The windows.h header file defines the macro max. If the max macro is include
it will lead to name collisions with the std::numeric_limits<T>::max() function.
One solution is to define NOMINMAX before the inclusion of windows.h.
However, that might be a demanding task for a large codebase. Defining the
NOMINMAX as global define may also break previous code.
Another to solution to the problem is to wrap the numeric_limits function in
parenthesis to instruct the compiler to treat it as a function and not a macro.
This commit wraps the std::numeric_limits<T>::max() calls in the public
interfacing header files, with parenthesis.
This compile-time flag was being ignored on Linux. This change adds
gating for software-sampled stack trace sampling following the same
pattern as other `TRACY_NO_SAMPLE_*` options.
If `TRACY_NO_SAMPLING=1` is provided as an environment variable,
software stack sampling is also disabled.
Previously on demand mode was determined by frame offset parameter being
greater than zero. However, if the application is not pumping frames with
FrameMark macro, the frame index will never increase and the frame offset
parameter stay at zero. It is not possible to distinguish on demand traces
from normal ones in this scenario.
Fix by explicitly saving the on demand flag in trace file and employ the
previous logic to set the flag when importing older traces.
There might have been new modules loaded by another thread between the `SymInitialize` and `EnumProcessModules` calls.
Since we register the enumerated modules into the cache, we need to make sure that symbols for this module are loaded.
The only way to do that is to call `SymLoadModuleEx`, just like we do when finding new modules after `InitCallstack`.
gcc error:
public/tracy/../client/TracyScoped.hpp:102:9: error: ‘___tracy_scoped_zone.tracy::ScopedZone::m_connectionId’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
if( GetProfiler().ConnectionId() != m_connectionId ) return;
^~
assert() in release configuration resolves to empty code, while abort() is marked as [[noreturn]] and always is available.
gcc error:
error: ‘type’ may be used uninitialized in this function [-Werror=maybe-uninitialized]:
public/tracy/../client/../common/TracyAlign.hpp: In function ‘void tracy::SysTraceWorker(void*)’:
public/tracy/../client/../common/TracyAlign.hpp:22:11: error: ‘type’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
memcpy( ptr, &val, sizeof( T ) );
~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from public/TracyClient.cpp:26,
from X.cpp:
public/client/TracySysTrace.cpp:1258:35: note: ‘type’ was declared here
QueueType type;
^~~~
Red and blue channels were mislabeled. Otherwise, coding and decoding was
performed correctly, as far as the color channel order described in the manual
is followed by the user.
No change to the binary protocol was made.
These functions are only defined when -DTRACY_FIBERS is set. However,
the function is declared regardless of this declaration, which seems
like it could lead to obscure linking errors. I haven’t encountered any
of these specifically, but in my case, this distinction makes it more
difficult to produce correctly auto-generated bindings.
This fixes usage with TRACY_HAS_CALLSTACK undefined, allowing compilation of
otherwise unused functions, which are already protected from being called
through macro redirections.
See https://github.com/wolfpld/tracy/pull/492 for more information.