tracy/server/tracy_xxh3.h

2245 lines
89 KiB
C
Raw Normal View History

/*
2020-05-11 00:33:12 +00:00
* xxHash - Extremely Fast Hash algorithm
* Development source file for `xxh3`
* Copyright (C) 2019-2020 Yann Collet
*
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
2020-05-11 00:33:12 +00:00
/*
* Note: This file is separated for development purposes.
* It will be integrated into `xxhash.h` when development stage is completed.
*
* Credit: most of the work on vectorial and asm variants comes from @easyaspi314
*/
2020-05-11 00:33:12 +00:00
#ifndef XXH3_H_1397135465
#define XXH3_H_1397135465
2020-05-11 00:33:12 +00:00
/* === Dependencies === */
#ifndef XXHASH_H_5627135585666179
/* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */
# undef XXH_INLINE_ALL /* avoid redefinition */
# define XXH_INLINE_ALL
#endif
#include "tracy_xxhash.h"
/* === Compiler specifics === */
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
# define XXH_RESTRICT restrict
#else
2020-05-11 00:33:12 +00:00
/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
# define XXH_RESTRICT /* disable */
#endif
2020-05-11 00:33:12 +00:00
#if (defined(__GNUC__) && (__GNUC__ >= 3)) \
|| (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
|| defined(__clang__)
# define XXH_likely(x) __builtin_expect(x, 1)
# define XXH_unlikely(x) __builtin_expect(x, 0)
#else
# define XXH_likely(x) (x)
# define XXH_unlikely(x) (x)
#endif
#if defined(__GNUC__)
# if defined(__AVX2__)
# include <immintrin.h>
# elif defined(__SSE2__)
# include <emmintrin.h>
# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
# define inline __inline__ /* clang bug */
# include <arm_neon.h>
# undef inline
# endif
#elif defined(_MSC_VER)
# include <intrin.h>
#endif
/*
2020-05-11 00:33:12 +00:00
* One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
* remaining a true 64-bit/128-bit hash function.
*
* This is done by prioritizing a subset of 64-bit operations that can be
* emulated without too many steps on the average 32-bit machine.
*
* For example, these two lines seem similar, and run equally fast on 64-bit:
*
* xxh_u64 x;
* x ^= (x >> 47); // good
* x ^= (x >> 13); // bad
*
* However, to a 32-bit machine, there is a major difference.
*
2020-05-11 00:33:12 +00:00
* x ^= (x >> 47) looks like this:
*
* x.lo ^= (x.hi >> (47 - 32));
*
* while x ^= (x >> 13) looks like this:
*
* // note: funnel shifts are not usually cheap.
* x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
* x.hi ^= (x.hi >> 13);
*
* The first one is significantly faster than the second, simply because the
* shift is larger than 32. This means:
* - All the bits we need are in the upper 32 bits, so we can ignore the lower
* 32 bits in the shift.
* - The shift result will always fit in the lower 32 bits, and therefore,
* we can ignore the upper 32 bits in the xor.
*
* Thanks to this optimization, XXH3 only requires these features to be efficient:
*
* - Usable unaligned access
* - A 32-bit or 64-bit ALU
* - If 32-bit, a decent ADC instruction
* - A 32 or 64-bit multiply with a 64-bit result
2020-05-11 00:33:12 +00:00
* - For the 128-bit variant, a decent byteswap helps short inputs.
*
2020-05-11 00:33:12 +00:00
* The first two are already required by XXH32, and almost all 32-bit and 64-bit
* platforms which can run XXH32 can run XXH3 efficiently.
*
* Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
* notable exception.
*
* First of all, Thumb-1 lacks support for the UMULL instruction which
* performs the important long multiply. This means numerous __aeabi_lmul
* calls.
*
* Second of all, the 8 functional registers are just not enough.
* Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
* Lo registers, and this shuffling results in thousands more MOVs than A32.
*
* A32 and T32 don't have this limitation. They can access all 14 registers,
2020-05-11 00:33:12 +00:00
* do a 32->64 multiply with UMULL, and the flexible operand allowing free
* shifts is helpful, too.
*
* Therefore, we do a quick sanity check.
*
2020-05-11 00:33:12 +00:00
* If compiling Thumb-1 for a target which supports ARM instructions, we will
* emit a warning, as it is not a "sane" platform to compile for.
*
2020-05-11 00:33:12 +00:00
* Usually, if this happens, it is because of an accident and you probably need
* to specify -march, as you likely meant to compile for a newer architecture.
*/
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
# warning "XXH3 is highly inefficient without ARM or Thumb-2."
#endif
/* ==========================================
* Vectorization detection
* ========================================== */
2020-05-11 00:33:12 +00:00
#define XXH_SCALAR 0 /* Portable scalar version */
#define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */
#define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */
#define XXH_NEON 3 /* NEON for most ARMv7-A and all AArch64 */
#define XXH_VSX 4 /* VSX and ZVector for POWER8/z13 */
#ifndef XXH_VECTOR /* can be defined on command line */
# if defined(__AVX2__)
# define XXH_VECTOR XXH_AVX2
# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
# define XXH_VECTOR XXH_SSE2
# elif defined(__GNUC__) /* msvc support maybe later */ \
&& (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
&& (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
# define XXH_VECTOR XXH_NEON
2020-05-11 00:33:12 +00:00
# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
|| (defined(__s390x__) && defined(__VEC__)) \
&& defined(__GNUC__) /* TODO: IBM XL */
# define XXH_VECTOR XXH_VSX
# else
# define XXH_VECTOR XXH_SCALAR
# endif
#endif
2020-05-11 00:33:12 +00:00
/*
* Controls the alignment of the accumulator.
* This is for compatibility with aligned vector loads, which are usually faster.
*/
#ifndef XXH_ACC_ALIGN
2020-05-11 00:33:12 +00:00
# if XXH_VECTOR == XXH_SCALAR /* scalar */
# define XXH_ACC_ALIGN 8
2020-05-11 00:33:12 +00:00
# elif XXH_VECTOR == XXH_SSE2 /* sse2 */
# define XXH_ACC_ALIGN 16
2020-05-11 00:33:12 +00:00
# elif XXH_VECTOR == XXH_AVX2 /* avx2 */
# define XXH_ACC_ALIGN 32
2020-05-11 00:33:12 +00:00
# elif XXH_VECTOR == XXH_NEON /* neon */
# define XXH_ACC_ALIGN 16
2020-05-11 00:33:12 +00:00
# elif XXH_VECTOR == XXH_VSX /* vsx */
# define XXH_ACC_ALIGN 16
# endif
#endif
2020-05-11 00:33:12 +00:00
/*
* UGLY HACK:
* GCC usually generates the best code with -O3 for xxHash.
*
* However, when targeting AVX2, it is overzealous in its unrolling resulting
* in code roughly 3/4 the speed of Clang.
*
* There are other issues, such as GCC splitting _mm256_loadu_si256 into
* _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
* only applies to Sandy and Ivy Bridge... which don't even support AVX2.
*
* That is why when compiling the AVX2 version, it is recommended to use either
* -O2 -mavx2 -march=haswell
* or
* -O2 -mavx2 -mno-avx256-split-unaligned-load
* for decent performance, or to use Clang instead.
*
* Fortunately, we can control the first one with a pragma that forces GCC into
* -O2, but the other one we can't control without "failed to inline always
* inline function due to target mismatch" warnings.
*/
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
&& defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
# pragma GCC push_options
# pragma GCC optimize("-O2")
#endif
2020-05-11 00:33:12 +00:00
#if XXH_VECTOR == XXH_NEON
/*
* NEON's setup for vmlal_u32 is a little more complicated than it is on
* SSE2, AVX2, and VSX.
*
* While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
*
* To do the same operation, the 128-bit 'Q' register needs to be split into
* two 64-bit 'D' registers, performing this operation::
*
* [ a | b ]
* | '---------. .--------' |
* | x |
* | .---------' '--------. |
* [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
*
* Due to significant changes in aarch64, the fastest method for aarch64 is
* completely different than the fastest method for ARMv7-A.
*
* ARMv7-A treats D registers as unions overlaying Q registers, so modifying
* D11 will modify the high half of Q5. This is similar to how modifying AH
* will only affect bits 8-15 of AX on x86.
*
* VZIP takes two registers, and puts even lanes in one register and odd lanes
* in the other.
*
* On ARMv7-A, this strangely modifies both parameters in place instead of
* taking the usual 3-operand form.
*
* Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
* lower and upper halves of the Q register to end up with the high and low
* halves where we want - all in one instruction.
*
* vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
*
* Unfortunately we need inline assembly for this: Instructions modifying two
* registers at once is not possible in GCC or Clang's IR, and they have to
* create a copy.
*
* aarch64 requires a different approach.
*
* In order to make it easier to write a decent compiler for aarch64, many
* quirks were removed, such as conditional execution.
*
* NEON was also affected by this.
*
* aarch64 cannot access the high bits of a Q-form register, and writes to a
* D-form register zero the high bits, similar to how writes to W-form scalar
* registers (or DWORD registers on x86_64) work.
*
* The formerly free vget_high intrinsics now require a vext (with a few
* exceptions)
*
* Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
* of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
* operand.
*
* The equivalent of the VZIP.32 on the lower and upper halves would be this
* mess:
*
* ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
* zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
* zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
*
* Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
*
* shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
* xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
*
* This is available on ARMv7-A, but is less efficient than a single VZIP.32.
*/
/*
* Function-like macro:
* void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
* {
* outLo = (uint32x2_t)(in & 0xFFFFFFFF);
* outHi = (uint32x2_t)(in >> 32);
* in = UNDEFINED;
* }
*/
# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
&& defined(__GNUC__) \
&& !defined(__aarch64__) && !defined(__arm64__)
# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
do { \
/* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
/* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
/* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
__asm__("vzip.32 %e0, %f0" : "+w" (in)); \
(outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
(outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
} while (0)
# else
# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
do { \
(outLo) = vmovn_u64 (in); \
(outHi) = vshrn_n_u64 ((in), 32); \
} while (0)
# endif
#endif /* XXH_VECTOR == XXH_NEON */
/*
* VSX and Z Vector helpers.
*
* This is very messy, and any pull requests to clean this up are welcome.
*
* There are a lot of problems with supporting VSX and s390x, due to
* inconsistent intrinsics, spotty coverage, and multiple endiannesses.
*/
#if XXH_VECTOR == XXH_VSX
2020-05-11 00:33:12 +00:00
# if defined(__s390x__)
# include <s390intrin.h>
# else
# include <altivec.h>
# endif
# undef vector /* Undo the pollution */
2020-05-11 00:33:12 +00:00
typedef __vector unsigned long long xxh_u64x2;
typedef __vector unsigned char xxh_u8x16;
typedef __vector unsigned xxh_u32x4;
# ifndef XXH_VSX_BE
# if defined(__BIG_ENDIAN__) \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
# define XXH_VSX_BE 1
# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
# warning "-maltivec=be is not recommended. Please use native endianness."
# define XXH_VSX_BE 1
# else
# define XXH_VSX_BE 0
# endif
2020-05-11 00:33:12 +00:00
# endif /* !defined(XXH_VSX_BE) */
2020-05-11 00:33:12 +00:00
# if XXH_VSX_BE
/* A wrapper for POWER9's vec_revb. */
2020-05-11 00:33:12 +00:00
# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
# define XXH_vec_revb vec_revb
# else
2020-05-11 00:33:12 +00:00
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
{
2020-05-11 00:33:12 +00:00
xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
return vec_perm(val, val, vByteSwap);
}
# endif
2020-05-11 00:33:12 +00:00
# endif /* XXH_VSX_BE */
2020-05-11 00:33:12 +00:00
/*
* Performs an unaligned load and byte swaps it on big endian.
*/
2020-05-11 00:33:12 +00:00
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
{
xxh_u64x2 ret;
memcpy(&ret, ptr, sizeof(xxh_u64x2));
# if XXH_VSX_BE
ret = XXH_vec_revb(ret);
# endif
return ret;
}
/*
2020-05-11 00:33:12 +00:00
* vec_mulo and vec_mule are very problematic intrinsics on PowerPC
*
2020-05-11 00:33:12 +00:00
* These intrinsics weren't added until GCC 8, despite existing for a while,
* and they are endian dependent. Also, their meaning swap depending on version.
* */
# if defined(__s390x__)
/* s390x is always big endian, no issue on this platform */
# define XXH_vec_mulo vec_mulo
# define XXH_vec_mule vec_mule
# elif defined(__clang__) && __has_builtin(__builtin_altivec_vmuleuw)
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
# define XXH_vec_mulo __builtin_altivec_vmulouw
# define XXH_vec_mule __builtin_altivec_vmuleuw
2020-05-11 00:33:12 +00:00
# else
/* gcc needs inline assembly */
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
2020-05-11 00:33:12 +00:00
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
{
xxh_u64x2 result;
__asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
return result;
}
2020-05-11 00:33:12 +00:00
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
{
xxh_u64x2 result;
__asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
return result;
}
2020-05-11 00:33:12 +00:00
# endif /* XXH_vec_mulo, XXH_vec_mule */
#endif /* XXH_VECTOR == XXH_VSX */
/* prefetch
* can be disabled, by declaring XXH_NO_PREFETCH build macro */
#if defined(XXH_NO_PREFETCH)
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
#else
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
# else
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
# endif
#endif /* XXH_NO_PREFETCH */
/* ==========================================
* XXH3 default settings
* ========================================== */
#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
# error "default keyset is not large enough"
#endif
2020-05-11 00:33:12 +00:00
/* Pseudorandom secret taken directly from FARSH */
XXH_ALIGN(64) static const xxh_u8 kSecret[XXH_SECRET_DEFAULT_SIZE] = {
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
/*
2020-05-11 00:33:12 +00:00
* Calculates a 32-bit to 64-bit long multiply.
*
* Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't
* need to (but it shouldn't need to anyways, it is about 7 instructions to do
* a 64x64 multiply...). Since we know that this will _always_ emit MULL, we
* use that instead of the normal method.
*
2020-05-11 00:33:12 +00:00
* If you are compiling for platforms like Thumb-1 and don't have a better option,
* you may also want to write your own long multiply routine here.
*
* XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
* {
* return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
* }
*/
2020-05-11 00:33:12 +00:00
#if defined(_MSC_VER) && defined(_M_IX86)
# include <intrin.h>
# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
#else
/*
* Downcast + upcast is usually better than masking on older compilers like
* GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
*
* The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
* and perform a full 64x64 multiply -- entirely redundant on 32-bit.
*/
# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
#endif
2020-05-11 00:33:12 +00:00
/*
* Calculates a 64->128-bit long multiply.
*
* Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
*/
static XXH128_hash_t
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
{
/*
* GCC/Clang __uint128_t method.
*
* On most 64-bit targets, GCC and Clang define a __uint128_t type.
* This is usually the best way as it usually uses a native long 64-bit
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
*
* Usually.
*
2020-05-11 00:33:12 +00:00
* Despite being a 32-bit platform, Clang (and emscripten) define this type
* despite not having the arithmetic for it. This results in a laggy
* compiler builtin call which calculates a full 128-bit multiply.
* In that case it is best to use the portable one.
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
*/
#if defined(__GNUC__) && !defined(__wasm__) \
&& defined(__SIZEOF_INT128__) \
|| (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
__uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
XXH128_hash_t const r128 = { (xxh_u64)(product), (xxh_u64)(product >> 64) };
return r128;
/*
* MSVC for x64's _umul128 method.
*
* xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
*
* This compiles to single operand MUL on x64.
*/
#elif defined(_M_X64) || defined(_M_IA64)
#ifndef _MSC_VER
# pragma intrinsic(_umul128)
#endif
xxh_u64 product_high;
xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
XXH128_hash_t const r128 = { product_low, product_high };
return r128;
#else
/*
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
*
2020-05-11 00:33:12 +00:00
* This is a fast and simple grade school multiply, which is shown below
* with base 10 arithmetic instead of base 0x100000000.
*
* 9 3 // D2 lhs = 93
* x 7 5 // D2 rhs = 75
* ----------
2020-05-11 00:33:12 +00:00
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
* ---------
2020-05-11 00:33:12 +00:00
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
* ---------
2020-05-11 00:33:12 +00:00
* 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
*
* The reasons for adding the products like this are:
* 1. It avoids manual carry tracking. Just like how
2020-05-11 00:33:12 +00:00
* (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
* This avoids a lot of complexity.
*
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL
2020-05-11 00:33:12 +00:00
* instruction available in ARM's Digital Signal Processing extension
* in 32-bit ARMv6 and later, which is shown below:
*
* void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
* {
* xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
* *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
* *RdHi = (xxh_u32)(product >> 32);
* }
*
2020-05-11 00:33:12 +00:00
* This instruction was designed for efficient long multiplication, and
* allows this to be calculated in only 4 instructions at speeds
* comparable to some 64-bit ALUs.
*
2020-05-11 00:33:12 +00:00
* 3. It isn't terrible on other platforms. Usually this will be a couple
* of 32-bit ADD/ADCs.
*/
/* First calculate all of the cross products. */
xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
/* Now add the products together. These will never overflow. */
xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
XXH128_hash_t r128 = { lower, upper };
return r128;
#endif
}
/*
* Does a 64-bit to 128-bit multiply, then XOR folds it.
2020-05-11 00:33:12 +00:00
*
* The reason for the separate function is to prevent passing too many structs
* around by value. This will hopefully inline the multiply, but we don't force it.
*/
static xxh_u64
XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
{
XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
return product.low64 ^ product.high64;
}
2020-05-11 00:33:12 +00:00
/* Seems to produce slightly better code on GCC for some reason. */
XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
{
XXH_ASSERT(0 <= shift && shift < 64);
return v64 ^ (v64 >> shift);
}
2020-05-11 00:33:12 +00:00
/*
* We don't need to (or want to) mix as much as XXH64.
*
* Short hashes are more evenly distributed, so it isn't necessary.
*/
static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
{
2020-05-11 00:33:12 +00:00
h64 = XXH_xorshift64(h64, 37);
h64 *= 0x165667919E3779F9ULL;
h64 = XXH_xorshift64(h64, 32);
return h64;
}
/* ==========================================
* Short keys
2020-05-11 00:33:12 +00:00
* ==========================================
* One of the shortcomings of XXH32 and XXH64 was that their performance was
* sub-optimal on short lengths. It used an iterative algorithm which strongly
* favored lengths that were a multiple of 4 or 8.
*
* Instead of iterating over individual inputs, we use a set of single shot
* functions which piece together a range of lengths and operate in constant time.
*
* Additionally, the number of multiplies has been significantly reduced. This
* reduces latency, especially when emulating 64-bit multiplies on 32-bit.
*
* Depending on the platform, this may or may not be faster than XXH32, but it
* is almost guaranteed to be faster than XXH64.
*/
2020-05-11 00:33:12 +00:00
/*
* At very short lengths, there isn't enough input to fully hide secrets, or use
* the entire secret.
*
* There is also only a limited amount of mixing we can do before significantly
* impacting performance.
*
* Therefore, we use different sections of the secret and always mix two secret
* samples with an XOR. This should have no effect on performance on the
* seedless or withSeed variants because everything _should_ be constant folded
* by modern compilers.
*
* The XOR mixing hides individual parts of the secret and increases entropy.
*
* This adds an extra layer of strength for custom secrets.
*/
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(1 <= len && len <= 3);
XXH_ASSERT(secret != NULL);
2020-05-11 00:33:12 +00:00
/*
* len = 1: combined = { input[0], 0x01, input[0], input[0] }
* len = 2: combined = { input[1], 0x02, input[0], input[1] }
* len = 3: combined = { input[2], 0x03, input[0], input[1] }
*/
{ xxh_u8 const c1 = input[0];
xxh_u8 const c2 = input[len >> 1];
xxh_u8 const c3 = input[len - 1];
2020-05-11 00:33:12 +00:00
xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
xxh_u64 const mixed = keyed * PRIME64_1;
return XXH3_avalanche(mixed);
}
}
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
2020-05-11 00:33:12 +00:00
XXH_ASSERT(4 <= len && len < 8);
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
{ xxh_u32 const input1 = XXH_readLE32(input);
xxh_u32 const input2 = XXH_readLE32(input + len - 4);
xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
xxh_u64 x = input64 ^ bitflip;
/* this mix is inspired by Pelle Evensen's rrmxmx */
x ^= XXH_rotl64(x, 49) ^ XXH_rotl64(x, 24);
x *= 0x9FB21C651E98DF25ULL;
x ^= (x >> 35) + len ;
x *= 0x9FB21C651E98DF25ULL;
return XXH_xorshift64(x, 28);
}
}
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
2020-05-11 00:33:12 +00:00
XXH_ASSERT(8 <= len && len <= 16);
{ xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
xxh_u64 const acc = len
+ XXH_swap64(input_lo) + input_hi
+ XXH3_mul128_fold64(input_lo, input_hi);
return XXH3_avalanche(acc);
}
}
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(len <= 16);
2020-05-11 00:33:12 +00:00
{ if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
2020-05-11 00:33:12 +00:00
return XXH3_avalanche((PRIME64_1 + seed) ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
}
}
/*
* DISCLAIMER: There are known *seed-dependent* multicollisions here due to
* multiplication by zero, affecting hashes of lengths 17 to 240.
*
* However, they are very unlikely.
*
* Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
* unseeded non-cryptographic hashes, it does not attempt to defend itself
* against specially crafted inputs, only random inputs.
*
* Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
* cancelling out the secret is taken an arbitrary number of times (addressed
* in XXH3_accumulate_512), this collision is very unlikely with random inputs
* and/or proper seeding:
*
* This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
* function that is only called up to 16 times per hash with up to 240 bytes of
* input.
*
* This is not too bad for a non-cryptographic hash function, especially with
* only 64 bit outputs.
*
* The 128-bit variant (which trades some speed for strength) is NOT affected
* by this, although it is always a good idea to use a proper seed if you care
* about strength.
*/
XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
{
#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
&& defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
/*
* UGLY HACK:
* GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
* slower code.
*
* By forcing seed64 into a register, we disrupt the cost model and
* cause it to scalarize. See `XXH32_round()`
*
* FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
* XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
* GCC 9.2, despite both emitting scalar code.
*
* GCC generates much better scalar code than Clang for the rest of XXH3,
* which is why finding a more optimal codepath is an interest.
*/
__asm__ ("" : "+r" (seed64));
#endif
{ xxh_u64 const input_lo = XXH_readLE64(input);
xxh_u64 const input_hi = XXH_readLE64(input+8);
return XXH3_mul128_fold64(
input_lo ^ (XXH_readLE64(secret) + seed64),
input_hi ^ (XXH_readLE64(secret+8) - seed64)
);
}
}
/* For mid range keys, XXH3 uses a Mum-hash variant. */
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(16 < len && len <= 128);
{ xxh_u64 acc = len * PRIME64_1;
if (len > 32) {
if (len > 64) {
if (len > 96) {
acc += XXH3_mix16B(input+48, secret+96, seed);
acc += XXH3_mix16B(input+len-64, secret+112, seed);
}
acc += XXH3_mix16B(input+32, secret+64, seed);
acc += XXH3_mix16B(input+len-48, secret+80, seed);
}
acc += XXH3_mix16B(input+16, secret+32, seed);
acc += XXH3_mix16B(input+len-32, secret+48, seed);
}
acc += XXH3_mix16B(input+0, secret+0, seed);
acc += XXH3_mix16B(input+len-16, secret+16, seed);
return XXH3_avalanche(acc);
}
}
#define XXH3_MIDSIZE_MAX 240
XXH_NO_INLINE XXH64_hash_t
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
#define XXH3_MIDSIZE_STARTOFFSET 3
#define XXH3_MIDSIZE_LASTOFFSET 17
{ xxh_u64 acc = len * PRIME64_1;
int const nbRounds = (int)len / 16;
int i;
for (i=0; i<8; i++) {
acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
}
acc = XXH3_avalanche(acc);
XXH_ASSERT(nbRounds >= 8);
#if defined(__clang__) /* Clang */ \
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
/*
* UGLY HACK:
* Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
* In everywhere else, it uses scalar code.
*
* For 64->128-bit multiplies, even if the NEON was 100% optimal, it
* would still be slower than UMAAL (see XXH_mult64to128).
*
* Unfortunately, Clang doesn't handle the long multiplies properly and
* converts them to the nonexistent "vmulq_u64" intrinsic, which is then
* scalarized into an ugly mess of VMOV.32 instructions.
*
* This mess is difficult to avoid without turning autovectorization
* off completely, but they are usually relatively minor and/or not
* worth it to fix.
*
* This loop is the easiest to fix, as unlike XXH32, this pragma
* _actually works_ because it is a loop vectorization instead of an
* SLP vectorization.
*/
#pragma clang loop vectorize(disable)
#endif
for (i=8 ; i < nbRounds; i++) {
acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
}
/* last bytes */
acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
return XXH3_avalanche(acc);
}
}
/* === Long Keys === */
#define STRIPE_LEN 64
#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
#define ACC_NB (STRIPE_LEN / sizeof(xxh_u64))
typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e;
2020-05-11 00:33:12 +00:00
/*
* XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
*
* It is a hardened version of UMAC, based off of FARSH's implementation.
*
* This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
* implementations, and it is ridiculously fast.
*
* We harden it by mixing the original input to the accumulators as well as the product.
*
* This means that in the (relatively likely) case of a multiply by zero, the
* original input is preserved.
*
* On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
* cross-pollination, as otherwise the upper and lower halves would be
* essentially independent.
*
* This doesn't matter on 64-bit hashes since they all get merged together in
* the end, so we skip the extra step.
*
* Both XXH3_64bits and XXH3_128bits use this subroutine.
*/
XXH_FORCE_INLINE void
XXH3_accumulate_512( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret,
XXH3_accWidth_e accWidth)
{
#if (XXH_VECTOR == XXH_AVX2)
XXH_ASSERT((((size_t)acc) & 31) == 0);
2020-05-11 00:33:12 +00:00
{ XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
const __m256i* const xinput = (const __m256i *) input;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
const __m256i* const xsecret = (const __m256i *) secret;
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
2020-05-11 00:33:12 +00:00
/* data_vec = xinput[i]; */
__m256i const data_vec = _mm256_loadu_si256 (xinput+i);
/* key_vec = xsecret[i]; */
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
/* data_key = data_vec ^ key_vec; */
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
if (accWidth == XXH3_acc_128bits) {
2020-05-11 00:33:12 +00:00
/* xacc[i] += swap(data_vec); */
__m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
__m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
/* xacc[i] += product; */
xacc[i] = _mm256_add_epi64(product, sum);
} else { /* XXH3_acc_64bits */
2020-05-11 00:33:12 +00:00
/* xacc[i] += data_vec; */
__m256i const sum = _mm256_add_epi64(xacc[i], data_vec);
2020-05-11 00:33:12 +00:00
/* xacc[i] += product; */
xacc[i] = _mm256_add_epi64(product, sum);
}
} }
#elif (XXH_VECTOR == XXH_SSE2)
2020-05-11 00:33:12 +00:00
/* SSE2 is just a half-scale version of the AVX2 version. */
XXH_ASSERT((((size_t)acc) & 15) == 0);
2020-05-11 00:33:12 +00:00
{ XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
const __m128i* const xinput = (const __m128i *) input;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
const __m128i* const xsecret = (const __m128i *) secret;
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
2020-05-11 00:33:12 +00:00
/* data_vec = xinput[i]; */
__m128i const data_vec = _mm_loadu_si128 (xinput+i);
/* key_vec = xsecret[i]; */
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
/* data_key = data_vec ^ key_vec; */
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
if (accWidth == XXH3_acc_128bits) {
2020-05-11 00:33:12 +00:00
/* xacc[i] += swap(data_vec); */
__m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
2020-05-11 00:33:12 +00:00
__m128i const sum = _mm_add_epi64(xacc[i], data_swap);
/* xacc[i] += product; */
xacc[i] = _mm_add_epi64(product, sum);
} else { /* XXH3_acc_64bits */
2020-05-11 00:33:12 +00:00
/* xacc[i] += data_vec; */
__m128i const sum = _mm_add_epi64(xacc[i], data_vec);
2020-05-11 00:33:12 +00:00
/* xacc[i] += product; */
xacc[i] = _mm_add_epi64(product, sum);
}
} }
#elif (XXH_VECTOR == XXH_NEON)
XXH_ASSERT((((size_t)acc) & 15) == 0);
{
XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
/* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
uint8_t const* const xinput = (const uint8_t *) input;
uint8_t const* const xsecret = (const uint8_t *) secret;
size_t i;
for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) {
2020-05-11 00:33:12 +00:00
/* data_vec = xinput[i]; */
uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
/* key_vec = xsecret[i]; */
2020-05-11 00:33:12 +00:00
uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
/* data_key = data_vec ^ key_vec; */
2020-05-11 00:33:12 +00:00
uint64x2_t data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
uint32x2_t data_key_lo, data_key_hi;
if (accWidth == XXH3_acc_64bits) {
/* xacc[i] += data_vec; */
xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec));
} else { /* XXH3_acc_128bits */
/* xacc[i] += swap(data_vec); */
2020-05-11 00:33:12 +00:00
uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
uint64x2_t const swapped = vextq_u64(data64, data64, 1);
xacc[i] = vaddq_u64 (xacc[i], swapped);
}
2020-05-11 00:33:12 +00:00
/* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
* data_key_hi = (uint32x2_t) (data_key >> 32);
* data_key = UNDEFINED; */
XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
/* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
}
}
#elif (XXH_VECTOR == XXH_VSX)
2020-05-11 00:33:12 +00:00
xxh_u64x2* const xacc = (xxh_u64x2*) acc; /* presumed aligned */
xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
xxh_u64x2 const v32 = { 32, 32 };
size_t i;
2020-05-11 00:33:12 +00:00
for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) {
/* data_vec = xinput[i]; */
2020-05-11 00:33:12 +00:00
xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
/* key_vec = xsecret[i]; */
2020-05-11 00:33:12 +00:00
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
xxh_u64x2 const data_key = data_vec ^ key_vec;
/* shuffled = (data_key << 32) | (data_key >> 32); */
2020-05-11 00:33:12 +00:00
xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
/* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
xacc[i] += product;
if (accWidth == XXH3_acc_64bits) {
xacc[i] += data_vec;
} else { /* XXH3_acc_128bits */
/* swap high and low halves */
2020-05-11 00:33:12 +00:00
#ifdef __s390x__
xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2);
#else
xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
#endif
xacc[i] += data_swapped;
}
}
#else /* scalar variant of Accumulator - universal */
2020-05-11 00:33:12 +00:00
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
size_t i;
XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
for (i=0; i < ACC_NB; i++) {
xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
if (accWidth == XXH3_acc_64bits) {
xacc[i] += data_val;
} else {
xacc[i ^ 1] += data_val; /* swap adjacent lanes */
}
xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
}
#endif
}
2020-05-11 00:33:12 +00:00
/*
* XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
*
* Multiplication isn't perfect, as explained by Google in HighwayHash:
*
* // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
* // varying degrees. In descending order of goodness, bytes
* // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
* // As expected, the upper and lower bytes are much worse.
*
* Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
*
* Since our algorithm uses a pseudorandom secret to add some variance into the
* mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
*
* This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
* extraction.
*
* Both XXH3_64bits and XXH3_128bits use this subroutine.
*/
XXH_FORCE_INLINE void
XXH3_scrambleAcc(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
#if (XXH_VECTOR == XXH_AVX2)
XXH_ASSERT((((size_t)acc) & 31) == 0);
{ XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
2020-05-11 00:33:12 +00:00
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
const __m256i* const xsecret = (const __m256i *) secret;
const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1);
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
/* xacc[i] ^= (xacc[i] >> 47) */
__m256i const acc_vec = xacc[i];
__m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
__m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
/* xacc[i] ^= xsecret; */
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
/* xacc[i] *= PRIME32_1; */
2020-05-11 00:33:12 +00:00
__m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
__m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
__m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
}
}
#elif (XXH_VECTOR == XXH_SSE2)
XXH_ASSERT((((size_t)acc) & 15) == 0);
{ XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
2020-05-11 00:33:12 +00:00
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
const __m128i* const xsecret = (const __m128i *) secret;
const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1);
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
/* xacc[i] ^= (xacc[i] >> 47) */
__m128i const acc_vec = xacc[i];
__m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
__m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
2020-05-11 00:33:12 +00:00
/* xacc[i] ^= xsecret[i]; */
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
/* xacc[i] *= PRIME32_1; */
2020-05-11 00:33:12 +00:00
__m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
__m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
__m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
}
}
#elif (XXH_VECTOR == XXH_NEON)
XXH_ASSERT((((size_t)acc) & 15) == 0);
2020-05-11 00:33:12 +00:00
{ uint64x2_t* xacc = (uint64x2_t*) acc;
uint8_t const* xsecret = (uint8_t const*) secret;
uint32x2_t prime = vdup_n_u32 (PRIME32_1);
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) {
2020-05-11 00:33:12 +00:00
/* xacc[i] ^= (xacc[i] >> 47); */
uint64x2_t acc_vec = xacc[i];
uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
/* xacc[i] ^= xsecret[i]; */
uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
/* xacc[i] *= PRIME32_1 */
uint32x2_t data_key_lo, data_key_hi;
/* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
* data_key_hi = (uint32x2_t) (xacc[i] >> 32);
* xacc[i] = UNDEFINED; */
XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
{ /*
* prod_hi = (data_key >> 32) * PRIME32_1;
*
* Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
* incorrectly "optimize" this:
* tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
* shifted = vshll_n_u32(tmp, 32);
* to this:
* tmp = "vmulq_u64"(a, b); // no such thing!
* shifted = vshlq_n_u64(tmp, 32);
*
* However, unlike SSE, Clang lacks a 64-bit multiply routine
* for NEON, and it scalarizes two 64-bit multiplies instead.
*
* vmull_u32 has the same timing as vmul_u32, and it avoids
* this bug completely.
* See https://bugs.llvm.org/show_bug.cgi?id=39967
*/
uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
/* xacc[i] = prod_hi << 32; */
xacc[i] = vshlq_n_u64(prod_hi, 32);
/* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */
xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
}
} }
#elif (XXH_VECTOR == XXH_VSX)
2020-05-11 00:33:12 +00:00
XXH_ASSERT((((size_t)acc) & 15) == 0);
2020-05-11 00:33:12 +00:00
{ xxh_u64x2* const xacc = (xxh_u64x2*) acc;
const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
/* constants */
xxh_u64x2 const v32 = { 32, 32 };
xxh_u64x2 const v47 = { 47, 47 };
xxh_u32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 };
size_t i;
for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) {
/* xacc[i] ^= (xacc[i] >> 47); */
xxh_u64x2 const acc_vec = xacc[i];
xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
/* xacc[i] ^= xsecret[i]; */
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
xxh_u64x2 const data_key = data_vec ^ key_vec;
/* xacc[i] *= PRIME32_1 */
/* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
/* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
xacc[i] = prod_odd + (prod_even << v32);
} }
#else /* scalar variant of Scrambler - universal */
2020-05-11 00:33:12 +00:00
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
size_t i;
XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
for (i=0; i < ACC_NB; i++) {
xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
xxh_u64 acc64 = xacc[i];
2020-05-11 00:33:12 +00:00
acc64 = XXH_xorshift64(acc64, 47);
acc64 ^= key64;
acc64 *= PRIME32_1;
xacc[i] = acc64;
}
#endif
}
2020-05-11 00:33:12 +00:00
#define XXH_PREFETCH_DIST 384
/*
* XXH3_accumulate()
* Loops over XXH3_accumulate_512().
* Assumption: nbStripes will not overflow the secret size
*/
XXH_FORCE_INLINE void
2020-05-11 00:33:12 +00:00
XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
const xxh_u8* XXH_RESTRICT input,
const xxh_u8* XXH_RESTRICT secret,
size_t nbStripes,
XXH3_accWidth_e accWidth)
{
size_t n;
for (n = 0; n < nbStripes; n++ ) {
2020-05-11 00:33:12 +00:00
const xxh_u8* const in = input + n*STRIPE_LEN;
XXH_PREFETCH(in + XXH_PREFETCH_DIST);
XXH3_accumulate_512(acc,
2020-05-11 00:33:12 +00:00
in,
secret + n*XXH_SECRET_CONSUME_RATE,
accWidth);
}
}
XXH_FORCE_INLINE void
XXH3_hashLong_internal_loop( xxh_u64* XXH_RESTRICT acc,
const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH3_accWidth_e accWidth)
{
size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
size_t const block_len = STRIPE_LEN * nb_rounds;
size_t const nb_blocks = len / block_len;
size_t n;
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
for (n = 0; n < nb_blocks; n++) {
XXH3_accumulate(acc, input + n*block_len, secret, nb_rounds, accWidth);
XXH3_scrambleAcc(acc, secret + secretSize - STRIPE_LEN);
}
/* last partial block */
XXH_ASSERT(len > STRIPE_LEN);
{ size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN;
XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, accWidth);
/* last stripe */
if (len & (STRIPE_LEN - 1)) {
const xxh_u8* const p = input + len - STRIPE_LEN;
2020-05-11 00:33:12 +00:00
/* Do not align on 8, so that the secret is different from the scrambler */
#define XXH_SECRET_LASTACC_START 7
XXH3_accumulate_512(acc, p, secret + secretSize - STRIPE_LEN - XXH_SECRET_LASTACC_START, accWidth);
} }
}
XXH_FORCE_INLINE xxh_u64
XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
{
return XXH3_mul128_fold64(
acc[0] ^ XXH_readLE64(secret),
acc[1] ^ XXH_readLE64(secret+8) );
}
static XXH64_hash_t
XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
{
xxh_u64 result64 = start;
result64 += XXH3_mix2Accs(acc+0, secret + 0);
result64 += XXH3_mix2Accs(acc+2, secret + 16);
result64 += XXH3_mix2Accs(acc+4, secret + 32);
result64 += XXH3_mix2Accs(acc+6, secret + 48);
return XXH3_avalanche(result64);
}
#define XXH3_INIT_ACC { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, \
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 };
XXH_FORCE_INLINE XXH64_hash_t
2020-05-11 00:33:12 +00:00
XXH3_hashLong_64b_internal(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
{
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;
XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_64bits);
/* converge into final hash */
XXH_STATIC_ASSERT(sizeof(acc) == 64);
2020-05-11 00:33:12 +00:00
/* do not align on 8, so that the secret is different from the accumulator */
#define XXH_SECRET_MERGEACCS_START 11
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
}
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
{
if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
memcpy(dst, &v64, sizeof(v64));
}
/* XXH3_initCustomSecret() :
* destination `customSecret` is presumed allocated and same size as `kSecret`.
*/
XXH_FORCE_INLINE void XXH3_initCustomSecret(xxh_u8* customSecret, xxh_u64 seed64)
{
int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
int i;
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
for (i=0; i < nbRounds; i++) {
XXH_writeLE64(customSecret + 16*i, XXH_readLE64(kSecret + 16*i) + seed64);
XXH_writeLE64(customSecret + 16*i + 8, XXH_readLE64(kSecret + 16*i + 8) - seed64);
}
}
2020-05-11 00:33:12 +00:00
/*
* It's important for performance that XXH3_hashLong is not inlined. Not sure
* why (uop cache maybe?), but the difference is large and easily measurable.
*/
XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_defaultSecret(const xxh_u8* XXH_RESTRICT input, size_t len)
{
return XXH3_hashLong_64b_internal(input, len, kSecret, sizeof(kSecret));
}
/*
* It's important for performance that XXH3_hashLong is not inlined. Not sure
* why (uop cache maybe?), but the difference is large and easily measurable.
*/
XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSecret(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
{
return XXH3_hashLong_64b_internal(input, len, secret, secretSize);
}
/*
* XXH3_hashLong_64b_withSeed():
* Generate a custom key based on alteration of default kSecret with the seed,
* and then use this key for long mode hashing.
2020-05-11 00:33:12 +00:00
*
* This operation is decently fast but nonetheless costs a little bit of time.
* Try to avoid it whenever possible (typically when seed==0).
2020-05-11 00:33:12 +00:00
*
* It's important for performance that XXH3_hashLong is not inlined. Not sure
* why (uop cache maybe?), but the difference is large and easily measurable.
*/
2020-05-11 00:33:12 +00:00
XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
{
XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
if (seed==0) return XXH3_hashLong_64b_defaultSecret(input, len);
XXH3_initCustomSecret(secret, seed);
2020-05-11 00:33:12 +00:00
return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret));
}
/* === Public entry point === */
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
{
2020-05-11 00:33:12 +00:00
if (len <= 16)
return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, 0);
if (len <= 128)
return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
return XXH3_hashLong_64b_defaultSecret((const xxh_u8*)input, len);
}
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
2020-05-11 00:33:12 +00:00
/*
* If an action is to be taken if `secret` conditions are not respected,
* it should be done here.
* For now, it's a contract pre-condition.
2020-05-11 00:33:12 +00:00
* Adding a check and a branch here would cost performance at every hash.
*/
if (len <= 16)
return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
if (len <= 128)
return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
return XXH3_hashLong_64b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
}
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
{
2020-05-11 00:33:12 +00:00
if (len <= 16)
return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, seed);
if (len <= 128)
return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
return XXH3_hashLong_64b_withSeed((const xxh_u8*)input, len, seed);
}
/* === XXH3 streaming === */
2020-05-11 00:33:12 +00:00
/*
* Malloc's a pointer that is always aligned to align.
*
* This must be freed with `XXH_alignedFree()`.
*
* malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
* alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
* or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
*
* This underalignment previously caused a rather obvious crash which went
* completely unnoticed due to XXH3_createState() not actually being tested.
* Credit to RedSpah for noticing this bug.
*
* The alignment is done manually: Functions like posix_memalign or _mm_malloc
* are avoided: To maintain portability, we would have to write a fallback
* like this anyways, and besides, testing for the existence of library
* functions without relying on external build tools is impossible.
*
* The method is simple: Overallocate, manually align, and store the offset
* to the original behind the returned pointer.
*
* Align must be a power of 2 and 8 <= align <= 128.
*/
static void* XXH_alignedMalloc(size_t s, size_t align)
{
XXH_ASSERT(align <= 128 && align >= 8); /* range check */
XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
{ /* Overallocate to make room for manual realignment and an offset byte */
xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
if (base != NULL) {
/*
* Get the offset needed to align this pointer.
*
* Even if the returned pointer is aligned, there will always be
* at least one byte to store the offset to the original pointer.
*/
size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
/* Add the offset for the now-aligned pointer */
xxh_u8* ptr = base + offset;
XXH_ASSERT((size_t)ptr % align == 0);
/* Store the offset immediately before the returned pointer. */
ptr[-1] = (xxh_u8)offset;
return ptr;
}
return NULL;
}
}
/*
* Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
* normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
*/
static void XXH_alignedFree(void* p)
{
if (p != NULL) {
xxh_u8* ptr = (xxh_u8*)p;
/* Get the offset byte we added in XXH_malloc. */
xxh_u8 offset = ptr[-1];
/* Free the original malloc'd pointer */
xxh_u8* base = ptr - offset;
XXH_free(base);
}
}
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
{
2020-05-11 00:33:12 +00:00
return (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
}
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
{
2020-05-11 00:33:12 +00:00
XXH_alignedFree(statePtr);
return XXH_OK;
}
XXH_PUBLIC_API void
XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
{
memcpy(dst_state, src_state, sizeof(*dst_state));
}
static void
XXH3_64bits_reset_internal(XXH3_state_t* statePtr,
XXH64_hash_t seed,
const xxh_u8* secret, size_t secretSize)
{
XXH_ASSERT(statePtr != NULL);
memset(statePtr, 0, sizeof(*statePtr));
statePtr->acc[0] = PRIME32_3;
statePtr->acc[1] = PRIME64_1;
statePtr->acc[2] = PRIME64_2;
statePtr->acc[3] = PRIME64_3;
statePtr->acc[4] = PRIME64_4;
statePtr->acc[5] = PRIME32_2;
statePtr->acc[6] = PRIME64_5;
statePtr->acc[7] = PRIME32_1;
statePtr->seed = seed;
XXH_ASSERT(secret != NULL);
statePtr->secret = secret;
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
statePtr->secretLimit = (XXH32_hash_t)(secretSize - STRIPE_LEN);
statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset(XXH3_state_t* statePtr)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_64bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
if (secret == NULL) return XXH_ERROR;
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_64bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
XXH3_initCustomSecret(statePtr->customSecret, seed);
statePtr->secret = statePtr->customSecret;
return XXH_OK;
}
XXH_FORCE_INLINE void
XXH3_consumeStripes( xxh_u64* acc,
XXH32_hash_t* nbStripesSoFarPtr, XXH32_hash_t nbStripesPerBlock,
const xxh_u8* input, size_t totalStripes,
const xxh_u8* secret, size_t secretLimit,
XXH3_accWidth_e accWidth)
{
XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) {
/* need a scrambling operation */
size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr;
XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, accWidth);
XXH3_scrambleAcc(acc, secret + secretLimit);
XXH3_accumulate(acc, input + nbStripes * STRIPE_LEN, secret, totalStripes - nbStripes, accWidth);
*nbStripesSoFarPtr = (XXH32_hash_t)(totalStripes - nbStripes);
} else {
XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, totalStripes, accWidth);
*nbStripesSoFarPtr += (XXH32_hash_t)totalStripes;
}
}
2020-05-11 00:33:12 +00:00
/*
* Both XXH3_64bits_update and XXH3_128bits_update use this routine.
*/
XXH_FORCE_INLINE XXH_errorcode
XXH3_update(XXH3_state_t* state, const xxh_u8* input, size_t len, XXH3_accWidth_e accWidth)
{
if (input==NULL)
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
return XXH_OK;
#else
return XXH_ERROR;
#endif
{ const xxh_u8* const bEnd = input + len;
state->totalLen += len;
if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */
XXH_memcpy(state->buffer + state->bufferedSize, input, len);
state->bufferedSize += (XXH32_hash_t)len;
return XXH_OK;
}
2020-05-11 00:33:12 +00:00
/* input is now > XXH3_INTERNALBUFFER_SIZE */
#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / STRIPE_LEN)
XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % STRIPE_LEN == 0); /* clean multiple */
2020-05-11 00:33:12 +00:00
/*
* There is some input left inside the internal buffer.
* Fill it, then consume it.
*/
if (state->bufferedSize) {
size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
input += loadSize;
XXH3_consumeStripes(state->acc,
&state->nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, XXH3_INTERNALBUFFER_STRIPES,
state->secret, state->secretLimit,
accWidth);
state->bufferedSize = 0;
}
2020-05-11 00:33:12 +00:00
/* Consume input by full buffer quantities */
if (input+XXH3_INTERNALBUFFER_SIZE <= bEnd) {
const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
do {
XXH3_consumeStripes(state->acc,
&state->nbStripesSoFar, state->nbStripesPerBlock,
input, XXH3_INTERNALBUFFER_STRIPES,
state->secret, state->secretLimit,
accWidth);
input += XXH3_INTERNALBUFFER_SIZE;
} while (input<=limit);
}
2020-05-11 00:33:12 +00:00
if (input < bEnd) { /* Some remaining input: buffer it */
XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
state->bufferedSize = (XXH32_hash_t)(bEnd-input);
}
}
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
{
return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_64bits);
}
XXH_FORCE_INLINE void
XXH3_digest_long (XXH64_hash_t* acc, const XXH3_state_t* state, XXH3_accWidth_e accWidth)
{
2020-05-11 00:33:12 +00:00
/*
* Digest on a local copy. This way, the state remains unaltered, and it can
* continue ingesting more input afterwards.
*/
memcpy(acc, state->acc, sizeof(state->acc));
if (state->bufferedSize >= STRIPE_LEN) {
size_t const totalNbStripes = state->bufferedSize / STRIPE_LEN;
XXH32_hash_t nbStripesSoFar = state->nbStripesSoFar;
XXH3_consumeStripes(acc,
&nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, totalNbStripes,
state->secret, state->secretLimit,
accWidth);
if (state->bufferedSize % STRIPE_LEN) { /* one last partial stripe */
XXH3_accumulate_512(acc,
state->buffer + state->bufferedSize - STRIPE_LEN,
state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
accWidth);
}
} else { /* bufferedSize < STRIPE_LEN */
if (state->bufferedSize) { /* one last stripe */
xxh_u8 lastStripe[STRIPE_LEN];
size_t const catchupSize = STRIPE_LEN - state->bufferedSize;
memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
XXH3_accumulate_512(acc,
lastStripe,
state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
accWidth);
} }
}
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
{
if (state->totalLen > XXH3_MIDSIZE_MAX) {
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
XXH3_digest_long(acc, state, XXH3_acc_64bits);
2020-05-11 00:33:12 +00:00
return XXH3_mergeAccs(acc,
state->secret + XXH_SECRET_MERGEACCS_START,
(xxh_u64)state->totalLen * PRIME64_1);
}
2020-05-11 00:33:12 +00:00
/* len <= XXH3_MIDSIZE_MAX: short code */
if (state->seed)
return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
2020-05-11 00:33:12 +00:00
return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
state->secret, state->secretLimit + STRIPE_LEN);
}
/* ==========================================
2020-05-11 00:33:12 +00:00
* XXH3 128 bits (a.k.a XXH128)
* ==========================================
* XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
* even without counting the significantly larger output size.
*
* For example, extra steps are taken to avoid the seed-dependent collisions
* in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
*
* This strength naturally comes at the cost of some speed, especially on short
* lengths. Note that longer hashes are about as fast as the 64-bit version
* due to it using only a slight modification of the 64-bit loop.
*
* XXH128 is also more oriented towards 64-bit machines. It is still extremely
* fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
*/
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
2020-05-11 00:33:12 +00:00
/* A doubled version of 1to3_64b with different constants. */
XXH_ASSERT(input != NULL);
XXH_ASSERT(1 <= len && len <= 3);
XXH_ASSERT(secret != NULL);
2020-05-11 00:33:12 +00:00
/*
* len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
* len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
* len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
*/
{ xxh_u8 const c1 = input[0];
xxh_u8 const c2 = input[len >> 1];
xxh_u8 const c3 = input[len - 1];
2020-05-11 00:33:12 +00:00
xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
xxh_u64 const mixedl = keyed_lo * PRIME64_1;
xxh_u64 const mixedh = keyed_hi * PRIME64_5;
XXH128_hash_t const h128 = { XXH3_avalanche(mixedl) /*low64*/, XXH3_avalanche(mixedh) /*high64*/ };
return h128;
}
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(4 <= len && len <= 8);
2020-05-11 00:33:12 +00:00
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
{ xxh_u32 const input_lo = XXH_readLE32(input);
xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
2020-05-11 00:33:12 +00:00
xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
xxh_u64 const keyed = input_64 ^ bitflip;
/* Shift len to the left to ensure it is even, this avoids even multiplies. */
XXH128_hash_t m128 = XXH_mult64to128(keyed, PRIME64_1 + (len << 2));
m128.high64 += (m128.low64 << 1);
m128.low64 ^= (m128.high64 >> 3);
m128.low64 = XXH_xorshift64(m128.low64, 35);
m128.low64 *= 0x9FB21C651E98DF25ULL;
m128.low64 = XXH_xorshift64(m128.low64, 28);
m128.high64 = XXH3_avalanche(m128.high64);
return m128;
}
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(9 <= len && len <= 16);
2020-05-11 00:33:12 +00:00
{ xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
xxh_u64 const input_lo = XXH_readLE64(input);
xxh_u64 input_hi = XXH_readLE64(input + len - 8);
XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, PRIME64_1);
/*
* Put len in the middle of m128 to ensure that the length gets mixed to
* both the low and high bits in the 128x64 multiply below.
*/
m128.low64 += (xxh_u64)(len - 1) << 54;
input_hi ^= bitfliph;
/*
* Add the high 32 bits of input_hi to the high 32 bits of m128, then
* add the long product of the low 32 bits of input_hi and PRIME32_2 to
* the high 64 bits of m128.
*
* The best approach to this operation is different on 32-bit and 64-bit.
*/
if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
/*
* 32-bit optimized version, which is more readable.
*
* On 32-bit, it removes an ADC and delays a dependency between the two
* halves of m128.high64, but it generates an extra mask on 64-bit.
*/
m128.high64 += (input_hi & 0xFFFFFFFF00000000) + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2);
} else {
/*
* 64-bit optimized (albeit more confusing) version.
*
* Uses some properties of addition and multiplication to remove the mask:
*
* Let:
* a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
* b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
* c = PRIME32_2
*
* a + (b * c)
* Inverse Property: x + y - x == y
* a + (b * (1 + c - 1))
* Distributive Property: x * (y + z) == (x * y) + (x * z)
* a + (b * 1) + (b * (c - 1))
* Identity Property: x * 1 == x
* a + b + (b * (c - 1))
*
* Substitute a, b, and c:
* input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1))
*
* Since input_hi.hi + input_hi.lo == input_hi, we get this:
* input_hi + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1))
*/
m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2 - 1);
}
/* m128 ^= XXH_swap64(m128 >> 64); */
m128.low64 ^= XXH_swap64(m128.high64);
{ /* 128x64 multiply: h128 = m128 * PRIME64_2; */
XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2);
h128.high64 += m128.high64 * PRIME64_2;
2020-05-11 00:33:12 +00:00
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = XXH3_avalanche(h128.high64);
return h128;
} }
}
2020-05-11 00:33:12 +00:00
/*
* Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
*/
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(len <= 16);
{ if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
2020-05-11 00:33:12 +00:00
{ XXH128_hash_t h128;
xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
h128.low64 = XXH3_avalanche((PRIME64_1 + seed) ^ bitflipl);
h128.high64 = XXH3_avalanche((PRIME64_2 - seed) ^ bitfliph);
return h128;
} }
}
2020-05-11 00:33:12 +00:00
/*
* A bit slower than XXH3_mix16B, but handles multiply by zero better.
*/
XXH_FORCE_INLINE XXH128_hash_t
2020-05-11 00:33:12 +00:00
XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
const xxh_u8* secret, XXH64_hash_t seed)
{
acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
return acc;
}
2020-05-11 00:33:12 +00:00
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(16 < len && len <= 128);
{ XXH128_hash_t acc;
acc.low64 = len * PRIME64_1;
acc.high64 = 0;
if (len > 32) {
if (len > 64) {
if (len > 96) {
acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
}
acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
}
acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
}
acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
{ xxh_u64 const low64 = acc.low64 + acc.high64;
xxh_u64 const high64 = (acc.low64 * PRIME64_1)
+ (acc.high64 * PRIME64_4)
+ ((len - seed) * PRIME64_2);
XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) };
return h128;
}
}
}
XXH_NO_INLINE XXH128_hash_t
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
{ XXH128_hash_t acc;
int const nbRounds = (int)len / 32;
int i;
acc.low64 = len * PRIME64_1;
acc.high64 = 0;
for (i=0; i<4; i++) {
2020-05-11 00:33:12 +00:00
acc = XXH128_mix32B(acc,
input + (32 * i),
input + (32 * i) + 16,
secret + (32 * i),
seed);
}
acc.low64 = XXH3_avalanche(acc.low64);
acc.high64 = XXH3_avalanche(acc.high64);
XXH_ASSERT(nbRounds >= 4);
for (i=4 ; i < nbRounds; i++) {
2020-05-11 00:33:12 +00:00
acc = XXH128_mix32B(acc,
input + (32 * i),
input + (32 * i) + 16,
secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
seed);
}
/* last bytes */
2020-05-11 00:33:12 +00:00
acc = XXH128_mix32B(acc,
input + len - 16,
input + len - 32,
secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
0ULL - seed);
{ xxh_u64 const low64 = acc.low64 + acc.high64;
2020-05-11 00:33:12 +00:00
xxh_u64 const high64 = (acc.low64 * PRIME64_1)
+ (acc.high64 * PRIME64_4)
+ ((len - seed) * PRIME64_2);
XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) };
return h128;
}
}
}
XXH_FORCE_INLINE XXH128_hash_t
2020-05-11 00:33:12 +00:00
XXH3_hashLong_128b_internal(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
{
2020-05-11 00:33:12 +00:00
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;
2020-05-11 00:33:12 +00:00
XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_128bits);
/* converge into final hash */
XXH_STATIC_ASSERT(sizeof(acc) == 64);
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
{ xxh_u64 low64 = XXH3_mergeAccs(acc,
secret + XXH_SECRET_MERGEACCS_START,
(xxh_u64)len * PRIME64_1);
xxh_u64 high64 = XXH3_mergeAccs(acc,
secret + secretSize
- sizeof(acc) - XXH_SECRET_MERGEACCS_START,
~((xxh_u64)len * PRIME64_2));
XXH128_hash_t h128 = { low64, high64 };
return h128;
}
}
2020-05-11 00:33:12 +00:00
/*
* It's important for performance that XXH3_hashLong is not inlined. Not sure
* why (uop cache maybe?), but the difference is large and easily measurable.
*/
XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_defaultSecret(const xxh_u8* input, size_t len)
{
return XXH3_hashLong_128b_internal(input, len, kSecret, sizeof(kSecret));
}
/*
* It's important for performance that XXH3_hashLong is not inlined. Not sure
* why (uop cache maybe?), but the difference is large and easily measurable.
*/
XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSecret(const xxh_u8* input, size_t len,
const xxh_u8* secret, size_t secretSize)
{
return XXH3_hashLong_128b_internal(input, len, secret, secretSize);
}
/*
* It's important for performance that XXH3_hashLong is not inlined. Not sure
* why (uop cache maybe?), but the difference is large and easily measurable.
*/
XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
{
XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
if (seed == 0) return XXH3_hashLong_128b_defaultSecret(input, len);
XXH3_initCustomSecret(secret, seed);
return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret));
}
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
{
2020-05-11 00:33:12 +00:00
if (len <= 16)
return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, 0);
if (len <= 128)
return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
return XXH3_hashLong_128b_defaultSecret((const xxh_u8*)input, len);
}
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
2020-05-11 00:33:12 +00:00
/*
* If an action is to be taken if `secret` conditions are not respected,
* it should be done here.
* For now, it's a contract pre-condition.
2020-05-11 00:33:12 +00:00
* Adding a check and a branch here would cost performance at every hash.
*/
if (len <= 16)
return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
if (len <= 128)
return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
return XXH3_hashLong_128b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
}
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
{
2020-05-11 00:33:12 +00:00
if (len <= 16)
return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, seed);
if (len <= 128)
return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
return XXH3_hashLong_128b_withSeed((const xxh_u8*)input, len, seed);
}
XXH_PUBLIC_API XXH128_hash_t
XXH128(const void* input, size_t len, XXH64_hash_t seed)
{
return XXH3_128bits_withSeed(input, len, seed);
}
/* === XXH3 128-bit streaming === */
2020-05-11 00:33:12 +00:00
/*
* All the functions are actually the same as for 64-bit streaming variant.
* The only difference is the finalizatiom routine.
*/
static void
XXH3_128bits_reset_internal(XXH3_state_t* statePtr,
2020-05-11 00:33:12 +00:00
XXH64_hash_t seed,
const xxh_u8* secret, size_t secretSize)
{
XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
}
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset(XXH3_state_t* statePtr)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_128bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
if (secret == NULL) return XXH_ERROR;
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_128bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
XXH3_initCustomSecret(statePtr->customSecret, seed);
statePtr->secret = statePtr->customSecret;
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
{
return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_128bits);
}
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
{
if (state->totalLen > XXH3_MIDSIZE_MAX) {
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
XXH3_digest_long(acc, state, XXH3_acc_128bits);
XXH_ASSERT(state->secretLimit + STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
2020-05-11 00:33:12 +00:00
{ xxh_u64 low64 = XXH3_mergeAccs(acc,
state->secret + XXH_SECRET_MERGEACCS_START,
(xxh_u64)state->totalLen * PRIME64_1);
xxh_u64 high64 = XXH3_mergeAccs(acc,
state->secret + state->secretLimit + STRIPE_LEN
- sizeof(acc) - XXH_SECRET_MERGEACCS_START,
~((xxh_u64)state->totalLen * PRIME64_2));
XXH128_hash_t const h128 = { low64, high64 };
return h128;
}
}
/* len <= XXH3_MIDSIZE_MAX : short code */
if (state->seed)
return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
2020-05-11 00:33:12 +00:00
return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
state->secret, state->secretLimit + STRIPE_LEN);
}
/* 128-bit utility functions */
2020-05-11 00:33:12 +00:00
#include <string.h> /* memcmp, memcpy */
/* return : 1 is equal, 0 if different */
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
{
/* note : XXH128_hash_t is compact, it has no padding byte */
return !(memcmp(&h1, &h2, sizeof(h1)));
}
/* This prototype is compatible with stdlib's qsort().
* return : >0 if *h128_1 > *h128_2
* <0 if *h128_1 < *h128_2
* =0 if *h128_1 == *h128_2 */
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
{
XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
/* note : bets that, in most cases, hash values are different */
if (hcmp) return hcmp;
return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
}
/*====== Canonical representation ======*/
XXH_PUBLIC_API void
XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) {
hash.high64 = XXH_swap64(hash.high64);
hash.low64 = XXH_swap64(hash.low64);
}
memcpy(dst, &hash.high64, sizeof(hash.high64));
memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
}
XXH_PUBLIC_API XXH128_hash_t
XXH128_hashFromCanonical(const XXH128_canonical_t* src)
{
XXH128_hash_t h;
h.high64 = XXH_readBE64(src);
h.low64 = XXH_readBE64(src->digest + 8);
return h;
}
2020-05-11 00:33:12 +00:00
/* Pop our optimization override from above */
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
&& defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
# pragma GCC pop_options
#endif
2020-05-11 00:33:12 +00:00
#endif /* XXH3_H_1397135465 */