glm/test/gtc/gtc_bitfield.cpp
2017-08-07 11:22:18 +02:00

904 lines
26 KiB
C++

#include <glm/gtc/bitfield.hpp>
#include <glm/gtc/type_precision.hpp>
#include <glm/vector_relational.hpp>
#include <glm/integer.hpp>
#include <ctime>
#include <cstdio>
#include <vector>
namespace mask
{
template<typename genType>
struct type
{
genType Value;
genType Return;
};
inline int mask_zero(int Bits)
{
return ~((~0) << Bits);
}
inline int mask_mix(int Bits)
{
return Bits >= sizeof(int) * 8 ? 0xffffffff : (static_cast<int>(1) << Bits) - static_cast<int>(1);
}
inline int mask_half(int Bits)
{
// We do the shift in two steps because 1 << 32 on an int is undefined.
int const Half = Bits >> 1;
int const Fill = ~0;
int const ShiftHaft = (Fill << Half);
int const Rest = Bits - Half;
int const Reversed = ShiftHaft << Rest;
return ~Reversed;
}
inline int mask_loop(int Bits)
{
int Mask = 0;
for(int Bit = 0; Bit < Bits; ++Bit)
Mask |= (static_cast<int>(1) << Bit);
return Mask;
}
int perf()
{
int const Count = 100000000;
std::clock_t Timestamp1 = std::clock();
{
std::vector<int> Mask;
Mask.resize(Count);
for(int i = 0; i < Count; ++i)
Mask[i] = mask_mix(i % 32);
}
std::clock_t Timestamp2 = std::clock();
{
std::vector<int> Mask;
Mask.resize(Count);
for(int i = 0; i < Count; ++i)
Mask[i] = mask_loop(i % 32);
}
std::clock_t Timestamp3 = std::clock();
{
std::vector<int> Mask;
Mask.resize(Count);
for(int i = 0; i < Count; ++i)
Mask[i] = glm::mask(i % 32);
}
std::clock_t Timestamp4 = std::clock();
{
std::vector<int> Mask;
Mask.resize(Count);
for(int i = 0; i < Count; ++i)
Mask[i] = mask_zero(i % 32);
}
std::clock_t Timestamp5 = std::clock();
{
std::vector<int> Mask;
Mask.resize(Count);
for(int i = 0; i < Count; ++i)
Mask[i] = mask_half(i % 32);
}
std::clock_t Timestamp6 = std::clock();
std::clock_t TimeMix = Timestamp2 - Timestamp1;
std::clock_t TimeLoop = Timestamp3 - Timestamp2;
std::clock_t TimeDefault = Timestamp4 - Timestamp3;
std::clock_t TimeZero = Timestamp5 - Timestamp4;
std::clock_t TimeHalf = Timestamp6 - Timestamp5;
printf("mask[mix]: %d\n", static_cast<unsigned int>(TimeMix));
printf("mask[loop]: %d\n", static_cast<unsigned int>(TimeLoop));
printf("mask[default]: %d\n", static_cast<unsigned int>(TimeDefault));
printf("mask[zero]: %d\n", static_cast<unsigned int>(TimeZero));
printf("mask[half]: %d\n", static_cast<unsigned int>(TimeHalf));
return TimeDefault < TimeLoop ? 0 : 1;
}
int test_uint()
{
type<glm::uint> const Data[] =
{
{ 0, 0x00000000},
{ 1, 0x00000001},
{ 2, 0x00000003},
{ 3, 0x00000007},
{31, 0x7fffffff},
{32, 0xffffffff}
};
int Error(0);
/* mask_zero is sadly not a correct code
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
{
int Result = mask_zero(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
*/
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
{
int Result = mask_mix(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
{
int Result = mask_half(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
{
int Result = mask_loop(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i)
{
int Result = glm::mask(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_uvec4()
{
type<glm::ivec4> const Data[] =
{
{glm::ivec4( 0), glm::ivec4(0x00000000)},
{glm::ivec4( 1), glm::ivec4(0x00000001)},
{glm::ivec4( 2), glm::ivec4(0x00000003)},
{glm::ivec4( 3), glm::ivec4(0x00000007)},
{glm::ivec4(31), glm::ivec4(0x7fffffff)},
{glm::ivec4(32), glm::ivec4(0xffffffff)}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::ivec4>); i < n; ++i)
{
glm::ivec4 Result = glm::mask(Data[i].Value);
Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1;
}
return Error;
}
int test()
{
int Error(0);
Error += test_uint();
Error += test_uvec4();
return Error;
}
}//namespace mask
namespace bitfieldInterleave3
{
template<typename PARAM, typename RET>
inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z)
{
RET Result = 0;
for(RET i = 0; i < sizeof(PARAM) * 8; ++i)
{
Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0));
Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1));
Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2));
}
return Result;
}
int test()
{
int Error(0);
glm::uint16 x_max = 1 << 11;
glm::uint16 y_max = 1 << 11;
glm::uint16 z_max = 1 << 11;
for(glm::uint16 z = 0; z < z_max; z += 27)
for(glm::uint16 y = 0; y < y_max; y += 27)
for(glm::uint16 x = 0; x < x_max; x += 27)
{
glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z);
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z);
Error += ResultA == ResultB ? 0 : 1;
}
return Error;
}
}
namespace bitfieldInterleave4
{
template<typename PARAM, typename RET>
inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w)
{
RET const v[4] = {x, y, z, w};
RET Result = 0;
for(RET i = 0; i < sizeof(PARAM) * 8; i++)
{
Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0));
Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1));
Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2));
Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3));
}
return Result;
}
int test()
{
int Error(0);
glm::uint16 x_max = 1 << 11;
glm::uint16 y_max = 1 << 11;
glm::uint16 z_max = 1 << 11;
glm::uint16 w_max = 1 << 11;
for(glm::uint16 w = 0; w < w_max; w += 27)
for(glm::uint16 z = 0; z < z_max; z += 27)
for(glm::uint16 y = 0; y < y_max; y += 27)
for(glm::uint16 x = 0; x < x_max; x += 27)
{
glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w);
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w);
Error += ResultA == ResultB ? 0 : 1;
}
return Error;
}
}
namespace bitfieldInterleave
{
inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y)
{
glm::uint64 REG1;
glm::uint64 REG2;
REG1 = x;
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
REG2 = y;
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
return REG1 | (REG2 << 1);
}
inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y)
{
glm::uint64 REG1;
glm::uint64 REG2;
REG1 = x;
REG2 = y;
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
return REG1 | (REG2 << 1);
}
/*
inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y)
{
static glm::uint64 const Mask[5] =
{
0x5555555555555555,
0x3333333333333333,
0x0F0F0F0F0F0F0F0F,
0x00FF00FF00FF00FF,
0x0000FFFF0000FFFF
};
glm::uint64 REG1 = x;
glm::uint64 REG2 = y;
for(int i = 4; i >= 0; --i)
{
REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i];
REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i];
}
return REG1 | (REG2 << 1);
}
*/
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y)
{
GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0};
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
__m128i Reg1;
__m128i Reg2;
// REG1 = x;
// REG2 = y;
Reg1 = _mm_load_si128((__m128i*)Array);
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
Reg2 = _mm_slli_si128(Reg1, 2);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask4);
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
Reg2 = _mm_slli_si128(Reg1, 1);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask3);
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
Reg2 = _mm_slli_epi32(Reg1, 4);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask2);
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
Reg2 = _mm_slli_epi32(Reg1, 2);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask1);
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
Reg2 = _mm_slli_epi32(Reg1, 1);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask0);
//return REG1 | (REG2 << 1);
Reg2 = _mm_slli_epi32(Reg1, 1);
Reg2 = _mm_srli_si128(Reg2, 8);
Reg1 = _mm_or_si128(Reg1, Reg2);
GLM_ALIGN(16) glm::uint64 Result[2];
_mm_store_si128((__m128i*)Result, Reg1);
return Result[0];
}
inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y)
{
glm::uint32 const Array[4] = {x, 0, y, 0};
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
__m128i Reg1;
__m128i Reg2;
// REG1 = x;
// REG2 = y;
Reg1 = _mm_loadu_si128((__m128i*)Array);
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
Reg2 = _mm_slli_si128(Reg1, 2);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask4);
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
Reg2 = _mm_slli_si128(Reg1, 1);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask3);
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
Reg2 = _mm_slli_epi32(Reg1, 4);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask2);
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
Reg2 = _mm_slli_epi32(Reg1, 2);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask1);
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
Reg2 = _mm_slli_epi32(Reg1, 1);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask0);
//return REG1 | (REG2 << 1);
Reg2 = _mm_slli_epi32(Reg1, 1);
Reg2 = _mm_srli_si128(Reg2, 8);
Reg1 = _mm_or_si128(Reg1, Reg2);
glm::uint64 Result[2];
_mm_storeu_si128((__m128i*)Result, Reg1);
return Result[0];
}
#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
int test()
{
/*
{
for(glm::uint32 y = 0; y < (1 << 10); ++y)
for(glm::uint32 x = 0; x < (1 << 10); ++x)
{
glm::uint64 A = glm::bitfieldInterleave(x, y);
glm::uint64 B = fastBitfieldInterleave(x, y);
//glm::uint64 C = loopBitfieldInterleave(x, y);
glm::uint64 D = interleaveBitfieldInterleave(x, y);
assert(A == B);
//assert(A == C);
assert(A == D);
# if GLM_ARCH & GLM_ARCH_SSE2_BIT
glm::uint64 E = sseBitfieldInterleave(x, y);
glm::uint64 F = sseUnalignedBitfieldInterleave(x, y);
assert(A == E);
assert(A == F);
__m128i G = glm_i128_interleave(_mm_set_epi32(0, y, 0, x));
glm::uint64 Result[2];
_mm_storeu_si128((__m128i*)Result, G);
assert(A == Result[0]);
# endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
}
}
*/
{
for(glm::uint8 y = 0; y < 127; ++y)
for(glm::uint8 x = 0; x < 127; ++x)
{
glm::uint64 A(glm::bitfieldInterleave(glm::uint8(x), glm::uint8(y)));
glm::uint64 B(glm::bitfieldInterleave(glm::uint16(x), glm::uint16(y)));
glm::uint64 C(glm::bitfieldInterleave(glm::uint32(x), glm::uint32(y)));
glm::int64 D(glm::bitfieldInterleave(glm::int8(x), glm::int8(y)));
glm::int64 E(glm::bitfieldInterleave(glm::int16(x), glm::int16(y)));
glm::int64 F(glm::bitfieldInterleave(glm::int32(x), glm::int32(y)));
assert(D == E);
assert(D == F);
}
}
return 0;
}
int perf()
{
glm::uint32 x_max = 1 << 11;
glm::uint32 y_max = 1 << 10;
// ALU
std::vector<glm::uint64> Data(x_max * y_max);
std::vector<glm::u32vec2> Param(x_max * y_max);
for(glm::uint32 i = 0; i < Param.size(); ++i)
Param[i] = glm::u32vec2(i % x_max, i / y_max);
{
std::clock_t LastTime = std::clock();
for(std::size_t i = 0; i < Data.size(); ++i)
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y);
std::clock_t Time = std::clock() - LastTime;
std::printf("glm::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
}
{
std::clock_t LastTime = std::clock();
for(std::size_t i = 0; i < Data.size(); ++i)
Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y);
std::clock_t Time = std::clock() - LastTime;
std::printf("fastBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
}
/*
{
std::clock_t LastTime = std::clock();
for(std::size_t i = 0; i < Data.size(); ++i)
Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y);
std::clock_t Time = std::clock() - LastTime;
std::printf("loopBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
}
*/
{
std::clock_t LastTime = std::clock();
for(std::size_t i = 0; i < Data.size(); ++i)
Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y);
std::clock_t Time = std::clock() - LastTime;
std::printf("interleaveBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
}
# if GLM_ARCH & GLM_ARCH_SSE2_BIT
{
std::clock_t LastTime = std::clock();
for(std::size_t i = 0; i < Data.size(); ++i)
Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y);
std::clock_t Time = std::clock() - LastTime;
std::printf("sseBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
}
{
std::clock_t LastTime = std::clock();
for(std::size_t i = 0; i < Data.size(); ++i)
Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y);
std::clock_t Time = std::clock() - LastTime;
std::printf("sseUnalignedBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
}
# endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
{
std::clock_t LastTime = std::clock();
for(std::size_t i = 0; i < Data.size(); ++i)
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x);
std::clock_t Time = std::clock() - LastTime;
std::printf("glm::detail::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time));
}
# if(GLM_ARCH & GLM_ARCH_SSE2_BIT && !(GLM_COMPILER & GLM_COMPILER_GCC))
{
// SIMD
std::vector<__m128i> SimdData;
SimdData.resize(x_max * y_max);
std::vector<__m128i> SimdParam;
SimdParam.resize(x_max * y_max);
for(int i = 0; i < SimdParam.size(); ++i)
SimdParam[i] = _mm_set_epi32(i % x_max, 0, i / y_max, 0);
std::clock_t LastTime = std::clock();
for(std::size_t i = 0; i < SimdData.size(); ++i)
SimdData[i] = glm_i128_interleave(SimdParam[i]);
std::clock_t Time = std::clock() - LastTime;
std::printf("_mm_bit_interleave_si128 Time %d clocks\n", static_cast<unsigned int>(Time));
}
# endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
return 0;
}
}//namespace bitfieldInterleave
namespace bitfieldInterleave5
{
GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave_u8vec2(glm::uint8 x, glm::uint8 y)
{
glm::uint32 Result = (glm::uint32(y) << 16) | glm::uint32(x);
Result = ((Result << 4) | Result) & 0x0F0F0F0F;
Result = ((Result << 2) | Result) & 0x33333333;
Result = ((Result << 1) | Result) & 0x55555555;
return static_cast<glm::uint16>((Result & 0x0000FFFF) | (Result >> 15));
}
GLM_FUNC_QUALIFIER glm::u8vec2 bitfieldDeinterleave_u8vec2(glm::uint16 InterleavedBitfield)
{
glm::uint32 Result(InterleavedBitfield);
Result = ((Result << 15) | Result) & 0x55555555;
Result = ((Result >> 1) | Result) & 0x33333333;
Result = ((Result >> 2) | Result) & 0x0F0F0F0F;
Result = ((Result >> 4) | Result) & 0x00FF00FF;
return glm::u8vec2(Result & 0x0000FFFF, Result >> 16);
}
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave_u8vec4(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w)
{
glm::uint64 Result = (glm::uint64(w) << 48) | (glm::uint64(z) << 32) | (glm::uint64(y) << 16) | glm::uint64(x);
Result = ((Result << 12) | Result) & 0x000F000F000F000Full;
Result = ((Result << 6) | Result) & 0x0303030303030303ull;
Result = ((Result << 3) | Result) & 0x1111111111111111ull;
const glm::uint32 a = static_cast<glm::uint32>((Result & 0x000000000000FFFF) >> ( 0 - 0));
const glm::uint32 b = static_cast<glm::uint32>((Result & 0x00000000FFFF0000) >> (16 - 3));
const glm::uint32 c = static_cast<glm::uint32>((Result & 0x0000FFFF00000000) >> (32 - 6));
const glm::uint32 d = static_cast<glm::uint32>((Result & 0xFFFF000000000000) >> (48 - 12));
return a | b | c | d;
}
GLM_FUNC_QUALIFIER glm::u8vec4 bitfieldDeinterleave_u8vec4(glm::uint32 InterleavedBitfield)
{
glm::uint64 Result(InterleavedBitfield);
Result = ((Result << 15) | Result) & 0x9249249249249249ull;
Result = ((Result >> 1) | Result) & 0x30C30C30C30C30C3ull;
Result = ((Result >> 2) | Result) & 0xF00F00F00F00F00Full;
Result = ((Result >> 4) | Result) & 0x00FF0000FF0000FFull;
return glm::u8vec4(
(Result >> 0) & 0x000000000000FFFFull,
(Result >> 16) & 0x00000000FFFF0000ull,
(Result >> 32) & 0x0000FFFF00000000ull,
(Result >> 48) & 0xFFFF000000000000ull);
}
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave_u16vec2(glm::uint16 x, glm::uint16 y)
{
glm::uint64 Result = (glm::uint64(y) << 32) | glm::uint64(x);
Result = ((Result << 8) | Result) & glm::uint32(0x00FF00FF00FF00FFull);
Result = ((Result << 4) | Result) & glm::uint32(0x0F0F0F0F0F0F0F0Full);
Result = ((Result << 2) | Result) & glm::uint32(0x3333333333333333ull);
Result = ((Result << 1) | Result) & glm::uint32(0x5555555555555555ull);
return static_cast<glm::uint32>((Result & 0x00000000FFFFFFFFull) | (Result >> 31));
}
GLM_FUNC_QUALIFIER glm::u16vec2 bitfieldDeinterleave_u16vec2(glm::uint32 InterleavedBitfield)
{
glm::uint64 Result(InterleavedBitfield);
Result = ((Result << 31) | Result) & 0x5555555555555555ull;
Result = ((Result >> 1) | Result) & 0x3333333333333333ull;
Result = ((Result >> 2) | Result) & 0x0F0F0F0F0F0F0F0Full;
Result = ((Result >> 4) | Result) & 0x00FF00FF00FF00FFull;
Result = ((Result >> 8) | Result) & 0x0000FFFF0000FFFFull;
return glm::u16vec2(Result & 0x00000000FFFFFFFFull, Result >> 32);
}
int test()
{
int Error = 0;
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
{
glm::uint16 A = bitfieldInterleave_u8vec2(glm::uint8(i), glm::uint8(j));
glm::uint16 B = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j));
Error += A == B ? 0 : 1;
glm::u8vec2 C = bitfieldDeinterleave_u8vec2(A);
Error += C.x == glm::uint8(i) ? 0 : 1;
Error += C.y == glm::uint8(j) ? 0 : 1;
}
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
{
glm::uint32 A = bitfieldInterleave_u8vec4(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j));
glm::uint32 B = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j));
Error += A == B ? 0 : 1;
/*
glm::u8vec4 C = bitfieldDeinterleave_u8vec4(A);
Error += C.x == glm::uint8(i) ? 0 : 1;
Error += C.y == glm::uint8(j) ? 0 : 1;
Error += C.z == glm::uint8(i) ? 0 : 1;
Error += C.w == glm::uint8(j) ? 0 : 1;
*/
}
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
{
glm::uint32 A = bitfieldInterleave_u16vec2(glm::uint16(i), glm::uint16(j));
glm::uint32 B = glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j));
Error += A == B ? 0 : 1;
}
return Error;
}
int perf_old_u8vec2(std::vector<glm::uint16>& Result)
{
int Error = 0;
const std::clock_t BeginTime = std::clock();
for(glm::size_t k = 0; k < 10000; ++k)
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
Error += Result[j * 256 + i] == glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j)) ? 0 : 1;
const std::clock_t EndTime = std::clock();
std::printf("glm::bitfieldInterleave<u8vec2> Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime));
return Error;
}
int perf_new_u8vec2(std::vector<glm::uint16>& Result)
{
int Error = 0;
const std::clock_t BeginTime = std::clock();
for(glm::size_t k = 0; k < 10000; ++k)
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
Error += Result[j * 256 + i] == bitfieldInterleave_u8vec2(glm::uint8(i), glm::uint8(j)) ? 0 : 1;
const std::clock_t EndTime = std::clock();
std::printf("bitfieldInterleave_u8vec2 Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime));
return Error;
}
int perf_old_u8vec4(std::vector<glm::uint32>& Result)
{
int Error = 0;
const std::clock_t BeginTime = std::clock();
for(glm::size_t k = 0; k < 10000; ++k)
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
Error += Result[j * 256 + i] == glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)) ? 0 : 1;
const std::clock_t EndTime = std::clock();
std::printf("glm::bitfieldInterleave<u8vec4> Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime));
return Error;
}
int perf_new_u8vec4(std::vector<glm::uint32>& Result)
{
int Error = 0;
const std::clock_t BeginTime = std::clock();
for(glm::size_t k = 0; k < 10000; ++k)
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
Error += Result[j * 256 + i] == bitfieldInterleave_u8vec4(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)) ? 0 : 1;
const std::clock_t EndTime = std::clock();
std::printf("bitfieldInterleave_u8vec4 Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime));
return Error;
}
int perf_old_u16vec2(std::vector<glm::uint32>& Result)
{
int Error = 0;
const std::clock_t BeginTime = std::clock();
for(glm::size_t k = 0; k < 10000; ++k)
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
Error += Result[j * 256 + i] == glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j)) ? 0 : 1;
const std::clock_t EndTime = std::clock();
std::printf("glm::bitfieldInterleave<u16vec2> Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime));
return Error;
}
int perf_new_u16vec2(std::vector<glm::uint32>& Result)
{
int Error = 0;
const std::clock_t BeginTime = std::clock();
for(glm::size_t k = 0; k < 10000; ++k)
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
Error += Result[j * 256 + i] == bitfieldInterleave_u16vec2(glm::uint16(i), glm::uint16(j)) ? 0 : 1;
const std::clock_t EndTime = std::clock();
std::printf("bitfieldInterleave_u16vec2 Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime));
return Error;
}
int perf()
{
int Error = 0;
std::printf("bitfieldInterleave perf: init\r");
std::vector<glm::uint16> Result_u8vec2(256 * 256, 0);
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
Result_u8vec2[j * 256 + i] = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j));
Error += perf_old_u8vec2(Result_u8vec2);
Error += perf_new_u8vec2(Result_u8vec2);
std::vector<glm::uint32> Result_u8vec4(256 * 256, 0);
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
Result_u8vec4[j * 256 + i] = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j));
Error += perf_old_u8vec4(Result_u8vec4);
Error += perf_new_u8vec4(Result_u8vec4);
std::vector<glm::uint32> Result_u16vec2(256 * 256, 0);
for(glm::size_t j = 0; j < 256; ++j)
for(glm::size_t i = 0; i < 256; ++i)
Result_u16vec2[j * 256 + i] = glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j));
Error += perf_old_u16vec2(Result_u16vec2);
Error += perf_new_u16vec2(Result_u16vec2);
std::printf("bitfieldInterleave perf: %d Errors\n", Error);
return Error;
}
}//namespace bitfieldInterleave5
int main()
{
int Error = 0;
/* Tests for a faster and to reserve bitfieldInterleave
Error += ::bitfieldInterleave5::test();
Error += ::bitfieldInterleave5::perf();
*/
Error += ::mask::test();
Error += ::bitfieldInterleave3::test();
Error += ::bitfieldInterleave4::test();
Error += ::bitfieldInterleave::test();
# ifdef NDEBUG
Error += ::mask::perf();
Error += ::bitfieldInterleave::perf();
# endif//NDEBUG
return Error;
}