// Provides a C++11 implementation of a multi-producer, multi-consumer lock-free queue. // An overview, including benchmark results, is provided here: // http://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++ // The full design is also described in excruciating detail at: // http://moodycamel.com/blog/2014/detailed-design-of-a-lock-free-queue // Simplified BSD license: // Copyright (c) 2013-2016, Cameron Desrochers. // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // - Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // - Redistributions in binary form must reproduce the above copyright notice, this list of // conditions and the following disclaimer in the documentation and/or other materials // provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT // OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR // TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #pragma once #include "../common/TracyAlloc.hpp" #include "../common/TracyForceInline.hpp" #include "../common/TracySystem.hpp" #if defined(__GNUC__) // Disable -Wconversion warnings (spuriously triggered when Traits::size_t and // Traits::index_t are set to < 32 bits, causing integer promotion, causing warnings // upon assigning any computed values) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif #if defined(__APPLE__) #include "TargetConditionals.h" #endif #include // Requires C++11. Sorry VS2010. #include #include // for max_align_t #include #include #include #include #include #include #include // for CHAR_BIT #include #include // partly for __WINPTHREADS_VERSION if on MinGW-w64 w/ POSIX threading namespace tracy { // Exceptions #ifndef MOODYCAMEL_EXCEPTIONS_ENABLED #if (defined(_MSC_VER) && defined(_CPPUNWIND)) || (defined(__GNUC__) && defined(__EXCEPTIONS)) || (!defined(_MSC_VER) && !defined(__GNUC__)) #define MOODYCAMEL_EXCEPTIONS_ENABLED #endif #endif #ifdef MOODYCAMEL_EXCEPTIONS_ENABLED #define MOODYCAMEL_TRY try #define MOODYCAMEL_CATCH(...) catch(__VA_ARGS__) #define MOODYCAMEL_RETHROW throw #define MOODYCAMEL_THROW(expr) throw (expr) #else #define MOODYCAMEL_TRY if (true) #define MOODYCAMEL_CATCH(...) else if (false) #define MOODYCAMEL_RETHROW #define MOODYCAMEL_THROW(expr) #endif #ifndef MOODYCAMEL_NOEXCEPT #if !defined(MOODYCAMEL_EXCEPTIONS_ENABLED) #define MOODYCAMEL_NOEXCEPT #define MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr) true #define MOODYCAMEL_NOEXCEPT_ASSIGN(type, valueType, expr) true #elif defined(_MSC_VER) && defined(_NOEXCEPT) && _MSC_VER < 1800 // VS2012's std::is_nothrow_[move_]constructible is broken and returns true when it shouldn't :-( // We have to assume *all* non-trivial constructors may throw on VS2012! #define MOODYCAMEL_NOEXCEPT _NOEXCEPT #define MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr) (std::is_rvalue_reference::value && std::is_move_constructible::value ? std::is_trivially_move_constructible::value : std::is_trivially_copy_constructible::value) #define MOODYCAMEL_NOEXCEPT_ASSIGN(type, valueType, expr) ((std::is_rvalue_reference::value && std::is_move_assignable::value ? std::is_trivially_move_assignable::value || std::is_nothrow_move_assignable::value : std::is_trivially_copy_assignable::value || std::is_nothrow_copy_assignable::value) && MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr)) #elif defined(_MSC_VER) && defined(_NOEXCEPT) && _MSC_VER < 1900 #define MOODYCAMEL_NOEXCEPT _NOEXCEPT #define MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr) (std::is_rvalue_reference::value && std::is_move_constructible::value ? std::is_trivially_move_constructible::value || std::is_nothrow_move_constructible::value : std::is_trivially_copy_constructible::value || std::is_nothrow_copy_constructible::value) #define MOODYCAMEL_NOEXCEPT_ASSIGN(type, valueType, expr) ((std::is_rvalue_reference::value && std::is_move_assignable::value ? std::is_trivially_move_assignable::value || std::is_nothrow_move_assignable::value : std::is_trivially_copy_assignable::value || std::is_nothrow_copy_assignable::value) && MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr)) #else #define MOODYCAMEL_NOEXCEPT noexcept #define MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr) noexcept(expr) #define MOODYCAMEL_NOEXCEPT_ASSIGN(type, valueType, expr) noexcept(expr) #endif #endif // VS2012 doesn't support deleted functions. // In this case, we declare the function normally but don't define it. A link error will be generated if the function is called. #ifndef MOODYCAMEL_DELETE_FUNCTION #if defined(_MSC_VER) && _MSC_VER < 1800 #define MOODYCAMEL_DELETE_FUNCTION #else #define MOODYCAMEL_DELETE_FUNCTION = delete #endif #endif // Compiler-specific likely/unlikely hints namespace moodycamel { namespace details { #if defined(__GNUC__) inline bool cqLikely(bool x) { return __builtin_expect((x), true); } inline bool cqUnlikely(bool x) { return __builtin_expect((x), false); } #else inline bool cqLikely(bool x) { return x; } inline bool cqUnlikely(bool x) { return x; } #endif } } namespace { // to avoid MSVC warning 4127: conditional expression is constant template struct compile_time_condition { static const bool value = false; }; template <> struct compile_time_condition { static const bool value = true; }; } namespace moodycamel { namespace details { template struct const_numeric_max { static_assert(std::is_integral::value, "const_numeric_max can only be used with integers"); static const T value = std::numeric_limits::is_signed ? (static_cast(1) << (sizeof(T) * CHAR_BIT - 1)) - static_cast(1) : static_cast(-1); }; #if defined(__GLIBCXX__) typedef ::max_align_t std_max_align_t; // libstdc++ forgot to add it to std:: for a while #else typedef std::max_align_t std_max_align_t; // Others (e.g. MSVC) insist it can *only* be accessed via std:: #endif // Some platforms have incorrectly set max_align_t to a type with <8 bytes alignment even while supporting // 8-byte aligned scalar values (*cough* 32-bit iOS). Work around this with our own union. See issue #64. typedef union { std_max_align_t x; long long y; void* z; } max_align_t; } // Default traits for the ConcurrentQueue. To change some of the // traits without re-implementing all of them, inherit from this // struct and shadow the declarations you wish to be different; // since the traits are used as a template type parameter, the // shadowed declarations will be used where defined, and the defaults // otherwise. struct ConcurrentQueueDefaultTraits { // General-purpose size type. std::size_t is strongly recommended. typedef std::size_t size_t; // The type used for the enqueue and dequeue indices. Must be at least as // large as size_t. Should be significantly larger than the number of elements // you expect to hold at once, especially if you have a high turnover rate; // for example, on 32-bit x86, if you expect to have over a hundred million // elements or pump several million elements through your queue in a very // short space of time, using a 32-bit type *may* trigger a race condition. // A 64-bit int type is recommended in that case, and in practice will // prevent a race condition no matter the usage of the queue. Note that // whether the queue is lock-free with a 64-int type depends on the whether // std::atomic is lock-free, which is platform-specific. typedef std::size_t index_t; // Internally, all elements are enqueued and dequeued from multi-element // blocks; this is the smallest controllable unit. If you expect few elements // but many producers, a smaller block size should be favoured. For few producers // and/or many elements, a larger block size is preferred. A sane default // is provided. Must be a power of 2. static const size_t BLOCK_SIZE = 128; // For explicit producers (i.e. when using a producer token), the block is // checked for being empty by iterating through a list of flags, one per element. // For large block sizes, this is too inefficient, and switching to an atomic // counter-based approach is faster. The switch is made for block sizes strictly // larger than this threshold. static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = 32; // How many full blocks can be expected for a single explicit producer? This should // reflect that number's maximum for optimal performance. Must be a power of 2. static const size_t EXPLICIT_INITIAL_INDEX_SIZE = 32; // Controls the number of items that an explicit consumer (i.e. one with a token) // must consume before it causes all consumers to rotate and move on to the next // internal queue. static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = 256; // The maximum number of elements (inclusive) that can be enqueued to a sub-queue. // Enqueue operations that would cause this limit to be surpassed will fail. Note // that this limit is enforced at the block level (for performance reasons), i.e. // it's rounded up to the nearest block size. static const size_t MAX_SUBQUEUE_SIZE = details::const_numeric_max::value; // Memory allocation can be customized if needed. // malloc should return nullptr on failure, and handle alignment like std::malloc. #if defined(malloc) || defined(free) // Gah, this is 2015, stop defining macros that break standard code already! // Work around malloc/free being special macros: static inline void* WORKAROUND_malloc(size_t size) { return malloc(size); } static inline void WORKAROUND_free(void* ptr) { return free(ptr); } static inline void* (malloc)(size_t size) { return WORKAROUND_malloc(size); } static inline void (free)(void* ptr) { return WORKAROUND_free(ptr); } #else static inline void* malloc(size_t size) { return tracy::tracy_malloc(size); } static inline void free(void* ptr) { return tracy::tracy_free(ptr); } #endif }; // When producing or consuming many elements, the most efficient way is to: // 1) Use one of the bulk-operation methods of the queue with a token // 2) Failing that, use the bulk-operation methods without a token // 3) Failing that, create a token and use that with the single-item methods // 4) Failing that, use the single-parameter methods of the queue // Having said that, don't create tokens willy-nilly -- ideally there should be // a maximum of one token per thread (of each kind). struct ProducerToken; struct ConsumerToken; template class ConcurrentQueue; class ConcurrentQueueTests; namespace details { struct ConcurrentQueueProducerTypelessBase { ConcurrentQueueProducerTypelessBase* next; std::atomic inactive; ProducerToken* token; uint64_t threadId; ConcurrentQueueProducerTypelessBase() : next(nullptr), inactive(false), token(nullptr), threadId(0) { } }; template static inline bool circular_less_than(T a, T b) { #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4554) #endif static_assert(std::is_integral::value && !std::numeric_limits::is_signed, "circular_less_than is intended to be used only with unsigned integer types"); return static_cast(a - b) > static_cast(static_cast(1) << static_cast(sizeof(T) * CHAR_BIT - 1)); #ifdef _MSC_VER #pragma warning(pop) #endif } template static inline char* align_for(char* ptr) { const std::size_t alignment = std::alignment_of::value; return ptr + (alignment - (reinterpret_cast(ptr) % alignment)) % alignment; } template static inline T ceil_to_pow_2(T x) { static_assert(std::is_integral::value && !std::numeric_limits::is_signed, "ceil_to_pow_2 is intended to be used only with unsigned integer types"); // Adapted from http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 --x; x |= x >> 1; x |= x >> 2; x |= x >> 4; for (std::size_t i = 1; i < sizeof(T); i <<= 1) { x |= x >> (i << 3); } ++x; return x; } template static inline void swap_relaxed(std::atomic& left, std::atomic& right) { T temp = std::move(left.load(std::memory_order_relaxed)); left.store(std::move(right.load(std::memory_order_relaxed)), std::memory_order_relaxed); right.store(std::move(temp), std::memory_order_relaxed); } template static inline T const& nomove(T const& x) { return x; } template struct nomove_if { template static inline T const& eval(T const& x) { return x; } }; template<> struct nomove_if { template static inline auto eval(U&& x) -> decltype(std::forward(x)) { return std::forward(x); } }; template static inline auto deref_noexcept(It& it) MOODYCAMEL_NOEXCEPT -> decltype(*it) { return *it; } #if defined(__clang__) || !defined(__GNUC__) || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) template struct is_trivially_destructible : std::is_trivially_destructible { }; #else template struct is_trivially_destructible : std::has_trivial_destructor { }; #endif template struct static_is_lock_free_num { enum { value = 0 }; }; template<> struct static_is_lock_free_num { enum { value = ATOMIC_CHAR_LOCK_FREE }; }; template<> struct static_is_lock_free_num { enum { value = ATOMIC_SHORT_LOCK_FREE }; }; template<> struct static_is_lock_free_num { enum { value = ATOMIC_INT_LOCK_FREE }; }; template<> struct static_is_lock_free_num { enum { value = ATOMIC_LONG_LOCK_FREE }; }; template<> struct static_is_lock_free_num { enum { value = ATOMIC_LLONG_LOCK_FREE }; }; template struct static_is_lock_free : static_is_lock_free_num::type> { }; template<> struct static_is_lock_free { enum { value = ATOMIC_BOOL_LOCK_FREE }; }; template struct static_is_lock_free { enum { value = ATOMIC_POINTER_LOCK_FREE }; }; } struct ProducerToken { template explicit ProducerToken(ConcurrentQueue& queue); ProducerToken(ProducerToken&& other) MOODYCAMEL_NOEXCEPT : producer(other.producer) { other.producer = nullptr; if (producer != nullptr) { producer->token = this; } } inline ProducerToken& operator=(ProducerToken&& other) MOODYCAMEL_NOEXCEPT { swap(other); return *this; } void swap(ProducerToken& other) MOODYCAMEL_NOEXCEPT { std::swap(producer, other.producer); if (producer != nullptr) { producer->token = this; } if (other.producer != nullptr) { other.producer->token = &other; } } // A token is always valid unless: // 1) Memory allocation failed during construction // 2) It was moved via the move constructor // (Note: assignment does a swap, leaving both potentially valid) // 3) The associated queue was destroyed // Note that if valid() returns true, that only indicates // that the token is valid for use with a specific queue, // but not which one; that's up to the user to track. inline bool valid() const { return producer != nullptr; } ~ProducerToken() { if (producer != nullptr) { producer->token = nullptr; producer->inactive.store(true, std::memory_order_release); } } // Disable copying and assignment ProducerToken(ProducerToken const&) MOODYCAMEL_DELETE_FUNCTION; ProducerToken& operator=(ProducerToken const&) MOODYCAMEL_DELETE_FUNCTION; private: template friend class ConcurrentQueue; friend class ConcurrentQueueTests; protected: details::ConcurrentQueueProducerTypelessBase* producer; }; struct ConsumerToken { template explicit ConsumerToken(ConcurrentQueue& q); ConsumerToken(ConsumerToken&& other) MOODYCAMEL_NOEXCEPT : initialOffset(other.initialOffset), lastKnownGlobalOffset(other.lastKnownGlobalOffset), itemsConsumedFromCurrent(other.itemsConsumedFromCurrent), currentProducer(other.currentProducer), desiredProducer(other.desiredProducer) { } inline ConsumerToken& operator=(ConsumerToken&& other) MOODYCAMEL_NOEXCEPT { swap(other); return *this; } void swap(ConsumerToken& other) MOODYCAMEL_NOEXCEPT { std::swap(initialOffset, other.initialOffset); std::swap(lastKnownGlobalOffset, other.lastKnownGlobalOffset); std::swap(itemsConsumedFromCurrent, other.itemsConsumedFromCurrent); std::swap(currentProducer, other.currentProducer); std::swap(desiredProducer, other.desiredProducer); } // Disable copying and assignment ConsumerToken(ConsumerToken const&) MOODYCAMEL_DELETE_FUNCTION; ConsumerToken& operator=(ConsumerToken const&) MOODYCAMEL_DELETE_FUNCTION; private: template friend class ConcurrentQueue; friend class ConcurrentQueueTests; private: // but shared with ConcurrentQueue std::uint32_t initialOffset; std::uint32_t lastKnownGlobalOffset; std::uint32_t itemsConsumedFromCurrent; details::ConcurrentQueueProducerTypelessBase* currentProducer; details::ConcurrentQueueProducerTypelessBase* desiredProducer; }; template class ConcurrentQueue { public: struct ExplicitProducer; typedef moodycamel::ProducerToken producer_token_t; typedef moodycamel::ConsumerToken consumer_token_t; typedef typename Traits::index_t index_t; typedef typename Traits::size_t size_t; static const size_t BLOCK_SIZE = static_cast(Traits::BLOCK_SIZE); static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = static_cast(Traits::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD); static const size_t EXPLICIT_INITIAL_INDEX_SIZE = static_cast(Traits::EXPLICIT_INITIAL_INDEX_SIZE); static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = static_cast(Traits::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE); #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4307) // + integral constant overflow (that's what the ternary expression is for!) #pragma warning(disable: 4309) // static_cast: Truncation of constant value #endif static const size_t MAX_SUBQUEUE_SIZE = (details::const_numeric_max::value - static_cast(Traits::MAX_SUBQUEUE_SIZE) < BLOCK_SIZE) ? details::const_numeric_max::value : ((static_cast(Traits::MAX_SUBQUEUE_SIZE) + (BLOCK_SIZE - 1)) / BLOCK_SIZE * BLOCK_SIZE); #ifdef _MSC_VER #pragma warning(pop) #endif static_assert(!std::numeric_limits::is_signed && std::is_integral::value, "Traits::size_t must be an unsigned integral type"); static_assert(!std::numeric_limits::is_signed && std::is_integral::value, "Traits::index_t must be an unsigned integral type"); static_assert(sizeof(index_t) >= sizeof(size_t), "Traits::index_t must be at least as wide as Traits::size_t"); static_assert((BLOCK_SIZE > 1) && !(BLOCK_SIZE & (BLOCK_SIZE - 1)), "Traits::BLOCK_SIZE must be a power of 2 (and at least 2)"); static_assert((EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD > 1) && !(EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD & (EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD - 1)), "Traits::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD must be a power of 2 (and greater than 1)"); static_assert((EXPLICIT_INITIAL_INDEX_SIZE > 1) && !(EXPLICIT_INITIAL_INDEX_SIZE & (EXPLICIT_INITIAL_INDEX_SIZE - 1)), "Traits::EXPLICIT_INITIAL_INDEX_SIZE must be a power of 2 (and greater than 1)"); public: // Creates a queue with at least `capacity` element slots; note that the // actual number of elements that can be inserted without additional memory // allocation depends on the number of producers and the block size (e.g. if // the block size is equal to `capacity`, only a single block will be allocated // up-front, which means only a single producer will be able to enqueue elements // without an extra allocation -- blocks aren't shared between producers). // This method is not thread safe -- it is up to the user to ensure that the // queue is fully constructed before it starts being used by other threads (this // includes making the memory effects of construction visible, possibly with a // memory barrier). explicit ConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE) : producerListTail(nullptr), producerCount(0), initialBlockPoolIndex(0), nextExplicitConsumerId(0), globalExplicitConsumerOffset(0) { populate_initial_block_list(capacity / BLOCK_SIZE + ((capacity & (BLOCK_SIZE - 1)) == 0 ? 0 : 1)); } // Computes the correct amount of pre-allocated blocks for you based // on the minimum number of elements you want available at any given // time, and the maximum concurrent number of each type of producer. ConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers) : producerListTail(nullptr), producerCount(0), initialBlockPoolIndex(0), nextExplicitConsumerId(0), globalExplicitConsumerOffset(0) { size_t blocks = (((minCapacity + BLOCK_SIZE - 1) / BLOCK_SIZE) - 1) * (maxExplicitProducers + 1) + 2 * (maxExplicitProducers); populate_initial_block_list(blocks); } // Note: The queue should not be accessed concurrently while it's // being deleted. It's up to the user to synchronize this. // This method is not thread safe. ~ConcurrentQueue() { // Destroy producers auto ptr = producerListTail.load(std::memory_order_relaxed); while (ptr != nullptr) { auto next = ptr->next_prod(); if (ptr->token != nullptr) { ptr->token->producer = nullptr; } destroy(ptr); ptr = next; } // Destroy global free list auto block = freeList.head_unsafe(); while (block != nullptr) { auto next = block->freeListNext.load(std::memory_order_relaxed); if (block->dynamicallyAllocated) { destroy(block); } block = next; } // Destroy initial free list destroy_array(initialBlockPool, initialBlockPoolSize); } // Disable copying and copy assignment ConcurrentQueue(ConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; ConcurrentQueue& operator=(ConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; // Moving is supported, but note that it is *not* a thread-safe operation. // Nobody can use the queue while it's being moved, and the memory effects // of that move must be propagated to other threads before they can use it. // Note: When a queue is moved, its tokens are still valid but can only be // used with the destination queue (i.e. semantically they are moved along // with the queue itself). ConcurrentQueue(ConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT : producerListTail(other.producerListTail.load(std::memory_order_relaxed)), producerCount(other.producerCount.load(std::memory_order_relaxed)), initialBlockPoolIndex(other.initialBlockPoolIndex.load(std::memory_order_relaxed)), initialBlockPool(other.initialBlockPool), initialBlockPoolSize(other.initialBlockPoolSize), freeList(std::move(other.freeList)), nextExplicitConsumerId(other.nextExplicitConsumerId.load(std::memory_order_relaxed)), globalExplicitConsumerOffset(other.globalExplicitConsumerOffset.load(std::memory_order_relaxed)) { other.producerListTail.store(nullptr, std::memory_order_relaxed); other.producerCount.store(0, std::memory_order_relaxed); other.nextExplicitConsumerId.store(0, std::memory_order_relaxed); other.globalExplicitConsumerOffset.store(0, std::memory_order_relaxed); other.initialBlockPoolIndex.store(0, std::memory_order_relaxed); other.initialBlockPoolSize = 0; other.initialBlockPool = nullptr; reown_producers(); } inline ConcurrentQueue& operator=(ConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT { return swap_internal(other); } // Swaps this queue's state with the other's. Not thread-safe. // Swapping two queues does not invalidate their tokens, however // the tokens that were created for one queue must be used with // only the swapped queue (i.e. the tokens are tied to the // queue's movable state, not the object itself). inline void swap(ConcurrentQueue& other) MOODYCAMEL_NOEXCEPT { swap_internal(other); } private: ConcurrentQueue& swap_internal(ConcurrentQueue& other) { if (this == &other) { return *this; } details::swap_relaxed(producerListTail, other.producerListTail); details::swap_relaxed(producerCount, other.producerCount); details::swap_relaxed(initialBlockPoolIndex, other.initialBlockPoolIndex); std::swap(initialBlockPool, other.initialBlockPool); std::swap(initialBlockPoolSize, other.initialBlockPoolSize); freeList.swap(other.freeList); details::swap_relaxed(nextExplicitConsumerId, other.nextExplicitConsumerId); details::swap_relaxed(globalExplicitConsumerOffset, other.globalExplicitConsumerOffset); reown_producers(); other.reown_producers(); return *this; } public: // Enqueues a single item (by copying it) using an explicit producer token. // Allocates memory if required. Only fails if memory allocation fails (or // Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). // Thread-safe. inline bool enqueue(producer_token_t const& token, T const& item) { return inner_enqueue(token, item); } // Enqueues a single item (by moving it, if possible) using an explicit producer token. // Allocates memory if required. Only fails if memory allocation fails (or // Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). // Thread-safe. inline bool enqueue(producer_token_t const& token, T&& item) { return inner_enqueue(token, std::move(item)); } tracy_force_inline T* enqueue_begin(producer_token_t const& token, index_t& currentTailIndex) { return inner_enqueue_begin(token, currentTailIndex); } // Enqueues several items using an explicit producer token. // Allocates memory if required. Only fails if memory allocation fails // (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). // Note: Use std::make_move_iterator if the elements should be moved // instead of copied. // Thread-safe. template bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) { return inner_enqueue_bulk(token, itemFirst, count); } // Attempts to dequeue from the queue. // Returns false if all producer streams appeared empty at the time they // were checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template bool try_dequeue(U& item) { // Instead of simply trying each producer in turn (which could cause needless contention on the first // producer), we score them heuristically. size_t nonEmptyCount = 0; ProducerBase* best = nullptr; size_t bestSize = 0; for (auto ptr = producerListTail.load(std::memory_order_acquire); nonEmptyCount < 3 && ptr != nullptr; ptr = ptr->next_prod()) { auto size = ptr->size_approx(); if (size > 0) { if (size > bestSize) { bestSize = size; best = ptr; } ++nonEmptyCount; } } // If there was at least one non-empty queue but it appears empty at the time // we try to dequeue from it, we need to make sure every queue's been tried if (nonEmptyCount > 0) { if (details::cqLikely(best->dequeue(item))) { return true; } for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { if (ptr != best && ptr->dequeue(item)) { return true; } } } return false; } // Attempts to dequeue from the queue. // Returns false if all producer streams appeared empty at the time they // were checked (so, the queue is likely but not guaranteed to be empty). // This differs from the try_dequeue(item) method in that this one does // not attempt to reduce contention by interleaving the order that producer // streams are dequeued from. So, using this method can reduce overall throughput // under contention, but will give more predictable results in single-threaded // consumer scenarios. This is mostly only useful for internal unit tests. // Never allocates. Thread-safe. template bool try_dequeue_non_interleaved(U& item) { for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { if (ptr->dequeue(item)) { return true; } } return false; } // Attempts to dequeue from the queue using an explicit consumer token. // Returns false if all producer streams appeared empty at the time they // were checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template bool try_dequeue(consumer_token_t& token, U& item) { // The idea is roughly as follows: // Every 256 items from one producer, make everyone rotate (increase the global offset) -> this means the highest efficiency consumer dictates the rotation speed of everyone else, more or less // If you see that the global offset has changed, you must reset your consumption counter and move to your designated place // If there's no items where you're supposed to be, keep moving until you find a producer with some items // If the global offset has not changed but you've run out of items to consume, move over from your current position until you find an producer with something in it if (token.desiredProducer == nullptr || token.lastKnownGlobalOffset != globalExplicitConsumerOffset.load(std::memory_order_relaxed)) { if (!update_current_producer_after_rotation(token)) { return false; } } // If there was at least one non-empty queue but it appears empty at the time // we try to dequeue from it, we need to make sure every queue's been tried if (static_cast(token.currentProducer)->dequeue(item)) { if (++token.itemsConsumedFromCurrent == EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE) { globalExplicitConsumerOffset.fetch_add(1, std::memory_order_relaxed); } return true; } auto tail = producerListTail.load(std::memory_order_acquire); auto ptr = static_cast(token.currentProducer)->next_prod(); if (ptr == nullptr) { ptr = tail; } while (ptr != static_cast(token.currentProducer)) { if (ptr->dequeue(item)) { token.currentProducer = ptr; token.itemsConsumedFromCurrent = 1; return true; } ptr = ptr->next_prod(); if (ptr == nullptr) { ptr = tail; } } return false; } // Attempts to dequeue several elements from the queue. // Returns the number of items actually dequeued. // Returns 0 if all producer streams appeared empty at the time they // were checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template size_t try_dequeue_bulk(It itemFirst, size_t max) { size_t count = 0; for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { count += ptr->dequeue_bulk(itemFirst, max - count); if (count == max) { break; } } return count; } // Attempts to dequeue several elements from the queue using an explicit consumer token. // Returns the number of items actually dequeued. // Returns 0 if all producer streams appeared empty at the time they // were checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max) { if (token.desiredProducer == nullptr || token.lastKnownGlobalOffset != globalExplicitConsumerOffset.load(std::memory_order_relaxed)) { if (!update_current_producer_after_rotation(token)) { return 0; } } size_t count = static_cast(token.currentProducer)->dequeue_bulk(itemFirst, max); if (count == max) { if ((token.itemsConsumedFromCurrent += static_cast(max)) >= EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE) { globalExplicitConsumerOffset.fetch_add(1, std::memory_order_relaxed); } return max; } token.itemsConsumedFromCurrent += static_cast(count); max -= count; auto tail = producerListTail.load(std::memory_order_acquire); auto ptr = static_cast(token.currentProducer)->next_prod(); if (ptr == nullptr) { ptr = tail; } while (ptr != static_cast(token.currentProducer)) { auto dequeued = ptr->dequeue_bulk(itemFirst, max); count += dequeued; if (dequeued != 0) { token.currentProducer = ptr; token.itemsConsumedFromCurrent = static_cast(dequeued); } if (dequeued == max) { break; } max -= dequeued; ptr = ptr->next_prod(); if (ptr == nullptr) { ptr = tail; } } return count; } template size_t try_dequeue_bulk_single(consumer_token_t& token, It itemFirst, size_t max, uint64_t& threadId ) { if (token.desiredProducer == nullptr || token.lastKnownGlobalOffset != globalExplicitConsumerOffset.load(std::memory_order_relaxed)) { if (!update_current_producer_after_rotation(token)) { return 0; } } size_t count = static_cast(token.currentProducer)->dequeue_bulk(itemFirst, max); if (count == max) { if ((token.itemsConsumedFromCurrent += static_cast(max)) >= EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE) { globalExplicitConsumerOffset.fetch_add(1, std::memory_order_relaxed); } threadId = token.currentProducer->threadId; return max; } token.itemsConsumedFromCurrent += static_cast(count); auto tail = producerListTail.load(std::memory_order_acquire); auto ptr = static_cast(token.currentProducer)->next_prod(); if (ptr == nullptr) { ptr = tail; } if( count == 0 ) { while (ptr != static_cast(token.currentProducer)) { auto dequeued = ptr->dequeue_bulk(itemFirst, max); if (dequeued != 0) { threadId = ptr->threadId; token.currentProducer = ptr; token.itemsConsumedFromCurrent = static_cast(dequeued); return dequeued; } ptr = ptr->next_prod(); if (ptr == nullptr) { ptr = tail; } } return 0; } else { threadId = token.currentProducer->threadId; token.currentProducer = ptr; token.itemsConsumedFromCurrent = 0; return count; } } // Attempts to dequeue from a specific producer's inner queue. // If you happen to know which producer you want to dequeue from, this // is significantly faster than using the general-case try_dequeue methods. // Returns false if the producer's queue appeared empty at the time it // was checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template inline bool try_dequeue_from_producer(producer_token_t const& producer, U& item) { return static_cast(producer.producer)->dequeue(item); } // Attempts to dequeue several elements from a specific producer's inner queue. // Returns the number of items actually dequeued. // If you happen to know which producer you want to dequeue from, this // is significantly faster than using the general-case try_dequeue methods. // Returns 0 if the producer's queue appeared empty at the time it // was checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template inline size_t try_dequeue_bulk_from_producer(producer_token_t const& producer, It itemFirst, size_t max) { return static_cast(producer.producer)->dequeue_bulk(itemFirst, max); } // Returns an estimate of the total number of elements currently in the queue. This // estimate is only accurate if the queue has completely stabilized before it is called // (i.e. all enqueue and dequeue operations have completed and their memory effects are // visible on the calling thread, and no further operations start while this method is // being called). // Thread-safe. size_t size_approx() const { size_t size = 0; for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { size += ptr->size_approx(); } return size; } // Returns true if the underlying atomic variables used by // the queue are lock-free (they should be on most platforms). // Thread-safe. static bool is_lock_free() { return details::static_is_lock_free::value == 2 && details::static_is_lock_free::value == 2 && details::static_is_lock_free::value == 2 && details::static_is_lock_free::value == 2 && details::static_is_lock_free::value == 2; } private: friend struct ProducerToken; friend struct ConsumerToken; friend struct ExplicitProducer; friend class ConcurrentQueueTests; /////////////////////////////// // Queue methods /////////////////////////////// template inline bool inner_enqueue(producer_token_t const& token, U&& element) { return static_cast(token.producer)->ConcurrentQueue::ExplicitProducer::enqueue(std::forward(element)); } tracy_force_inline T* inner_enqueue_begin(producer_token_t const& token, index_t& currentTailIndex) { return static_cast(token.producer)->ConcurrentQueue::ExplicitProducer::enqueue_begin(currentTailIndex); } template inline bool inner_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) { return static_cast(token.producer)->ConcurrentQueue::ExplicitProducer::enqueue_bulk(itemFirst, count); } inline bool update_current_producer_after_rotation(consumer_token_t& token) { // Ah, there's been a rotation, figure out where we should be! auto tail = producerListTail.load(std::memory_order_acquire); if (token.desiredProducer == nullptr && tail == nullptr) { return false; } auto prodCount = producerCount.load(std::memory_order_relaxed); auto globalOffset = globalExplicitConsumerOffset.load(std::memory_order_relaxed); if (details::cqUnlikely(token.desiredProducer == nullptr)) { // Aha, first time we're dequeueing anything. // Figure out our local position // Note: offset is from start, not end, but we're traversing from end -- subtract from count first std::uint32_t offset = prodCount - 1 - (token.initialOffset % prodCount); token.desiredProducer = tail; for (std::uint32_t i = 0; i != offset; ++i) { token.desiredProducer = static_cast(token.desiredProducer)->next_prod(); if (token.desiredProducer == nullptr) { token.desiredProducer = tail; } } } std::uint32_t delta = globalOffset - token.lastKnownGlobalOffset; if (delta >= prodCount) { delta = delta % prodCount; } for (std::uint32_t i = 0; i != delta; ++i) { token.desiredProducer = static_cast(token.desiredProducer)->next_prod(); if (token.desiredProducer == nullptr) { token.desiredProducer = tail; } } token.lastKnownGlobalOffset = globalOffset; token.currentProducer = token.desiredProducer; token.itemsConsumedFromCurrent = 0; return true; } /////////////////////////// // Free list /////////////////////////// template struct FreeListNode { FreeListNode() : freeListRefs(0), freeListNext(nullptr) { } std::atomic freeListRefs; std::atomic freeListNext; }; // A simple CAS-based lock-free free list. Not the fastest thing in the world under heavy contention, but // simple and correct (assuming nodes are never freed until after the free list is destroyed), and fairly // speedy under low contention. template // N must inherit FreeListNode or have the same fields (and initialization of them) struct FreeList { FreeList() : freeListHead(nullptr) { } FreeList(FreeList&& other) : freeListHead(other.freeListHead.load(std::memory_order_relaxed)) { other.freeListHead.store(nullptr, std::memory_order_relaxed); } void swap(FreeList& other) { details::swap_relaxed(freeListHead, other.freeListHead); } FreeList(FreeList const&) MOODYCAMEL_DELETE_FUNCTION; FreeList& operator=(FreeList const&) MOODYCAMEL_DELETE_FUNCTION; inline void add(N* node) { // We know that the should-be-on-freelist bit is 0 at this point, so it's safe to // set it using a fetch_add if (node->freeListRefs.fetch_add(SHOULD_BE_ON_FREELIST, std::memory_order_acq_rel) == 0) { // Oh look! We were the last ones referencing this node, and we know // we want to add it to the free list, so let's do it! add_knowing_refcount_is_zero(node); } } inline N* try_get() { auto head = freeListHead.load(std::memory_order_acquire); while (head != nullptr) { auto prevHead = head; auto refs = head->freeListRefs.load(std::memory_order_relaxed); if ((refs & REFS_MASK) == 0 || !head->freeListRefs.compare_exchange_strong(refs, refs + 1, std::memory_order_acquire, std::memory_order_relaxed)) { head = freeListHead.load(std::memory_order_acquire); continue; } // Good, reference count has been incremented (it wasn't at zero), which means we can read the // next and not worry about it changing between now and the time we do the CAS auto next = head->freeListNext.load(std::memory_order_relaxed); if (freeListHead.compare_exchange_strong(head, next, std::memory_order_acquire, std::memory_order_relaxed)) { // Yay, got the node. This means it was on the list, which means shouldBeOnFreeList must be false no // matter the refcount (because nobody else knows it's been taken off yet, it can't have been put back on). assert((head->freeListRefs.load(std::memory_order_relaxed) & SHOULD_BE_ON_FREELIST) == 0); // Decrease refcount twice, once for our ref, and once for the list's ref head->freeListRefs.fetch_sub(2, std::memory_order_release); return head; } // OK, the head must have changed on us, but we still need to decrease the refcount we increased. // Note that we don't need to release any memory effects, but we do need to ensure that the reference // count decrement happens-after the CAS on the head. refs = prevHead->freeListRefs.fetch_sub(1, std::memory_order_acq_rel); if (refs == SHOULD_BE_ON_FREELIST + 1) { add_knowing_refcount_is_zero(prevHead); } } return nullptr; } // Useful for traversing the list when there's no contention (e.g. to destroy remaining nodes) N* head_unsafe() const { return freeListHead.load(std::memory_order_relaxed); } private: inline void add_knowing_refcount_is_zero(N* node) { // Since the refcount is zero, and nobody can increase it once it's zero (except us, and we run // only one copy of this method per node at a time, i.e. the single thread case), then we know // we can safely change the next pointer of the node; however, once the refcount is back above // zero, then other threads could increase it (happens under heavy contention, when the refcount // goes to zero in between a load and a refcount increment of a node in try_get, then back up to // something non-zero, then the refcount increment is done by the other thread) -- so, if the CAS // to add the node to the actual list fails, decrease the refcount and leave the add operation to // the next thread who puts the refcount back at zero (which could be us, hence the loop). auto head = freeListHead.load(std::memory_order_relaxed); while (true) { node->freeListNext.store(head, std::memory_order_relaxed); node->freeListRefs.store(1, std::memory_order_release); if (!freeListHead.compare_exchange_strong(head, node, std::memory_order_release, std::memory_order_relaxed)) { // Hmm, the add failed, but we can only try again when the refcount goes back to zero if (node->freeListRefs.fetch_add(SHOULD_BE_ON_FREELIST - 1, std::memory_order_release) == 1) { continue; } } return; } } private: // Implemented like a stack, but where node order doesn't matter (nodes are inserted out of order under contention) std::atomic freeListHead; static const std::uint32_t REFS_MASK = 0x7FFFFFFF; static const std::uint32_t SHOULD_BE_ON_FREELIST = 0x80000000; }; /////////////////////////// // Block /////////////////////////// struct Block { Block() : next(nullptr), elementsCompletelyDequeued(0), freeListRefs(0), freeListNext(nullptr), shouldBeOnFreeList(false), dynamicallyAllocated(true) { } inline bool is_empty() const { if (compile_time_condition::value) { // Check flags for (size_t i = 0; i < BLOCK_SIZE; ++i) { if (!emptyFlags[i].load(std::memory_order_relaxed)) { return false; } } // Aha, empty; make sure we have all other memory effects that happened before the empty flags were set std::atomic_thread_fence(std::memory_order_acquire); return true; } else { // Check counter if (elementsCompletelyDequeued.load(std::memory_order_relaxed) == BLOCK_SIZE) { std::atomic_thread_fence(std::memory_order_acquire); return true; } assert(elementsCompletelyDequeued.load(std::memory_order_relaxed) <= BLOCK_SIZE); return false; } } // Returns true if the block is now empty (does not apply in explicit context) inline bool set_empty(index_t i) { if (BLOCK_SIZE <= EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD) { // Set flag assert(!emptyFlags[BLOCK_SIZE - 1 - static_cast(i & static_cast(BLOCK_SIZE - 1))].load(std::memory_order_relaxed)); emptyFlags[BLOCK_SIZE - 1 - static_cast(i & static_cast(BLOCK_SIZE - 1))].store(true, std::memory_order_release); return false; } else { // Increment counter auto prevVal = elementsCompletelyDequeued.fetch_add(1, std::memory_order_release); assert(prevVal < BLOCK_SIZE); return prevVal == BLOCK_SIZE - 1; } } // Sets multiple contiguous item statuses to 'empty' (assumes no wrapping and count > 0). // Returns true if the block is now empty (does not apply in explicit context). inline bool set_many_empty(index_t i, size_t count) { if (compile_time_condition::value) { // Set flags std::atomic_thread_fence(std::memory_order_release); i = BLOCK_SIZE - 1 - static_cast(i & static_cast(BLOCK_SIZE - 1)) - count + 1; for (size_t j = 0; j != count; ++j) { assert(!emptyFlags[i + j].load(std::memory_order_relaxed)); emptyFlags[i + j].store(true, std::memory_order_relaxed); } return false; } else { // Increment counter auto prevVal = elementsCompletelyDequeued.fetch_add(count, std::memory_order_release); assert(prevVal + count <= BLOCK_SIZE); return prevVal + count == BLOCK_SIZE; } } inline void set_all_empty() { if (BLOCK_SIZE <= EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD) { // Set all flags for (size_t i = 0; i != BLOCK_SIZE; ++i) { emptyFlags[i].store(true, std::memory_order_relaxed); } } else { // Reset counter elementsCompletelyDequeued.store(BLOCK_SIZE, std::memory_order_relaxed); } } inline void reset_empty() { if (compile_time_condition::value) { // Reset flags for (size_t i = 0; i != BLOCK_SIZE; ++i) { emptyFlags[i].store(false, std::memory_order_relaxed); } } else { // Reset counter elementsCompletelyDequeued.store(0, std::memory_order_relaxed); } } inline T* operator[](index_t idx) MOODYCAMEL_NOEXCEPT { return static_cast(static_cast(elements)) + static_cast(idx & static_cast(BLOCK_SIZE - 1)); } inline T const* operator[](index_t idx) const MOODYCAMEL_NOEXCEPT { return static_cast(static_cast(elements)) + static_cast(idx & static_cast(BLOCK_SIZE - 1)); } private: // IMPORTANT: This must be the first member in Block, so that if T depends on the alignment of // addresses returned by malloc, that alignment will be preserved. Apparently clang actually // generates code that uses this assumption for AVX instructions in some cases. Ideally, we // should also align Block to the alignment of T in case it's higher than malloc's 16-byte // alignment, but this is hard to do in a cross-platform way. Assert for this case: static_assert(std::alignment_of::value <= std::alignment_of::value, "The queue does not support super-aligned types at this time"); // Additionally, we need the alignment of Block itself to be a multiple of max_align_t since // otherwise the appropriate padding will not be added at the end of Block in order to make // arrays of Blocks all be properly aligned (not just the first one). We use a union to force // this. union { char elements[sizeof(T) * BLOCK_SIZE]; details::max_align_t dummy; }; public: Block* next; std::atomic elementsCompletelyDequeued; std::atomic emptyFlags[BLOCK_SIZE <= EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD ? BLOCK_SIZE : 1]; public: std::atomic freeListRefs; std::atomic freeListNext; std::atomic shouldBeOnFreeList; bool dynamicallyAllocated; // Perhaps a better name for this would be 'isNotPartOfInitialBlockPool' }; static_assert(std::alignment_of::value >= std::alignment_of::value, "Internal error: Blocks must be at least as aligned as the type they are wrapping"); /////////////////////////// // Producer base /////////////////////////// struct ProducerBase : public details::ConcurrentQueueProducerTypelessBase { ProducerBase(ConcurrentQueue* parent_) : tailIndex(0), headIndex(0), dequeueOptimisticCount(0), dequeueOvercommit(0), tailBlock(nullptr), parent(parent_) { } virtual ~ProducerBase() { }; template inline bool dequeue(U& element) { return static_cast(this)->dequeue(element); } template inline size_t dequeue_bulk(It& itemFirst, size_t max) { return static_cast(this)->dequeue_bulk(itemFirst, max); } inline ProducerBase* next_prod() const { return static_cast(next); } inline size_t size_approx() const { auto tail = tailIndex.load(std::memory_order_relaxed); auto head = headIndex.load(std::memory_order_relaxed); return details::circular_less_than(head, tail) ? static_cast(tail - head) : 0; } inline index_t getTail() const { return tailIndex.load(std::memory_order_relaxed); } protected: std::atomic tailIndex; // Where to enqueue to next std::atomic headIndex; // Where to dequeue from next std::atomic dequeueOptimisticCount; std::atomic dequeueOvercommit; Block* tailBlock; public: ConcurrentQueue* parent; }; public: /////////////////////////// // Explicit queue /////////////////////////// struct ExplicitProducer : public ProducerBase { explicit ExplicitProducer(ConcurrentQueue* _parent) : ProducerBase(_parent), blockIndex(nullptr), pr_blockIndexSlotsUsed(0), pr_blockIndexSize(EXPLICIT_INITIAL_INDEX_SIZE >> 1), pr_blockIndexFront(0), pr_blockIndexEntries(nullptr), pr_blockIndexRaw(nullptr) { size_t poolBasedIndexSize = details::ceil_to_pow_2(_parent->initialBlockPoolSize) >> 1; if (poolBasedIndexSize > pr_blockIndexSize) { pr_blockIndexSize = poolBasedIndexSize; } new_block_index(0); // This creates an index with double the number of current entries, i.e. EXPLICIT_INITIAL_INDEX_SIZE } ~ExplicitProducer() { // Destruct any elements not yet dequeued. // Since we're in the destructor, we can assume all elements // are either completely dequeued or completely not (no halfways). if (this->tailBlock != nullptr) { // Note this means there must be a block index too // First find the block that's partially dequeued, if any Block* halfDequeuedBlock = nullptr; if ((this->headIndex.load(std::memory_order_relaxed) & static_cast(BLOCK_SIZE - 1)) != 0) { // The head's not on a block boundary, meaning a block somewhere is partially dequeued // (or the head block is the tail block and was fully dequeued, but the head/tail are still not on a boundary) size_t i = (pr_blockIndexFront - pr_blockIndexSlotsUsed) & (pr_blockIndexSize - 1); while (details::circular_less_than(pr_blockIndexEntries[i].base + BLOCK_SIZE, this->headIndex.load(std::memory_order_relaxed))) { i = (i + 1) & (pr_blockIndexSize - 1); } assert(details::circular_less_than(pr_blockIndexEntries[i].base, this->headIndex.load(std::memory_order_relaxed))); halfDequeuedBlock = pr_blockIndexEntries[i].block; } // Start at the head block (note the first line in the loop gives us the head from the tail on the first iteration) auto block = this->tailBlock; do { block = block->next; if (block->ConcurrentQueue::Block::is_empty()) { continue; } size_t i = 0; // Offset into block if (block == halfDequeuedBlock) { i = static_cast(this->headIndex.load(std::memory_order_relaxed) & static_cast(BLOCK_SIZE - 1)); } // Walk through all the items in the block; if this is the tail block, we need to stop when we reach the tail index auto lastValidIndex = (this->tailIndex.load(std::memory_order_relaxed) & static_cast(BLOCK_SIZE - 1)) == 0 ? BLOCK_SIZE : static_cast(this->tailIndex.load(std::memory_order_relaxed) & static_cast(BLOCK_SIZE - 1)); while (i != BLOCK_SIZE && (block != this->tailBlock || i != lastValidIndex)) { (*block)[i++]->~T(); } } while (block != this->tailBlock); } // Destroy all blocks that we own if (this->tailBlock != nullptr) { auto block = this->tailBlock; do { auto nextBlock = block->next; if (block->dynamicallyAllocated) { destroy(block); } else { this->parent->add_block_to_free_list(block); } block = nextBlock; } while (block != this->tailBlock); } // Destroy the block indices auto header = static_cast(pr_blockIndexRaw); while (header != nullptr) { auto prev = static_cast(header->prev); header->~BlockIndexHeader(); (Traits::free)(header); header = prev; } } template inline bool enqueue(U&& element) { index_t currentTailIndex = this->tailIndex.load(std::memory_order_relaxed); index_t newTailIndex = 1 + currentTailIndex; if ((currentTailIndex & static_cast(BLOCK_SIZE - 1)) == 0) { // We reached the end of a block, start a new one auto startBlock = this->tailBlock; auto originalBlockIndexSlotsUsed = pr_blockIndexSlotsUsed; if (this->tailBlock != nullptr && this->tailBlock->next->ConcurrentQueue::Block::is_empty()) { // We can re-use the block ahead of us, it's empty! this->tailBlock = this->tailBlock->next; this->tailBlock->ConcurrentQueue::Block::reset_empty(); // We'll put the block on the block index (guaranteed to be room since we're conceptually removing the // last block from it first -- except instead of removing then adding, we can just overwrite). // Note that there must be a valid block index here, since even if allocation failed in the ctor, // it would have been re-attempted when adding the first block to the queue; since there is such // a block, a block index must have been successfully allocated. } else { // Whatever head value we see here is >= the last value we saw here (relatively), // and <= its current value. Since we have the most recent tail, the head must be // <= to it. auto head = this->headIndex.load(std::memory_order_relaxed); assert(!details::circular_less_than(currentTailIndex, head)); if (!details::circular_less_than(head, currentTailIndex + BLOCK_SIZE) || (MAX_SUBQUEUE_SIZE != details::const_numeric_max::value && (MAX_SUBQUEUE_SIZE == 0 || MAX_SUBQUEUE_SIZE - BLOCK_SIZE < currentTailIndex - head))) { // We can't enqueue in another block because there's not enough leeway -- the // tail could surpass the head by the time the block fills up! (Or we'll exceed // the size limit, if the second part of the condition was true.) return false; } // We're going to need a new block; check that the block index has room if (pr_blockIndexRaw == nullptr || pr_blockIndexSlotsUsed == pr_blockIndexSize) { // Hmm, the circular block index is already full -- we'll need // to allocate a new index. Note pr_blockIndexRaw can only be nullptr if // the initial allocation failed in the constructor. if (!new_block_index(pr_blockIndexSlotsUsed)) { return false; } } // Insert a new block in the circular linked list auto newBlock = this->parent->ConcurrentQueue::requisition_block(); if (newBlock == nullptr) { return false; } newBlock->ConcurrentQueue::Block::reset_empty(); if (this->tailBlock == nullptr) { newBlock->next = newBlock; } else { newBlock->next = this->tailBlock->next; this->tailBlock->next = newBlock; } this->tailBlock = newBlock; ++pr_blockIndexSlotsUsed; } if (!MOODYCAMEL_NOEXCEPT_CTOR(T, U, new (nullptr) T(std::forward(element)))) { // The constructor may throw. We want the element not to appear in the queue in // that case (without corrupting the queue): MOODYCAMEL_TRY { new ((*this->tailBlock)[currentTailIndex]) T(std::forward(element)); } MOODYCAMEL_CATCH (...) { // Revert change to the current block, but leave the new block available // for next time pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; this->tailBlock = startBlock == nullptr ? this->tailBlock : startBlock; MOODYCAMEL_RETHROW; } } else { (void)startBlock; (void)originalBlockIndexSlotsUsed; } // Add block to block index auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; entry.base = currentTailIndex; entry.block = this->tailBlock; blockIndex.load(std::memory_order_relaxed)->front.store(pr_blockIndexFront, std::memory_order_release); pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); if (!MOODYCAMEL_NOEXCEPT_CTOR(T, U, new (nullptr) T(std::forward(element)))) { this->tailIndex.store(newTailIndex, std::memory_order_release); return true; } } // Enqueue new ((*this->tailBlock)[currentTailIndex]) T(std::forward(element)); this->tailIndex.store(newTailIndex, std::memory_order_release); return true; } inline void enqueue_begin_alloc(index_t currentTailIndex) { // We reached the end of a block, start a new one if (this->tailBlock != nullptr && this->tailBlock->next->ConcurrentQueue::Block::is_empty()) { // We can re-use the block ahead of us, it's empty! this->tailBlock = this->tailBlock->next; this->tailBlock->ConcurrentQueue::Block::reset_empty(); // We'll put the block on the block index (guaranteed to be room since we're conceptually removing the // last block from it first -- except instead of removing then adding, we can just overwrite). // Note that there must be a valid block index here, since even if allocation failed in the ctor, // it would have been re-attempted when adding the first block to the queue; since there is such // a block, a block index must have been successfully allocated. } else { // We're going to need a new block; check that the block index has room if (pr_blockIndexRaw == nullptr || pr_blockIndexSlotsUsed == pr_blockIndexSize) { // Hmm, the circular block index is already full -- we'll need // to allocate a new index. Note pr_blockIndexRaw can only be nullptr if // the initial allocation failed in the constructor. new_block_index(pr_blockIndexSlotsUsed); } // Insert a new block in the circular linked list auto newBlock = this->parent->ConcurrentQueue::requisition_block(); newBlock->ConcurrentQueue::Block::reset_empty(); if (this->tailBlock == nullptr) { newBlock->next = newBlock; } else { newBlock->next = this->tailBlock->next; this->tailBlock->next = newBlock; } this->tailBlock = newBlock; ++pr_blockIndexSlotsUsed; } // Add block to block index auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; entry.base = currentTailIndex; entry.block = this->tailBlock; blockIndex.load(std::memory_order_relaxed)->front.store(pr_blockIndexFront, std::memory_order_release); pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); } tracy_force_inline T* enqueue_begin(index_t& currentTailIndex) { currentTailIndex = this->tailIndex.load(std::memory_order_relaxed); if (details::cqUnlikely((currentTailIndex & static_cast(BLOCK_SIZE - 1)) == 0)) { this->enqueue_begin_alloc(currentTailIndex); } return (*this->tailBlock)[currentTailIndex]; } tracy_force_inline std::atomic& get_tail_index() { return this->tailIndex; } template bool dequeue(U& element) { auto tail = this->tailIndex.load(std::memory_order_relaxed); auto overcommit = this->dequeueOvercommit.load(std::memory_order_relaxed); if (details::circular_less_than(this->dequeueOptimisticCount.load(std::memory_order_relaxed) - overcommit, tail)) { // Might be something to dequeue, let's give it a try // Note that this if is purely for performance purposes in the common case when the queue is // empty and the values are eventually consistent -- we may enter here spuriously. // Note that whatever the values of overcommit and tail are, they are not going to change (unless we // change them) and must be the same value at this point (inside the if) as when the if condition was // evaluated. // We insert an acquire fence here to synchronize-with the release upon incrementing dequeueOvercommit below. // This ensures that whatever the value we got loaded into overcommit, the load of dequeueOptisticCount in // the fetch_add below will result in a value at least as recent as that (and therefore at least as large). // Note that I believe a compiler (signal) fence here would be sufficient due to the nature of fetch_add (all // read-modify-write operations are guaranteed to work on the latest value in the modification order), but // unfortunately that can't be shown to be correct using only the C++11 standard. // See http://stackoverflow.com/questions/18223161/what-are-the-c11-memory-ordering-guarantees-in-this-corner-case std::atomic_thread_fence(std::memory_order_acquire); // Increment optimistic counter, then check if it went over the boundary auto myDequeueCount = this->dequeueOptimisticCount.fetch_add(1, std::memory_order_relaxed); // Note that since dequeueOvercommit must be <= dequeueOptimisticCount (because dequeueOvercommit is only ever // incremented after dequeueOptimisticCount -- this is enforced in the `else` block below), and since we now // have a version of dequeueOptimisticCount that is at least as recent as overcommit (due to the release upon // incrementing dequeueOvercommit and the acquire above that synchronizes with it), overcommit <= myDequeueCount. assert(overcommit <= myDequeueCount); // Note that we reload tail here in case it changed; it will be the same value as before or greater, since // this load is sequenced after (happens after) the earlier load above. This is supported by read-read // coherency (as defined in the standard), explained here: http://en.cppreference.com/w/cpp/atomic/memory_order tail = this->tailIndex.load(std::memory_order_acquire); if (details::cqLikely(details::circular_less_than(myDequeueCount - overcommit, tail))) { // Guaranteed to be at least one element to dequeue! // Get the index. Note that since there's guaranteed to be at least one element, this // will never exceed tail. We need to do an acquire-release fence here since it's possible // that whatever condition got us to this point was for an earlier enqueued element (that // we already see the memory effects for), but that by the time we increment somebody else // has incremented it, and we need to see the memory effects for *that* element, which is // in such a case is necessarily visible on the thread that incremented it in the first // place with the more current condition (they must have acquired a tail that is at least // as recent). auto index = this->headIndex.fetch_add(1, std::memory_order_acq_rel); // Determine which block the element is in auto localBlockIndex = blockIndex.load(std::memory_order_acquire); auto localBlockIndexHead = localBlockIndex->front.load(std::memory_order_acquire); // We need to be careful here about subtracting and dividing because of index wrap-around. // When an index wraps, we need to preserve the sign of the offset when dividing it by the // block size (in order to get a correct signed block count offset in all cases): auto headBase = localBlockIndex->entries[localBlockIndexHead].base; auto blockBaseIndex = index & ~static_cast(BLOCK_SIZE - 1); auto offset = static_cast(static_cast::type>(blockBaseIndex - headBase) / BLOCK_SIZE); auto block = localBlockIndex->entries[(localBlockIndexHead + offset) & (localBlockIndex->size - 1)].block; // Dequeue auto& el = *((*block)[index]); if (!MOODYCAMEL_NOEXCEPT_ASSIGN(T, T&&, element = std::move(el))) { // Make sure the element is still fully dequeued and destroyed even if the assignment // throws struct Guard { Block* block; index_t index; ~Guard() { (*block)[index]->~T(); block->ConcurrentQueue::Block::set_empty(index); } } guard = { block, index }; element = std::move(el); } else { element = std::move(el); el.~T(); block->ConcurrentQueue::Block::set_empty(index); } return true; } else { // Wasn't anything to dequeue after all; make the effective dequeue count eventually consistent this->dequeueOvercommit.fetch_add(1, std::memory_order_release); // Release so that the fetch_add on dequeueOptimisticCount is guaranteed to happen before this write } } return false; } template bool enqueue_bulk(It itemFirst, size_t count) { // First, we need to make sure we have enough room to enqueue all of the elements; // this means pre-allocating blocks and putting them in the block index (but only if // all the allocations succeeded). index_t startTailIndex = this->tailIndex.load(std::memory_order_relaxed); auto startBlock = this->tailBlock; auto originalBlockIndexFront = pr_blockIndexFront; auto originalBlockIndexSlotsUsed = pr_blockIndexSlotsUsed; Block* firstAllocatedBlock = nullptr; // Figure out how many blocks we'll need to allocate, and do so size_t blockBaseDiff = ((startTailIndex + count - 1) & ~static_cast(BLOCK_SIZE - 1)) - ((startTailIndex - 1) & ~static_cast(BLOCK_SIZE - 1)); index_t currentTailIndex = (startTailIndex - 1) & ~static_cast(BLOCK_SIZE - 1); if (blockBaseDiff > 0) { // Allocate as many blocks as possible from ahead while (blockBaseDiff > 0 && this->tailBlock != nullptr && this->tailBlock->next != firstAllocatedBlock && this->tailBlock->next->ConcurrentQueue::Block::is_empty()) { blockBaseDiff -= static_cast(BLOCK_SIZE); currentTailIndex += static_cast(BLOCK_SIZE); this->tailBlock = this->tailBlock->next; firstAllocatedBlock = firstAllocatedBlock == nullptr ? this->tailBlock : firstAllocatedBlock; auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; entry.base = currentTailIndex; entry.block = this->tailBlock; pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); } // Now allocate as many blocks as necessary from the block pool while (blockBaseDiff > 0) { blockBaseDiff -= static_cast(BLOCK_SIZE); currentTailIndex += static_cast(BLOCK_SIZE); auto head = this->headIndex.load(std::memory_order_relaxed); assert(!details::circular_less_than(currentTailIndex, head)); bool full = !details::circular_less_than(head, currentTailIndex + BLOCK_SIZE) || (MAX_SUBQUEUE_SIZE != details::const_numeric_max::value && (MAX_SUBQUEUE_SIZE == 0 || MAX_SUBQUEUE_SIZE - BLOCK_SIZE < currentTailIndex - head)); if (pr_blockIndexRaw == nullptr || pr_blockIndexSlotsUsed == pr_blockIndexSize || full) { if (full || !new_block_index(originalBlockIndexSlotsUsed)) { // Failed to allocate, undo changes (but keep injected blocks) pr_blockIndexFront = originalBlockIndexFront; pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; return false; } // pr_blockIndexFront is updated inside new_block_index, so we need to // update our fallback value too (since we keep the new index even if we // later fail) originalBlockIndexFront = originalBlockIndexSlotsUsed; } // Insert a new block in the circular linked list auto newBlock = this->parent->ConcurrentQueue::requisition_block(); if (newBlock == nullptr) { pr_blockIndexFront = originalBlockIndexFront; pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; return false; } newBlock->ConcurrentQueue::Block::set_all_empty(); if (this->tailBlock == nullptr) { newBlock->next = newBlock; } else { newBlock->next = this->tailBlock->next; this->tailBlock->next = newBlock; } this->tailBlock = newBlock; firstAllocatedBlock = firstAllocatedBlock == nullptr ? this->tailBlock : firstAllocatedBlock; ++pr_blockIndexSlotsUsed; auto& entry = blockIndex.load(std::memory_order_relaxed)->entries[pr_blockIndexFront]; entry.base = currentTailIndex; entry.block = this->tailBlock; pr_blockIndexFront = (pr_blockIndexFront + 1) & (pr_blockIndexSize - 1); } // Excellent, all allocations succeeded. Reset each block's emptiness before we fill them up, and // publish the new block index front auto block = firstAllocatedBlock; while (true) { block->ConcurrentQueue::Block::reset_empty(); if (block == this->tailBlock) { break; } block = block->next; } if (MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new (nullptr) T(details::deref_noexcept(itemFirst)))) { blockIndex.load(std::memory_order_relaxed)->front.store((pr_blockIndexFront - 1) & (pr_blockIndexSize - 1), std::memory_order_release); } } // Enqueue, one block at a time index_t newTailIndex = startTailIndex + static_cast(count); currentTailIndex = startTailIndex; auto endBlock = this->tailBlock; this->tailBlock = startBlock; assert((startTailIndex & static_cast(BLOCK_SIZE - 1)) != 0 || firstAllocatedBlock != nullptr || count == 0); if ((startTailIndex & static_cast(BLOCK_SIZE - 1)) == 0 && firstAllocatedBlock != nullptr) { this->tailBlock = firstAllocatedBlock; } while (true) { auto stopIndex = (currentTailIndex & ~static_cast(BLOCK_SIZE - 1)) + static_cast(BLOCK_SIZE); if (details::circular_less_than(newTailIndex, stopIndex)) { stopIndex = newTailIndex; } if (MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new (nullptr) T(details::deref_noexcept(itemFirst)))) { while (currentTailIndex != stopIndex) { new ((*this->tailBlock)[currentTailIndex++]) T(*itemFirst++); } } else { MOODYCAMEL_TRY { while (currentTailIndex != stopIndex) { // Must use copy constructor even if move constructor is available // because we may have to revert if there's an exception. // Sorry about the horrible templated next line, but it was the only way // to disable moving *at compile time*, which is important because a type // may only define a (noexcept) move constructor, and so calls to the // cctor will not compile, even if they are in an if branch that will never // be executed new ((*this->tailBlock)[currentTailIndex]) T(details::nomove_if<(bool)!MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new (nullptr) T(details::deref_noexcept(itemFirst)))>::eval(*itemFirst)); ++currentTailIndex; ++itemFirst; } } MOODYCAMEL_CATCH (...) { // Oh dear, an exception's been thrown -- destroy the elements that // were enqueued so far and revert the entire bulk operation (we'll keep // any allocated blocks in our linked list for later, though). auto constructedStopIndex = currentTailIndex; auto lastBlockEnqueued = this->tailBlock; pr_blockIndexFront = originalBlockIndexFront; pr_blockIndexSlotsUsed = originalBlockIndexSlotsUsed; this->tailBlock = startBlock == nullptr ? firstAllocatedBlock : startBlock; if (!details::is_trivially_destructible::value) { auto block = startBlock; if ((startTailIndex & static_cast(BLOCK_SIZE - 1)) == 0) { block = firstAllocatedBlock; } currentTailIndex = startTailIndex; while (true) { stopIndex = (currentTailIndex & ~static_cast(BLOCK_SIZE - 1)) + static_cast(BLOCK_SIZE); if (details::circular_less_than(constructedStopIndex, stopIndex)) { stopIndex = constructedStopIndex; } while (currentTailIndex != stopIndex) { (*block)[currentTailIndex++]->~T(); } if (block == lastBlockEnqueued) { break; } block = block->next; } } MOODYCAMEL_RETHROW; } } if (this->tailBlock == endBlock) { assert(currentTailIndex == newTailIndex); break; } this->tailBlock = this->tailBlock->next; } if (!MOODYCAMEL_NOEXCEPT_CTOR(T, decltype(*itemFirst), new (nullptr) T(details::deref_noexcept(itemFirst))) && firstAllocatedBlock != nullptr) { blockIndex.load(std::memory_order_relaxed)->front.store((pr_blockIndexFront - 1) & (pr_blockIndexSize - 1), std::memory_order_release); } this->tailIndex.store(newTailIndex, std::memory_order_release); return true; } template size_t dequeue_bulk(It& itemFirst, size_t max) { auto tail = this->tailIndex.load(std::memory_order_relaxed); auto overcommit = this->dequeueOvercommit.load(std::memory_order_relaxed); auto desiredCount = static_cast(tail - (this->dequeueOptimisticCount.load(std::memory_order_relaxed) - overcommit)); if (details::circular_less_than(0, desiredCount)) { desiredCount = desiredCount < max ? desiredCount : max; std::atomic_thread_fence(std::memory_order_acquire); auto myDequeueCount = this->dequeueOptimisticCount.fetch_add(desiredCount, std::memory_order_relaxed); assert(overcommit <= myDequeueCount); tail = this->tailIndex.load(std::memory_order_acquire); auto actualCount = static_cast(tail - (myDequeueCount - overcommit)); if (details::circular_less_than(0, actualCount)) { actualCount = desiredCount < actualCount ? desiredCount : actualCount; if (actualCount < desiredCount) { this->dequeueOvercommit.fetch_add(desiredCount - actualCount, std::memory_order_release); } // Get the first index. Note that since there's guaranteed to be at least actualCount elements, this // will never exceed tail. auto firstIndex = this->headIndex.fetch_add(actualCount, std::memory_order_acq_rel); // Determine which block the first element is in auto localBlockIndex = blockIndex.load(std::memory_order_acquire); auto localBlockIndexHead = localBlockIndex->front.load(std::memory_order_acquire); auto headBase = localBlockIndex->entries[localBlockIndexHead].base; auto firstBlockBaseIndex = firstIndex & ~static_cast(BLOCK_SIZE - 1); auto offset = static_cast(static_cast::type>(firstBlockBaseIndex - headBase) / BLOCK_SIZE); auto indexIndex = (localBlockIndexHead + offset) & (localBlockIndex->size - 1); // Iterate the blocks and dequeue auto index = firstIndex; do { auto firstIndexInBlock = index; auto endIndex = (index & ~static_cast(BLOCK_SIZE - 1)) + static_cast(BLOCK_SIZE); endIndex = details::circular_less_than(firstIndex + static_cast(actualCount), endIndex) ? firstIndex + static_cast(actualCount) : endIndex; auto block = localBlockIndex->entries[indexIndex].block; const auto sz = endIndex - index; memcpy( itemFirst, (*block)[index], sizeof( T ) * sz ); index += sz; itemFirst += sz; block->ConcurrentQueue::Block::set_many_empty(firstIndexInBlock, static_cast(endIndex - firstIndexInBlock)); indexIndex = (indexIndex + 1) & (localBlockIndex->size - 1); } while (index != firstIndex + actualCount); return actualCount; } else { // Wasn't anything to dequeue after all; make the effective dequeue count eventually consistent this->dequeueOvercommit.fetch_add(desiredCount, std::memory_order_release); } } return 0; } private: struct BlockIndexEntry { index_t base; Block* block; }; struct BlockIndexHeader { size_t size; std::atomic front; // Current slot (not next, like pr_blockIndexFront) BlockIndexEntry* entries; void* prev; }; bool new_block_index(size_t numberOfFilledSlotsToExpose) { auto prevBlockSizeMask = pr_blockIndexSize - 1; // Create the new block pr_blockIndexSize <<= 1; auto newRawPtr = static_cast((Traits::malloc)(sizeof(BlockIndexHeader) + std::alignment_of::value - 1 + sizeof(BlockIndexEntry) * pr_blockIndexSize)); if (newRawPtr == nullptr) { pr_blockIndexSize >>= 1; // Reset to allow graceful retry return false; } auto newBlockIndexEntries = reinterpret_cast(details::align_for(newRawPtr + sizeof(BlockIndexHeader))); // Copy in all the old indices, if any size_t j = 0; if (pr_blockIndexSlotsUsed != 0) { auto i = (pr_blockIndexFront - pr_blockIndexSlotsUsed) & prevBlockSizeMask; do { newBlockIndexEntries[j++] = pr_blockIndexEntries[i]; i = (i + 1) & prevBlockSizeMask; } while (i != pr_blockIndexFront); } // Update everything auto header = new (newRawPtr) BlockIndexHeader; header->size = pr_blockIndexSize; header->front.store(numberOfFilledSlotsToExpose - 1, std::memory_order_relaxed); header->entries = newBlockIndexEntries; header->prev = pr_blockIndexRaw; // we link the new block to the old one so we can free it later pr_blockIndexFront = j; pr_blockIndexEntries = newBlockIndexEntries; pr_blockIndexRaw = newRawPtr; blockIndex.store(header, std::memory_order_release); return true; } private: std::atomic blockIndex; // To be used by producer only -- consumer must use the ones in referenced by blockIndex size_t pr_blockIndexSlotsUsed; size_t pr_blockIndexSize; size_t pr_blockIndexFront; // Next slot (not current) BlockIndexEntry* pr_blockIndexEntries; void* pr_blockIndexRaw; }; ExplicitProducer* get_explicit_producer(producer_token_t const& token) { return static_cast(token.producer); } private: ////////////////////////////////// // Block pool manipulation ////////////////////////////////// void populate_initial_block_list(size_t blockCount) { initialBlockPoolSize = blockCount; if (initialBlockPoolSize == 0) { initialBlockPool = nullptr; return; } initialBlockPool = create_array(blockCount); if (initialBlockPool == nullptr) { initialBlockPoolSize = 0; } for (size_t i = 0; i < initialBlockPoolSize; ++i) { initialBlockPool[i].dynamicallyAllocated = false; } } inline Block* try_get_block_from_initial_pool() { if (initialBlockPoolIndex.load(std::memory_order_relaxed) >= initialBlockPoolSize) { return nullptr; } auto index = initialBlockPoolIndex.fetch_add(1, std::memory_order_relaxed); return index < initialBlockPoolSize ? (initialBlockPool + index) : nullptr; } inline void add_block_to_free_list(Block* block) { freeList.add(block); } inline void add_blocks_to_free_list(Block* block) { while (block != nullptr) { auto next = block->next; add_block_to_free_list(block); block = next; } } inline Block* try_get_block_from_free_list() { return freeList.try_get(); } // Gets a free block from one of the memory pools, or allocates a new one (if applicable) Block* requisition_block() { auto block = try_get_block_from_initial_pool(); if (block != nullptr) { return block; } block = try_get_block_from_free_list(); if (block != nullptr) { return block; } return create(); } ////////////////////////////////// // Producer list manipulation ////////////////////////////////// ProducerBase* recycle_or_create_producer() { bool recycled; return recycle_or_create_producer(recycled); } ProducerBase* recycle_or_create_producer(bool& recycled) { // Try to re-use one first for (auto ptr = producerListTail.load(std::memory_order_acquire); ptr != nullptr; ptr = ptr->next_prod()) { if (ptr->inactive.load(std::memory_order_relaxed)) { if( ptr->size_approx() == 0 ) { bool expected = true; if (ptr->inactive.compare_exchange_strong(expected, /* desired */ false, std::memory_order_acquire, std::memory_order_relaxed)) { // We caught one! It's been marked as activated, the caller can have it recycled = true; return ptr; } } } } recycled = false; return add_producer(static_cast(create(this))); } ProducerBase* add_producer(ProducerBase* producer) { // Handle failed memory allocation if (producer == nullptr) { return nullptr; } producerCount.fetch_add(1, std::memory_order_relaxed); // Add it to the lock-free list auto prevTail = producerListTail.load(std::memory_order_relaxed); do { producer->next = prevTail; } while (!producerListTail.compare_exchange_weak(prevTail, producer, std::memory_order_release, std::memory_order_relaxed)); return producer; } void reown_producers() { // After another instance is moved-into/swapped-with this one, all the // producers we stole still think their parents are the other queue. // So fix them up! for (auto ptr = producerListTail.load(std::memory_order_relaxed); ptr != nullptr; ptr = ptr->next_prod()) { ptr->parent = this; } } ////////////////////////////////// // Utility functions ////////////////////////////////// template static inline U* create_array(size_t count) { assert(count > 0); return static_cast((Traits::malloc)(sizeof(U) * count)); } template static inline void destroy_array(U* p, size_t count) { ((void)count); if (p != nullptr) { assert(count > 0); (Traits::free)(p); } } template static inline U* create() { auto p = (Traits::malloc)(sizeof(U)); return p != nullptr ? new (p) U : nullptr; } template static inline U* create(A1&& a1) { auto p = (Traits::malloc)(sizeof(U)); return p != nullptr ? new (p) U(std::forward(a1)) : nullptr; } template static inline void destroy(U* p) { if (p != nullptr) { p->~U(); } (Traits::free)(p); } private: std::atomic producerListTail; std::atomic producerCount; std::atomic initialBlockPoolIndex; Block* initialBlockPool; size_t initialBlockPoolSize; FreeList freeList; std::atomic nextExplicitConsumerId; std::atomic globalExplicitConsumerOffset; }; template ProducerToken::ProducerToken(ConcurrentQueue& queue) : producer(queue.recycle_or_create_producer()) { if (producer != nullptr) { producer->token = this; producer->threadId = detail::GetThreadHandleImpl(); } } template ConsumerToken::ConsumerToken(ConcurrentQueue& queue) : itemsConsumedFromCurrent(0), currentProducer(nullptr), desiredProducer(nullptr) { initialOffset = queue.nextExplicitConsumerId.fetch_add(1, std::memory_order_release); lastKnownGlobalOffset = static_cast(-1); } template inline void swap(ConcurrentQueue& a, ConcurrentQueue& b) MOODYCAMEL_NOEXCEPT { a.swap(b); } inline void swap(ProducerToken& a, ProducerToken& b) MOODYCAMEL_NOEXCEPT { a.swap(b); } inline void swap(ConsumerToken& a, ConsumerToken& b) MOODYCAMEL_NOEXCEPT { a.swap(b); } } } /* namespace tracy */ #if defined(__GNUC__) #pragma GCC diagnostic pop #endif