#ifndef __TRACYPROFILER_HPP__ #define __TRACYPROFILER_HPP__ #include #include #include #include #include "concurrentqueue.h" #include "TracyCallstack.hpp" #include "TracyFastVector.hpp" #include "../common/tracy_lz4.hpp" #include "../common/tracy_benaphore.h" #include "../common/TracyQueue.hpp" #include "../common/TracyAlign.hpp" #include "../common/TracyAlloc.hpp" #include "../common/TracySystem.hpp" #if defined _MSC_VER || defined __CYGWIN__ # include #endif #if defined _MSC_VER || defined __CYGWIN__ || ( ( defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 ) && !defined __ANDROID__ ) || __ARM_ARCH >= 6 # define TRACY_HW_TIMER # if defined _MSC_VER || defined __CYGWIN__ // Enable optimization for MSVC __rdtscp() intrin, saving one LHS of a cpu value on the stack. // This comes at the cost of an unaligned memory write. # define TRACY_RDTSCP_OPT # endif #endif namespace tracy { class Socket; struct SourceLocation { const char* name; const char* function; const char* file; uint32_t line; uint32_t color; }; struct ProducerWrapper { moodycamel::ConcurrentQueue::ExplicitProducer* ptr; }; extern thread_local ProducerWrapper s_token; class GpuCtx; struct GpuCtxWrapper { GpuCtx* ptr; }; class VkCtx; struct VkCtxWrapper { VkCtx* ptr; }; using Magic = moodycamel::ConcurrentQueueDefaultTraits::index_t; #if __ARM_ARCH >= 6 extern int64_t (*GetTimeImpl)(); #endif class Profiler; extern Profiler s_profiler; class Profiler { public: Profiler(); ~Profiler(); static tracy_force_inline int64_t GetTime( uint32_t& cpu ) { #ifdef TRACY_HW_TIMER # if __ARM_ARCH >= 6 cpu = 0xFFFFFFFF; return GetTimeImpl(); # elif defined _MSC_VER || defined __CYGWIN__ const auto t = int64_t( __rdtscp( &cpu ) ); return t; # elif defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 uint32_t eax, edx; asm volatile ( "rdtscp" : "=a" (eax), "=d" (edx), "=c" (cpu) :: ); return ( uint64_t( edx ) << 32 ) + uint64_t( eax ); # endif #else cpu = 0xFFFFFFFF; return std::chrono::duration_cast( std::chrono::high_resolution_clock::now().time_since_epoch() ).count(); #endif } static tracy_force_inline int64_t GetTime() { #ifdef TRACY_HW_TIMER # if __ARM_ARCH >= 6 return GetTimeImpl(); # elif defined _MSC_VER || defined __CYGWIN__ unsigned int dontcare; const auto t = int64_t( __rdtscp( &dontcare ) ); return t; # elif defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 uint32_t eax, edx; asm volatile ( "rdtscp" : "=a" (eax), "=d" (edx) :: "%ecx" ); return ( uint64_t( edx ) << 32 ) + uint64_t( eax ); # endif #else return std::chrono::duration_cast( std::chrono::high_resolution_clock::now().time_since_epoch() ).count(); #endif } static tracy_force_inline void FrameMark() { Magic magic; auto& token = s_token.ptr; auto& tail = token->get_tail_index(); auto item = token->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::FrameMarkMsg ); MemWrite( &item->frameMark.time, GetTime() ); tail.store( magic + 1, std::memory_order_release ); } static tracy_force_inline void PlotData( const char* name, int64_t val ) { Magic magic; auto& token = s_token.ptr; auto& tail = token->get_tail_index(); auto item = token->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::PlotData ); MemWrite( &item->plotData.name, (uint64_t)name ); MemWrite( &item->plotData.time, GetTime() ); MemWrite( &item->plotData.type, PlotDataType::Int ); MemWrite( &item->plotData.data.i, val ); tail.store( magic + 1, std::memory_order_release ); } static tracy_force_inline void PlotData( const char* name, float val ) { Magic magic; auto& token = s_token.ptr; auto& tail = token->get_tail_index(); auto item = token->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::PlotData ); MemWrite( &item->plotData.name, (uint64_t)name ); MemWrite( &item->plotData.time, GetTime() ); MemWrite( &item->plotData.type, PlotDataType::Float ); MemWrite( &item->plotData.data.f, val ); tail.store( magic + 1, std::memory_order_release ); } static tracy_force_inline void PlotData( const char* name, double val ) { Magic magic; auto& token = s_token.ptr; auto& tail = token->get_tail_index(); auto item = token->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::PlotData ); MemWrite( &item->plotData.name, (uint64_t)name ); MemWrite( &item->plotData.time, GetTime() ); MemWrite( &item->plotData.type, PlotDataType::Double ); MemWrite( &item->plotData.data.d, val ); tail.store( magic + 1, std::memory_order_release ); } static tracy_force_inline void Message( const char* txt, size_t size ) { Magic magic; auto& token = s_token.ptr; auto ptr = (char*)tracy_malloc( size+1 ); memcpy( ptr, txt, size ); ptr[size] = '\0'; auto& tail = token->get_tail_index(); auto item = token->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::Message ); MemWrite( &item->message.time, GetTime() ); MemWrite( &item->message.thread, GetThreadHandle() ); MemWrite( &item->message.text, (uint64_t)ptr ); tail.store( magic + 1, std::memory_order_release ); } static tracy_force_inline void Message( const char* txt ) { Magic magic; auto& token = s_token.ptr; auto& tail = token->get_tail_index(); auto item = token->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::MessageLiteral ); MemWrite( &item->message.time, GetTime() ); MemWrite( &item->message.thread, GetThreadHandle() ); MemWrite( &item->message.text, (uint64_t)txt ); tail.store( magic + 1, std::memory_order_release ); } static tracy_force_inline void MemAlloc( const void* ptr, size_t size ) { const auto thread = GetThreadHandle(); s_profiler.m_serialLock.lock(); SendMemAlloc( QueueType::MemAlloc, thread, ptr, size ); s_profiler.m_serialLock.unlock(); } static tracy_force_inline void MemFree( const void* ptr ) { const auto thread = GetThreadHandle(); s_profiler.m_serialLock.lock(); SendMemFree( QueueType::MemFree, thread, ptr ); s_profiler.m_serialLock.unlock(); } static tracy_force_inline void MemAllocCallstack( const void* ptr, size_t size, int depth ) { const auto thread = GetThreadHandle(); rpmalloc_thread_initialize(); s_profiler.m_serialLock.lock(); SendMemAlloc( QueueType::MemAllocCallstack, thread, ptr, size ); SendCallstackMemory( depth ); s_profiler.m_serialLock.unlock(); } static tracy_force_inline void MemFreeCallstack( const void* ptr, int depth ) { const auto thread = GetThreadHandle(); rpmalloc_thread_initialize(); s_profiler.m_serialLock.lock(); SendMemFree( QueueType::MemFreeCallstack, thread, ptr ); SendCallstackMemory( depth ); s_profiler.m_serialLock.unlock(); } static tracy_force_inline void SendCallstack( int depth, uint64_t thread ) { #ifdef TRACY_HAS_CALLSTACK auto ptr = Callstack( depth ); Magic magic; auto& token = s_token.ptr; auto& tail = token->get_tail_index(); auto item = token->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::Callstack ); MemWrite( &item->callstack.ptr, ptr ); MemWrite( &item->callstack.thread, thread ); tail.store( magic + 1, std::memory_order_release ); #endif } static bool ShouldExit(); private: enum DequeueStatus { Success, ConnectionLost, QueueEmpty }; static void LaunchWorker( void* ptr ) { ((Profiler*)ptr)->Worker(); } void Worker(); DequeueStatus Dequeue( moodycamel::ConsumerToken& token ); DequeueStatus DequeueSerial(); bool AppendData( const void* data, size_t len ); bool CommitData(); bool NeedDataSize( size_t len ); bool SendData( const char* data, size_t len ); void SendString( uint64_t ptr, const char* str, QueueType type ); void SendSourceLocation( uint64_t ptr ); void SendSourceLocationPayload( uint64_t ptr ); void SendCallstackPayload( uint64_t ptr ); void SendCallstackFrame( uint64_t ptr ); bool HandleServerQuery(); void CalibrateTimer(); void CalibrateDelay(); static tracy_force_inline void SendCallstackMemory( int depth ) { #ifdef TRACY_HAS_CALLSTACK auto ptr = Callstack( depth ); auto item = s_profiler.m_serialQueue.push_next(); MemWrite( &item->hdr.type, QueueType::CallstackMemory ); MemWrite( &item->callstackMemory.ptr, (uint64_t)ptr ); #endif } static tracy_force_inline void SendMemAlloc( QueueType type, const uint64_t thread, const void* ptr, size_t size ) { assert( type == QueueType::MemAlloc || type == QueueType::MemAllocCallstack ); auto item = s_profiler.m_serialQueue.push_next(); MemWrite( &item->hdr.type, type ); MemWrite( &item->memAlloc.time, GetTime() ); MemWrite( &item->memAlloc.thread, thread ); MemWrite( &item->memAlloc.ptr, (uint64_t)ptr ); if( sizeof( size ) == 4 ) { memcpy( &item->memAlloc.size, &size, 4 ); memset( &item->memAlloc.size + 4, 0, 2 ); } else { assert( sizeof( size ) == 8 ); memcpy( &item->memAlloc.size, &size, 6 ); } } static tracy_force_inline void SendMemFree( QueueType type, const uint64_t thread, const void* ptr ) { assert( type == QueueType::MemFree || type == QueueType::MemFreeCallstack ); auto item = s_profiler.m_serialQueue.push_next(); MemWrite( &item->hdr.type, type ); MemWrite( &item->memFree.time, GetTime() ); MemWrite( &item->memFree.thread, thread ); MemWrite( &item->memFree.ptr, (uint64_t)ptr ); } double m_timerMul; uint64_t m_resolution; uint64_t m_delay; std::atomic m_timeBegin; uint64_t m_mainThread; uint64_t m_epoch; std::atomic m_shutdown; Socket* m_sock; LZ4_stream_t* m_stream; char* m_buffer; int m_bufferOffset; int m_bufferStart; QueueItem* m_itemBuf; char* m_lz4Buf; FastVector m_serialQueue, m_serialDequeue; NonRecursiveBenaphore m_serialLock; }; }; #endif