|
||
int Error(0);
|
||
|
||
# if GLM_HAS_TRIVIAL_QUERIES
|
||
// Error += std::is_trivially_default_constructible<glm::quat>::value ? 0 : 1;
|
||
// Error += std::is_trivially_default_constructible<glm::dquat>::value ? 0 : 1;
|
||
// Error += std::is_trivially_copy_assignable<glm::quat>::value ? 0 : 1;
|
||
// Error += std::is_trivially_copy_assignable<glm::dquat>::value ? 0 : 1;
|
||
Error += std::is_trivially_copyable<glm::quat>::value ? 0 : 1;
|
||
Error += std::is_trivially_copyable<glm::dquat>::value ? 0 : 1;
|
||
|
||
Error += std::is_copy_constructible<glm::quat>::value ? 0 : 1;
|
||
Error += std::is_copy_constructible<glm::dquat>::value ? 0 : 1;
|
||
# endif
|
||
|
||
# if GLM_HAS_INITIALIZER_LISTS
|
||
{
|
||
glm::quat A{0, 1, 2, 3};
|
||
|
||
std::vector<glm::quat> B{
|
||
{0, 1, 2, 3},
|
||
{0, 1, 2, 3}};
|
||
}
|
||
# endif//GLM_HAS_INITIALIZER_LISTS
|
||
|
||
return Error;
|
||
}
|
||
|
||
int main()
|
||
{
|
||
int Error(0);
|
||
|
||
assert(glm::quat::components == 4);
|
||
|
||
Error += test_quat_ctr();
|
||
Error += test_quat_mul_vec();
|
||
Error += test_quat_two_axis_ctr();
|
||
Error += test_quat_mul();
|
||
Error += test_quat_precision();
|
||
Error += test_quat_type();
|
||
Error += test_quat_angle();
|
||
Error += test_quat_angleAxis();
|
||
Error += test_quat_mix();
|
||
Error += test_quat_normalize();
|
||
Error += test_quat_euler();
|
||
Error += test_quat_slerp();
|
||
|
||
return Error;
|
||
}
|