Parallelize background jobs.

This commit is contained in:
Bartosz Taudul 2020-03-18 02:02:37 +01:00
parent a48e804e96
commit 1f4dbd1b2e

View File

@ -1668,16 +1668,16 @@ Worker::Worker( FileRead& f, EventType::Type eventMask, bool bgTasks )
m_backgroundDone.store( false, std::memory_order_relaxed );
#ifndef TRACY_NO_STATISTICS
m_threadBackground = std::thread( [this, reconstructMemAllocPlot, eventMask] {
std::vector<std::thread> jobs;
if( !m_data.ctxSwitch.empty() )
{
ReconstructContextSwitchUsage();
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
jobs.emplace_back( std::thread( [this] { ReconstructContextSwitchUsage(); } ) );
}
if( reconstructMemAllocPlot )
{
ReconstructMemAllocPlot();
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
jobs.emplace_back( std::thread( [this] { ReconstructMemAllocPlot(); } ) );
}
std::function<void(Vector<short_ptr<ZoneEvent>>&, uint16_t)> ProcessTimeline;
@ -1693,15 +1693,146 @@ Worker::Worker( FileRead& f, EventType::Type eventMask, bool bgTasks )
}
};
for( auto& t : m_data.threads )
{
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
if( !t->timeline.empty() )
jobs.emplace_back( std::thread( [this, ProcessTimeline] {
for( auto& t : m_data.threads )
{
// Don't touch thread compression cache in a thread.
ProcessTimeline( t->timeline, m_data.localThreadCompress.DecompressMustRaw( t->id ) );
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
if( !t->timeline.empty() )
{
// Don't touch thread compression cache in a thread.
ProcessTimeline( t->timeline, m_data.localThreadCompress.DecompressMustRaw( t->id ) );
}
}
} ) );
if( eventMask & EventType::Samples )
{
jobs.emplace_back( std::thread( [this] {
unordered_flat_map<uint32_t, uint32_t> counts;
uint32_t total = 0;
for( auto& t : m_data.threads ) total += t->samples.size();
if( total != 0 )
{
for( auto& t : m_data.threads )
{
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
for( auto& sd : t->samples )
{
const auto cs = sd.callstack.Val();
auto it = counts.find( cs );
if( it == counts.end() )
{
counts.emplace( cs, 1 );
}
else
{
it->second++;
}
}
}
for( auto& v : counts ) UpdateSampleStatistics( v.first, v.second, false );
}
std::lock_guard<std::shared_mutex> lock( m_data.lock );
m_data.callstackSamplesReady = true;
} ) );
jobs.emplace_back( std::thread( [this] {
uint32_t gcnt = 0;
for( auto& t : m_data.threads )
{
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
for( auto& sd : t->samples )
{
const auto& cs = GetCallstack( sd.callstack.Val() );
const auto time = sd.time.Val();
auto vec = &t->ghostZones;
auto idx = cs.size() - 1;
do
{
auto& entry = cs[idx];
uint32_t fid;
auto it = m_data.ghostFramesMap.find( entry.data );
if( it == m_data.ghostFramesMap.end() )
{
fid = uint32_t( m_data.ghostFrames.size() );
m_data.ghostFrames.push_back( entry );
m_data.ghostFramesMap.emplace( entry.data, fid );
}
else
{
fid = it->second;
}
if( vec->empty() )
{
gcnt++;
auto& zone = vec->push_next();
zone.start.SetVal( time );
zone.end.SetVal( time + m_samplingPeriod );
zone.frame.SetVal( fid );
zone.child = -1;
}
else
{
auto& back = vec->back();
const auto backFrame = GetCallstackFrame( m_data.ghostFrames[back.frame.Val()] );
const auto thisFrame = GetCallstackFrame( entry );
bool match = false;
if( backFrame && thisFrame )
{
match = backFrame->size == thisFrame->size;
if( match )
{
for( uint8_t i=0; i<thisFrame->size; i++ )
{
if( backFrame->data[i].symAddr != thisFrame->data[i].symAddr )
{
match = false;
break;
}
}
}
}
if( match )
{
back.end.SetVal( time + m_samplingPeriod );
}
else
{
gcnt++;
back.end.SetVal( time );
auto& zone = vec->push_next();
zone.start.SetVal( time );
zone.end.SetVal( time + m_samplingPeriod );
zone.frame.SetVal( fid );
zone.child = -1;
}
}
if( idx > 0 )
{
auto& zone = vec->back();
if( zone.child < 0 )
{
zone.child = m_data.ghostChildren.size();
vec = &m_data.ghostChildren.push_next();
}
else
{
vec = &m_data.ghostChildren[zone.child];
}
}
}
while( idx-- > 0 );
}
}
std::lock_guard<std::shared_mutex> lock( m_data.lock );
m_data.ghostZonesReady = true;
m_data.ghostCnt = gcnt;
} ) );
}
for( auto& job : jobs ) job.join();
for( auto& v : m_data.sourceLocationZones )
{
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
@ -1717,132 +1848,6 @@ Worker::Worker( FileRead& f, EventType::Type eventMask, bool bgTasks )
m_data.sourceLocationZonesReady = true;
}
if( eventMask & EventType::Samples )
{
unordered_flat_map<uint32_t, uint32_t> counts;
uint32_t total = 0;
for( auto& t : m_data.threads ) total += t->samples.size();
if( total != 0 )
{
for( auto& t : m_data.threads )
{
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
for( auto& sd : t->samples )
{
const auto cs = sd.callstack.Val();
auto it = counts.find( cs );
if( it == counts.end() )
{
counts.emplace( cs, 1 );
}
else
{
it->second++;
}
}
}
for( auto& v : counts ) UpdateSampleStatistics( v.first, v.second, false );
}
{
std::lock_guard<std::shared_mutex> lock( m_data.lock );
m_data.callstackSamplesReady = true;
}
uint32_t gcnt = 0;
for( auto& t : m_data.threads )
{
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
for( auto& sd : t->samples )
{
const auto& cs = GetCallstack( sd.callstack.Val() );
const auto time = sd.time.Val();
auto vec = &t->ghostZones;
auto idx = cs.size() - 1;
do
{
auto& entry = cs[idx];
uint32_t fid;
auto it = m_data.ghostFramesMap.find( entry.data );
if( it == m_data.ghostFramesMap.end() )
{
fid = uint32_t( m_data.ghostFrames.size() );
m_data.ghostFrames.push_back( entry );
m_data.ghostFramesMap.emplace( entry.data, fid );
}
else
{
fid = it->second;
}
if( vec->empty() )
{
gcnt++;
auto& zone = vec->push_next();
zone.start.SetVal( time );
zone.end.SetVal( time + m_samplingPeriod );
zone.frame.SetVal( fid );
zone.child = -1;
}
else
{
auto& back = vec->back();
const auto backFrame = GetCallstackFrame( m_data.ghostFrames[back.frame.Val()] );
const auto thisFrame = GetCallstackFrame( entry );
bool match = false;
if( backFrame && thisFrame )
{
match = backFrame->size == thisFrame->size;
if( match )
{
for( uint8_t i=0; i<thisFrame->size; i++ )
{
if( backFrame->data[i].symAddr != thisFrame->data[i].symAddr )
{
match = false;
break;
}
}
}
}
if( match )
{
back.end.SetVal( time + m_samplingPeriod );
}
else
{
gcnt++;
back.end.SetVal( time );
auto& zone = vec->push_next();
zone.start.SetVal( time );
zone.end.SetVal( time + m_samplingPeriod );
zone.frame.SetVal( fid );
zone.child = -1;
}
}
if( idx > 0 )
{
auto& zone = vec->back();
if( zone.child < 0 )
{
zone.child = m_data.ghostChildren.size();
vec = &m_data.ghostChildren.push_next();
}
else
{
vec = &m_data.ghostChildren[zone.child];
}
}
}
while( idx-- > 0 );
}
}
std::lock_guard<std::shared_mutex> lock( m_data.lock );
m_data.ghostZonesReady = true;
m_data.ghostCnt = gcnt;
}
m_backgroundDone.store( true, std::memory_order_relaxed );
} );
#else