mirror of
https://github.com/wolfpld/tracy.git
synced 2024-11-22 14:44:34 +00:00
Update stb_image to 2.29.
This commit is contained in:
parent
2df972d586
commit
3b9e7a1838
@ -1,4 +1,4 @@
|
||||
/* stb_image - v2.28 - public domain image loader - http://nothings.org/stb
|
||||
/* stb_image - v2.29 - public domain image loader - http://nothings.org/stb
|
||||
no warranty implied; use at your own risk
|
||||
|
||||
Do this:
|
||||
@ -48,6 +48,7 @@ LICENSE
|
||||
|
||||
RECENT REVISION HISTORY:
|
||||
|
||||
2.29 (2023-05-xx) optimizations
|
||||
2.28 (2023-01-29) many error fixes, security errors, just tons of stuff
|
||||
2.27 (2021-07-11) document stbi_info better, 16-bit PNM support, bug fixes
|
||||
2.26 (2020-07-13) many minor fixes
|
||||
@ -1072,8 +1073,8 @@ static int stbi__addints_valid(int a, int b)
|
||||
return a <= INT_MAX - b;
|
||||
}
|
||||
|
||||
// returns 1 if the product of two signed shorts is valid, 0 on overflow.
|
||||
static int stbi__mul2shorts_valid(short a, short b)
|
||||
// returns 1 if the product of two ints fits in a signed short, 0 on overflow.
|
||||
static int stbi__mul2shorts_valid(int a, int b)
|
||||
{
|
||||
if (b == 0 || b == -1) return 1; // multiplication by 0 is always 0; check for -1 so SHRT_MIN/b doesn't overflow
|
||||
if ((a >= 0) == (b >= 0)) return a <= SHRT_MAX/b; // product is positive, so similar to mul2sizes_valid
|
||||
@ -3384,13 +3385,13 @@ static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan)
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int stbi__skip_jpeg_junk_at_end(stbi__jpeg *j)
|
||||
static stbi_uc stbi__skip_jpeg_junk_at_end(stbi__jpeg *j)
|
||||
{
|
||||
// some JPEGs have junk at end, skip over it but if we find what looks
|
||||
// like a valid marker, resume there
|
||||
while (!stbi__at_eof(j->s)) {
|
||||
int x = stbi__get8(j->s);
|
||||
while (x == 255) { // might be a marker
|
||||
stbi_uc x = stbi__get8(j->s);
|
||||
while (x == 0xff) { // might be a marker
|
||||
if (stbi__at_eof(j->s)) return STBI__MARKER_none;
|
||||
x = stbi__get8(j->s);
|
||||
if (x != 0x00 && x != 0xff) {
|
||||
@ -4176,6 +4177,7 @@ typedef struct
|
||||
{
|
||||
stbi_uc *zbuffer, *zbuffer_end;
|
||||
int num_bits;
|
||||
int hit_zeof_once;
|
||||
stbi__uint32 code_buffer;
|
||||
|
||||
char *zout;
|
||||
@ -4242,10 +4244,21 @@ stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z)
|
||||
int b,s;
|
||||
if (a->num_bits < 16) {
|
||||
if (stbi__zeof(a)) {
|
||||
return -1; /* report error for unexpected end of data. */
|
||||
if (!a->hit_zeof_once) {
|
||||
// This is the first time we hit eof, insert 16 extra padding btis
|
||||
// to allow us to keep going; if we actually consume any of them
|
||||
// though, that is invalid data. This is caught later.
|
||||
a->hit_zeof_once = 1;
|
||||
a->num_bits += 16; // add 16 implicit zero bits
|
||||
} else {
|
||||
// We already inserted our extra 16 padding bits and are again
|
||||
// out, this stream is actually prematurely terminated.
|
||||
return -1;
|
||||
}
|
||||
} else {
|
||||
stbi__fill_bits(a);
|
||||
}
|
||||
}
|
||||
b = z->fast[a->code_buffer & STBI__ZFAST_MASK];
|
||||
if (b) {
|
||||
s = b >> 9;
|
||||
@ -4309,6 +4322,13 @@ static int stbi__parse_huffman_block(stbi__zbuf *a)
|
||||
int len,dist;
|
||||
if (z == 256) {
|
||||
a->zout = zout;
|
||||
if (a->hit_zeof_once && a->num_bits < 16) {
|
||||
// The first time we hit zeof, we inserted 16 extra zero bits into our bit
|
||||
// buffer so the decoder can just do its speculative decoding. But if we
|
||||
// actually consumed any of those bits (which is the case when num_bits < 16),
|
||||
// the stream actually read past the end so it is malformed.
|
||||
return stbi__err("unexpected end","Corrupt PNG");
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
if (z >= 286) return stbi__err("bad huffman code","Corrupt PNG"); // per DEFLATE, length codes 286 and 287 must not appear in compressed data
|
||||
@ -4320,7 +4340,7 @@ static int stbi__parse_huffman_block(stbi__zbuf *a)
|
||||
dist = stbi__zdist_base[z];
|
||||
if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]);
|
||||
if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG");
|
||||
if (zout + len > a->zout_end) {
|
||||
if (len > a->zout_end - zout) {
|
||||
if (!stbi__zexpand(a, zout, len)) return 0;
|
||||
zout = a->zout;
|
||||
}
|
||||
@ -4464,6 +4484,7 @@ static int stbi__parse_zlib(stbi__zbuf *a, int parse_header)
|
||||
if (!stbi__parse_zlib_header(a)) return 0;
|
||||
a->num_bits = 0;
|
||||
a->code_buffer = 0;
|
||||
a->hit_zeof_once = 0;
|
||||
do {
|
||||
final = stbi__zreceive(a,1);
|
||||
type = stbi__zreceive(a,2);
|
||||
@ -4619,9 +4640,8 @@ enum {
|
||||
STBI__F_up=2,
|
||||
STBI__F_avg=3,
|
||||
STBI__F_paeth=4,
|
||||
// synthetic filters used for first scanline to avoid needing a dummy row of 0s
|
||||
STBI__F_avg_first,
|
||||
STBI__F_paeth_first
|
||||
// synthetic filter used for first scanline to avoid needing a dummy row of 0s
|
||||
STBI__F_avg_first
|
||||
};
|
||||
|
||||
static stbi_uc first_row_filter[5] =
|
||||
@ -4630,22 +4650,47 @@ static stbi_uc first_row_filter[5] =
|
||||
STBI__F_sub,
|
||||
STBI__F_none,
|
||||
STBI__F_avg_first,
|
||||
STBI__F_paeth_first
|
||||
STBI__F_sub // Paeth with b=c=0 turns out to be equivalent to sub
|
||||
};
|
||||
|
||||
static int stbi__paeth(int a, int b, int c)
|
||||
{
|
||||
int p = a + b - c;
|
||||
int pa = abs(p-a);
|
||||
int pb = abs(p-b);
|
||||
int pc = abs(p-c);
|
||||
if (pa <= pb && pa <= pc) return a;
|
||||
if (pb <= pc) return b;
|
||||
return c;
|
||||
// This formulation looks very different from the reference in the PNG spec, but is
|
||||
// actually equivalent and has favorable data dependencies and admits straightforward
|
||||
// generation of branch-free code, which helps performance significantly.
|
||||
int thresh = c*3 - (a + b);
|
||||
int lo = a < b ? a : b;
|
||||
int hi = a < b ? b : a;
|
||||
int t0 = (hi <= thresh) ? lo : c;
|
||||
int t1 = (thresh <= lo) ? hi : t0;
|
||||
return t1;
|
||||
}
|
||||
|
||||
static const stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 };
|
||||
|
||||
// adds an extra all-255 alpha channel
|
||||
// dest == src is legal
|
||||
// img_n must be 1 or 3
|
||||
static void stbi__create_png_alpha_expand8(stbi_uc *dest, stbi_uc *src, stbi__uint32 x, int img_n)
|
||||
{
|
||||
int i;
|
||||
// must process data backwards since we allow dest==src
|
||||
if (img_n == 1) {
|
||||
for (i=x-1; i >= 0; --i) {
|
||||
dest[i*2+1] = 255;
|
||||
dest[i*2+0] = src[i];
|
||||
}
|
||||
} else {
|
||||
STBI_ASSERT(img_n == 3);
|
||||
for (i=x-1; i >= 0; --i) {
|
||||
dest[i*4+3] = 255;
|
||||
dest[i*4+2] = src[i*3+2];
|
||||
dest[i*4+1] = src[i*3+1];
|
||||
dest[i*4+0] = src[i*3+0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// create the png data from post-deflated data
|
||||
static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color)
|
||||
{
|
||||
@ -4653,6 +4698,8 @@ static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 r
|
||||
stbi__context *s = a->s;
|
||||
stbi__uint32 i,j,stride = x*out_n*bytes;
|
||||
stbi__uint32 img_len, img_width_bytes;
|
||||
stbi_uc *filter_buf;
|
||||
int all_ok = 1;
|
||||
int k;
|
||||
int img_n = s->img_n; // copy it into a local for later
|
||||
|
||||
@ -4664,8 +4711,11 @@ static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 r
|
||||
a->out = (stbi_uc *) stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into
|
||||
if (!a->out) return stbi__err("outofmem", "Out of memory");
|
||||
|
||||
// note: error exits here don't need to clean up a->out individually,
|
||||
// stbi__do_png always does on error.
|
||||
if (!stbi__mad3sizes_valid(img_n, x, depth, 7)) return stbi__err("too large", "Corrupt PNG");
|
||||
img_width_bytes = (((img_n * x * depth) + 7) >> 3);
|
||||
if (!stbi__mad2sizes_valid(img_width_bytes, y, img_width_bytes)) return stbi__err("too large", "Corrupt PNG");
|
||||
img_len = (img_width_bytes + 1) * y;
|
||||
|
||||
// we used to check for exact match between raw_len and img_len on non-interlaced PNGs,
|
||||
@ -4673,188 +4723,136 @@ static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 r
|
||||
// so just check for raw_len < img_len always.
|
||||
if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG");
|
||||
|
||||
for (j=0; j < y; ++j) {
|
||||
stbi_uc *cur = a->out + stride*j;
|
||||
stbi_uc *prior;
|
||||
int filter = *raw++;
|
||||
|
||||
if (filter > 4)
|
||||
return stbi__err("invalid filter","Corrupt PNG");
|
||||
// Allocate two scan lines worth of filter workspace buffer.
|
||||
filter_buf = (stbi_uc *) stbi__malloc_mad2(img_width_bytes, 2, 0);
|
||||
if (!filter_buf) return stbi__err("outofmem", "Out of memory");
|
||||
|
||||
// Filtering for low-bit-depth images
|
||||
if (depth < 8) {
|
||||
if (img_width_bytes > x) return stbi__err("invalid width","Corrupt PNG");
|
||||
cur += x*out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place
|
||||
filter_bytes = 1;
|
||||
width = img_width_bytes;
|
||||
}
|
||||
prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above
|
||||
|
||||
for (j=0; j < y; ++j) {
|
||||
// cur/prior filter buffers alternate
|
||||
stbi_uc *cur = filter_buf + (j & 1)*img_width_bytes;
|
||||
stbi_uc *prior = filter_buf + (~j & 1)*img_width_bytes;
|
||||
stbi_uc *dest = a->out + stride*j;
|
||||
int nk = width * filter_bytes;
|
||||
int filter = *raw++;
|
||||
|
||||
// check filter type
|
||||
if (filter > 4) {
|
||||
all_ok = stbi__err("invalid filter","Corrupt PNG");
|
||||
break;
|
||||
}
|
||||
|
||||
// if first row, use special filter that doesn't sample previous row
|
||||
if (j == 0) filter = first_row_filter[filter];
|
||||
|
||||
// handle first byte explicitly
|
||||
for (k=0; k < filter_bytes; ++k) {
|
||||
// perform actual filtering
|
||||
switch (filter) {
|
||||
case STBI__F_none : cur[k] = raw[k]; break;
|
||||
case STBI__F_sub : cur[k] = raw[k]; break;
|
||||
case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break;
|
||||
case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break;
|
||||
case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break;
|
||||
case STBI__F_avg_first : cur[k] = raw[k]; break;
|
||||
case STBI__F_paeth_first: cur[k] = raw[k]; break;
|
||||
}
|
||||
}
|
||||
|
||||
if (depth == 8) {
|
||||
if (img_n != out_n)
|
||||
cur[img_n] = 255; // first pixel
|
||||
raw += img_n;
|
||||
cur += out_n;
|
||||
prior += out_n;
|
||||
} else if (depth == 16) {
|
||||
if (img_n != out_n) {
|
||||
cur[filter_bytes] = 255; // first pixel top byte
|
||||
cur[filter_bytes+1] = 255; // first pixel bottom byte
|
||||
}
|
||||
raw += filter_bytes;
|
||||
cur += output_bytes;
|
||||
prior += output_bytes;
|
||||
} else {
|
||||
raw += 1;
|
||||
cur += 1;
|
||||
prior += 1;
|
||||
}
|
||||
|
||||
// this is a little gross, so that we don't switch per-pixel or per-component
|
||||
if (depth < 8 || img_n == out_n) {
|
||||
int nk = (width - 1)*filter_bytes;
|
||||
#define STBI__CASE(f) \
|
||||
case f: \
|
||||
case STBI__F_none:
|
||||
memcpy(cur, raw, nk);
|
||||
break;
|
||||
case STBI__F_sub:
|
||||
memcpy(cur, raw, filter_bytes);
|
||||
for (k = filter_bytes; k < nk; ++k)
|
||||
cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]);
|
||||
break;
|
||||
case STBI__F_up:
|
||||
for (k = 0; k < nk; ++k)
|
||||
switch (filter) {
|
||||
// "none" filter turns into a memcpy here; make that explicit.
|
||||
case STBI__F_none: memcpy(cur, raw, nk); break;
|
||||
STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); } break;
|
||||
STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
|
||||
STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); } break;
|
||||
STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); } break;
|
||||
STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); } break;
|
||||
STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); } break;
|
||||
cur[k] = STBI__BYTECAST(raw[k] + prior[k]);
|
||||
break;
|
||||
case STBI__F_avg:
|
||||
for (k = 0; k < filter_bytes; ++k)
|
||||
cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1));
|
||||
for (k = filter_bytes; k < nk; ++k)
|
||||
cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1));
|
||||
break;
|
||||
case STBI__F_paeth:
|
||||
for (k = 0; k < filter_bytes; ++k)
|
||||
cur[k] = STBI__BYTECAST(raw[k] + prior[k]); // prior[k] == stbi__paeth(0,prior[k],0)
|
||||
for (k = filter_bytes; k < nk; ++k)
|
||||
cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes], prior[k], prior[k-filter_bytes]));
|
||||
break;
|
||||
case STBI__F_avg_first:
|
||||
memcpy(cur, raw, filter_bytes);
|
||||
for (k = filter_bytes; k < nk; ++k)
|
||||
cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1));
|
||||
break;
|
||||
}
|
||||
#undef STBI__CASE
|
||||
|
||||
raw += nk;
|
||||
|
||||
// expand decoded bits in cur to dest, also adding an extra alpha channel if desired
|
||||
if (depth < 8) {
|
||||
stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range
|
||||
stbi_uc *in = cur;
|
||||
stbi_uc *out = dest;
|
||||
stbi_uc inb = 0;
|
||||
stbi__uint32 nsmp = x*img_n;
|
||||
|
||||
// expand bits to bytes first
|
||||
if (depth == 4) {
|
||||
for (i=0; i < nsmp; ++i) {
|
||||
if ((i & 1) == 0) inb = *in++;
|
||||
*out++ = scale * (inb >> 4);
|
||||
inb <<= 4;
|
||||
}
|
||||
} else if (depth == 2) {
|
||||
for (i=0; i < nsmp; ++i) {
|
||||
if ((i & 3) == 0) inb = *in++;
|
||||
*out++ = scale * (inb >> 6);
|
||||
inb <<= 2;
|
||||
}
|
||||
} else {
|
||||
STBI_ASSERT(depth == 1);
|
||||
for (i=0; i < nsmp; ++i) {
|
||||
if ((i & 7) == 0) inb = *in++;
|
||||
*out++ = scale * (inb >> 7);
|
||||
inb <<= 1;
|
||||
}
|
||||
}
|
||||
|
||||
// insert alpha=255 values if desired
|
||||
if (img_n != out_n)
|
||||
stbi__create_png_alpha_expand8(dest, dest, x, img_n);
|
||||
} else if (depth == 8) {
|
||||
if (img_n == out_n)
|
||||
memcpy(dest, cur, x*img_n);
|
||||
else
|
||||
stbi__create_png_alpha_expand8(dest, cur, x, img_n);
|
||||
} else if (depth == 16) {
|
||||
// convert the image data from big-endian to platform-native
|
||||
stbi__uint16 *dest16 = (stbi__uint16*)dest;
|
||||
stbi__uint32 nsmp = x*img_n;
|
||||
|
||||
if (img_n == out_n) {
|
||||
for (i = 0; i < nsmp; ++i, ++dest16, cur += 2)
|
||||
*dest16 = (cur[0] << 8) | cur[1];
|
||||
} else {
|
||||
STBI_ASSERT(img_n+1 == out_n);
|
||||
#define STBI__CASE(f) \
|
||||
case f: \
|
||||
for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \
|
||||
for (k=0; k < filter_bytes; ++k)
|
||||
switch (filter) {
|
||||
STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } break;
|
||||
STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); } break;
|
||||
STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
|
||||
STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); } break;
|
||||
STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); } break;
|
||||
STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); } break;
|
||||
STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],0,0)); } break;
|
||||
}
|
||||
#undef STBI__CASE
|
||||
|
||||
// the loop above sets the high byte of the pixels' alpha, but for
|
||||
// 16 bit png files we also need the low byte set. we'll do that here.
|
||||
if (depth == 16) {
|
||||
cur = a->out + stride*j; // start at the beginning of the row again
|
||||
for (i=0; i < x; ++i,cur+=output_bytes) {
|
||||
cur[filter_bytes+1] = 255;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we make a separate pass to expand bits to pixels; for performance,
|
||||
// this could run two scanlines behind the above code, so it won't
|
||||
// intefere with filtering but will still be in the cache.
|
||||
if (depth < 8) {
|
||||
for (j=0; j < y; ++j) {
|
||||
stbi_uc *cur = a->out + stride*j;
|
||||
stbi_uc *in = a->out + stride*j + x*out_n - img_width_bytes;
|
||||
// unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit
|
||||
// png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop
|
||||
stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range
|
||||
|
||||
// note that the final byte might overshoot and write more data than desired.
|
||||
// we can allocate enough data that this never writes out of memory, but it
|
||||
// could also overwrite the next scanline. can it overwrite non-empty data
|
||||
// on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel.
|
||||
// so we need to explicitly clamp the final ones
|
||||
|
||||
if (depth == 4) {
|
||||
for (k=x*img_n; k >= 2; k-=2, ++in) {
|
||||
*cur++ = scale * ((*in >> 4) );
|
||||
*cur++ = scale * ((*in ) & 0x0f);
|
||||
}
|
||||
if (k > 0) *cur++ = scale * ((*in >> 4) );
|
||||
} else if (depth == 2) {
|
||||
for (k=x*img_n; k >= 4; k-=4, ++in) {
|
||||
*cur++ = scale * ((*in >> 6) );
|
||||
*cur++ = scale * ((*in >> 4) & 0x03);
|
||||
*cur++ = scale * ((*in >> 2) & 0x03);
|
||||
*cur++ = scale * ((*in ) & 0x03);
|
||||
}
|
||||
if (k > 0) *cur++ = scale * ((*in >> 6) );
|
||||
if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03);
|
||||
if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03);
|
||||
} else if (depth == 1) {
|
||||
for (k=x*img_n; k >= 8; k-=8, ++in) {
|
||||
*cur++ = scale * ((*in >> 7) );
|
||||
*cur++ = scale * ((*in >> 6) & 0x01);
|
||||
*cur++ = scale * ((*in >> 5) & 0x01);
|
||||
*cur++ = scale * ((*in >> 4) & 0x01);
|
||||
*cur++ = scale * ((*in >> 3) & 0x01);
|
||||
*cur++ = scale * ((*in >> 2) & 0x01);
|
||||
*cur++ = scale * ((*in >> 1) & 0x01);
|
||||
*cur++ = scale * ((*in ) & 0x01);
|
||||
}
|
||||
if (k > 0) *cur++ = scale * ((*in >> 7) );
|
||||
if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01);
|
||||
if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01);
|
||||
if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01);
|
||||
if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01);
|
||||
if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01);
|
||||
if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01);
|
||||
}
|
||||
if (img_n != out_n) {
|
||||
int q;
|
||||
// insert alpha = 255
|
||||
cur = a->out + stride*j;
|
||||
if (img_n == 1) {
|
||||
for (q=x-1; q >= 0; --q) {
|
||||
cur[q*2+1] = 255;
|
||||
cur[q*2+0] = cur[q];
|
||||
for (i = 0; i < x; ++i, dest16 += 2, cur += 2) {
|
||||
dest16[0] = (cur[0] << 8) | cur[1];
|
||||
dest16[1] = 0xffff;
|
||||
}
|
||||
} else {
|
||||
STBI_ASSERT(img_n == 3);
|
||||
for (q=x-1; q >= 0; --q) {
|
||||
cur[q*4+3] = 255;
|
||||
cur[q*4+2] = cur[q*3+2];
|
||||
cur[q*4+1] = cur[q*3+1];
|
||||
cur[q*4+0] = cur[q*3+0];
|
||||
for (i = 0; i < x; ++i, dest16 += 4, cur += 6) {
|
||||
dest16[0] = (cur[0] << 8) | cur[1];
|
||||
dest16[1] = (cur[2] << 8) | cur[3];
|
||||
dest16[2] = (cur[4] << 8) | cur[5];
|
||||
dest16[3] = 0xffff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (depth == 16) {
|
||||
// force the image data from big-endian to platform-native.
|
||||
// this is done in a separate pass due to the decoding relying
|
||||
// on the data being untouched, but could probably be done
|
||||
// per-line during decode if care is taken.
|
||||
stbi_uc *cur = a->out;
|
||||
stbi__uint16 *cur16 = (stbi__uint16*)cur;
|
||||
|
||||
for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) {
|
||||
*cur16 = (cur[0] << 8) | cur[1];
|
||||
}
|
||||
}
|
||||
STBI_FREE(filter_buf);
|
||||
if (!all_ok) return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user