#include "TracyEtc1.hpp" #include #include #include #include typedef std::array v4i; #if defined __AVX__ && !defined __SSE4_1__ # define __SSE4_1__ #endif #ifdef __AVX2__ #ifdef _MSC_VER # include # include # define _bswap(x) _byteswap_ulong(x) # define VS_VECTORCALL _vectorcall #else # include # pragma GCC push_options # pragma GCC target ("avx2,fma,bmi2") # define VS_VECTORCALL #endif #ifndef _bswap # define _bswap(x) __builtin_bswap32(x) #endif namespace tracy { const __m128i g_table128_SIMD[2] = { _mm_setr_epi16( 2*128, 5*128, 9*128, 13*128, 18*128, 24*128, 33*128, 47*128), _mm_setr_epi16( 8*128, 17*128, 29*128, 42*128, 60*128, 80*128, 106*128, 183*128) }; #ifdef _MSC_VER static inline unsigned long _bit_scan_forward( unsigned long mask ) { unsigned long ret; _BitScanForward( &ret, mask ); return ret; } #endif static __m256i VS_VECTORCALL Sum4_AVX2( const uint8_t* data) noexcept { __m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0); __m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1); __m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2); __m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3); __m128i dm0 = _mm_and_si128(d0, _mm_set1_epi32(0x00FFFFFF)); __m128i dm1 = _mm_and_si128(d1, _mm_set1_epi32(0x00FFFFFF)); __m128i dm2 = _mm_and_si128(d2, _mm_set1_epi32(0x00FFFFFF)); __m128i dm3 = _mm_and_si128(d3, _mm_set1_epi32(0x00FFFFFF)); __m256i t0 = _mm256_cvtepu8_epi16(dm0); __m256i t1 = _mm256_cvtepu8_epi16(dm1); __m256i t2 = _mm256_cvtepu8_epi16(dm2); __m256i t3 = _mm256_cvtepu8_epi16(dm3); __m256i sum0 = _mm256_add_epi16(t0, t1); __m256i sum1 = _mm256_add_epi16(t2, t3); __m256i s0 = _mm256_permute2x128_si256(sum0, sum1, (0) | (3 << 4)); // 0, 0, 3, 3 __m256i s1 = _mm256_permute2x128_si256(sum0, sum1, (1) | (2 << 4)); // 1, 1, 2, 2 __m256i s2 = _mm256_permute4x64_epi64(s0, _MM_SHUFFLE(1, 3, 0, 2)); __m256i s3 = _mm256_permute4x64_epi64(s0, _MM_SHUFFLE(0, 2, 1, 3)); __m256i s4 = _mm256_permute4x64_epi64(s1, _MM_SHUFFLE(3, 1, 0, 2)); __m256i s5 = _mm256_permute4x64_epi64(s1, _MM_SHUFFLE(2, 0, 1, 3)); __m256i sum5 = _mm256_add_epi16(s2, s3); // 3, 0, 3, 0 __m256i sum6 = _mm256_add_epi16(s4, s5); // 2, 1, 1, 2 return _mm256_add_epi16(sum5, sum6); // 3+2, 0+1, 3+1, 3+2 } __m256i VS_VECTORCALL Average_AVX2( const __m256i data) noexcept { __m256i a = _mm256_add_epi16(data, _mm256_set1_epi16(4)); return _mm256_srli_epi16(a, 3); } static __m128i VS_VECTORCALL CalcErrorBlock_AVX2( const __m256i data, const v4i a[8]) noexcept { // __m256i a0 = _mm256_load_si256((__m256i*)a[0].data()); __m256i a1 = _mm256_load_si256((__m256i*)a[4].data()); // err = 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) ); __m256i a4 = _mm256_madd_epi16(a0, a0); __m256i a5 = _mm256_madd_epi16(a1, a1); __m256i a6 = _mm256_hadd_epi32(a4, a5); __m256i a7 = _mm256_slli_epi32(a6, 3); __m256i a8 = _mm256_add_epi32(a7, _mm256_set1_epi32(0x3FFFFFFF)); // Big value to prevent negative values, but small enough to prevent overflow // average is not swapped // err -= block[0] * 2 * average[0]; // err -= block[1] * 2 * average[1]; // err -= block[2] * 2 * average[2]; __m256i a2 = _mm256_slli_epi16(a0, 1); __m256i a3 = _mm256_slli_epi16(a1, 1); __m256i b0 = _mm256_madd_epi16(a2, data); __m256i b1 = _mm256_madd_epi16(a3, data); __m256i b2 = _mm256_hadd_epi32(b0, b1); __m256i b3 = _mm256_sub_epi32(a8, b2); __m256i b4 = _mm256_hadd_epi32(b3, b3); __m256i b5 = _mm256_permutevar8x32_epi32(b4, _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0)); return _mm256_castsi256_si128(b5); } static void VS_VECTORCALL ProcessAverages_AVX2(const __m256i d, v4i a[8] ) noexcept { __m256i t = _mm256_add_epi16(_mm256_mullo_epi16(d, _mm256_set1_epi16(31)), _mm256_set1_epi16(128)); __m256i c = _mm256_srli_epi16(_mm256_add_epi16(t, _mm256_srli_epi16(t, 8)), 8); __m256i c1 = _mm256_shuffle_epi32(c, _MM_SHUFFLE(3, 2, 3, 2)); __m256i diff = _mm256_sub_epi16(c, c1); diff = _mm256_max_epi16(diff, _mm256_set1_epi16(-4)); diff = _mm256_min_epi16(diff, _mm256_set1_epi16(3)); __m256i co = _mm256_add_epi16(c1, diff); c = _mm256_blend_epi16(co, c, 0xF0); __m256i a0 = _mm256_or_si256(_mm256_slli_epi16(c, 3), _mm256_srli_epi16(c, 2)); _mm256_store_si256((__m256i*)a[4].data(), a0); __m256i t0 = _mm256_add_epi16(_mm256_mullo_epi16(d, _mm256_set1_epi16(15)), _mm256_set1_epi16(128)); __m256i t1 = _mm256_srli_epi16(_mm256_add_epi16(t0, _mm256_srli_epi16(t0, 8)), 8); __m256i t2 = _mm256_or_si256(t1, _mm256_slli_epi16(t1, 4)); _mm256_store_si256((__m256i*)a[0].data(), t2); } static uint64_t VS_VECTORCALL EncodeAverages_AVX2( const v4i a[8], size_t idx ) noexcept { uint64_t d = ( idx << 24 ); size_t base = idx << 1; __m128i a0 = _mm_load_si128((const __m128i*)a[base].data()); __m128i r0, r1; if( ( idx & 0x2 ) == 0 ) { r0 = _mm_srli_epi16(a0, 4); __m128i a1 = _mm_unpackhi_epi64(r0, r0); r1 = _mm_slli_epi16(a1, 4); } else { __m128i a1 = _mm_and_si128(a0, _mm_set1_epi16(-8)); r0 = _mm_unpackhi_epi64(a1, a1); __m128i a2 = _mm_sub_epi16(a1, r0); __m128i a3 = _mm_srai_epi16(a2, 3); r1 = _mm_and_si128(a3, _mm_set1_epi16(0x07)); } __m128i r2 = _mm_or_si128(r0, r1); // do missing swap for average values __m128i r3 = _mm_shufflelo_epi16(r2, _MM_SHUFFLE(3, 0, 1, 2)); __m128i r4 = _mm_packus_epi16(r3, _mm_setzero_si128()); d |= _mm_cvtsi128_si32(r4); return d; } static uint64_t VS_VECTORCALL CheckSolid_AVX2( const uint8_t* src ) noexcept { __m256i d0 = _mm256_loadu_si256(((__m256i*)src) + 0); __m256i d1 = _mm256_loadu_si256(((__m256i*)src) + 1); __m256i c = _mm256_broadcastd_epi32(_mm256_castsi256_si128(d0)); __m256i c0 = _mm256_cmpeq_epi8(d0, c); __m256i c1 = _mm256_cmpeq_epi8(d1, c); __m256i m = _mm256_and_si256(c0, c1); if (!_mm256_testc_si256(m, _mm256_set1_epi32(-1))) { return 0; } return 0x02000000 | ( (unsigned int)( src[0] & 0xF8 ) << 16 ) | ( (unsigned int)( src[1] & 0xF8 ) << 8 ) | ( (unsigned int)( src[2] & 0xF8 ) ); } static __m128i VS_VECTORCALL PrepareAverages_AVX2( v4i a[8], const uint8_t* src) noexcept { __m256i sum4 = Sum4_AVX2( src ); ProcessAverages_AVX2(Average_AVX2( sum4 ), a ); return CalcErrorBlock_AVX2( sum4, a); } static void VS_VECTORCALL FindBestFit_4x2_AVX2( uint32_t terr[2][8], uint32_t tsel[8], v4i a[8], const uint32_t offset, const uint8_t* data) noexcept { __m256i sel0 = _mm256_setzero_si256(); __m256i sel1 = _mm256_setzero_si256(); for (unsigned int j = 0; j < 2; ++j) { unsigned int bid = offset + 1 - j; __m256i squareErrorSum = _mm256_setzero_si256(); __m128i a0 = _mm_loadl_epi64((const __m128i*)a[bid].data()); __m256i a1 = _mm256_broadcastq_epi64(a0); // Processing one full row each iteration for (size_t i = 0; i < 8; i += 4) { __m128i rgb = _mm_loadu_si128((const __m128i*)(data + i * 4)); __m256i rgb16 = _mm256_cvtepu8_epi16(rgb); __m256i d = _mm256_sub_epi16(a1, rgb16); // The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16 // This produces slightly different results, but is significant faster __m256i pixel0 = _mm256_madd_epi16(d, _mm256_set_epi16(0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14)); __m256i pixel1 = _mm256_packs_epi32(pixel0, pixel0); __m256i pixel2 = _mm256_hadd_epi16(pixel1, pixel1); __m128i pixel3 = _mm256_castsi256_si128(pixel2); __m128i pix0 = _mm_broadcastw_epi16(pixel3); __m128i pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); __m256i pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); // Processing first two pixels of the row { __m256i pix = _mm256_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); __m256i minError = _mm256_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit // This produces slightly different results, but is significant faster __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); // Interleaving values so madd instruction can be used __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); // Squaring the minimum error to produce correct values when adding __m256i squareError = _mm256_madd_epi16(minError2, minError2); squareErrorSum = _mm256_add_epi32(squareErrorSum, squareError); // Packing selector bits __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i + j * 8)); __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i + j * 8)); sel0 = _mm256_or_si256(sel0, minIndexLo2); sel1 = _mm256_or_si256(sel1, minIndexHi2); } pixel3 = _mm256_extracti128_si256(pixel2, 1); pix0 = _mm_broadcastw_epi16(pixel3); pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); // Processing second two pixels of the row { __m256i pix = _mm256_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); __m256i minError = _mm256_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); // Interleaving values so madd instruction can be used __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); // Squaring the minimum error to produce correct values when adding __m256i squareError = _mm256_madd_epi16(minError2, minError2); squareErrorSum = _mm256_add_epi32(squareErrorSum, squareError); // Packing selector bits __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i + j * 8)); __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i + j * 8)); __m256i minIndexLo3 = _mm256_slli_epi16(minIndexLo2, 2); __m256i minIndexHi3 = _mm256_slli_epi16(minIndexHi2, 2); sel0 = _mm256_or_si256(sel0, minIndexLo3); sel1 = _mm256_or_si256(sel1, minIndexHi3); } } data += 8 * 4; _mm256_store_si256((__m256i*)terr[1 - j], squareErrorSum); } // Interleave selector bits __m256i minIndexLo0 = _mm256_unpacklo_epi16(sel0, sel1); __m256i minIndexHi0 = _mm256_unpackhi_epi16(sel0, sel1); __m256i minIndexLo1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (0) | (2 << 4)); __m256i minIndexHi1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (1) | (3 << 4)); __m256i minIndexHi2 = _mm256_slli_epi32(minIndexHi1, 1); __m256i sel = _mm256_or_si256(minIndexLo1, minIndexHi2); _mm256_store_si256((__m256i*)tsel, sel); } static void VS_VECTORCALL FindBestFit_2x4_AVX2( uint32_t terr[2][8], uint32_t tsel[8], v4i a[8], const uint32_t offset, const uint8_t* data) noexcept { __m256i sel0 = _mm256_setzero_si256(); __m256i sel1 = _mm256_setzero_si256(); __m256i squareErrorSum0 = _mm256_setzero_si256(); __m256i squareErrorSum1 = _mm256_setzero_si256(); __m128i a0 = _mm_loadl_epi64((const __m128i*)a[offset + 1].data()); __m128i a1 = _mm_loadl_epi64((const __m128i*)a[offset + 0].data()); __m128i a2 = _mm_broadcastq_epi64(a0); __m128i a3 = _mm_broadcastq_epi64(a1); __m256i a4 = _mm256_insertf128_si256(_mm256_castsi128_si256(a2), a3, 1); // Processing one full row each iteration for (size_t i = 0; i < 16; i += 4) { __m128i rgb = _mm_loadu_si128((const __m128i*)(data + i * 4)); __m256i rgb16 = _mm256_cvtepu8_epi16(rgb); __m256i d = _mm256_sub_epi16(a4, rgb16); // The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16 // This produces slightly different results, but is significant faster __m256i pixel0 = _mm256_madd_epi16(d, _mm256_set_epi16(0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14)); __m256i pixel1 = _mm256_packs_epi32(pixel0, pixel0); __m256i pixel2 = _mm256_hadd_epi16(pixel1, pixel1); __m128i pixel3 = _mm256_castsi256_si128(pixel2); __m128i pix0 = _mm_broadcastw_epi16(pixel3); __m128i pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); __m256i pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); // Processing first two pixels of the row { __m256i pix = _mm256_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); __m256i minError = _mm256_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); // Interleaving values so madd instruction can be used __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); // Squaring the minimum error to produce correct values when adding __m256i squareError = _mm256_madd_epi16(minError2, minError2); squareErrorSum0 = _mm256_add_epi32(squareErrorSum0, squareError); // Packing selector bits __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i)); __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i)); sel0 = _mm256_or_si256(sel0, minIndexLo2); sel1 = _mm256_or_si256(sel1, minIndexHi2); } pixel3 = _mm256_extracti128_si256(pixel2, 1); pix0 = _mm_broadcastw_epi16(pixel3); pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); // Processing second two pixels of the row { __m256i pix = _mm256_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); __m256i minError = _mm256_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); // Interleaving values so madd instruction can be used __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); // Squaring the minimum error to produce correct values when adding __m256i squareError = _mm256_madd_epi16(minError2, minError2); squareErrorSum1 = _mm256_add_epi32(squareErrorSum1, squareError); // Packing selector bits __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i)); __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i)); __m256i minIndexLo3 = _mm256_slli_epi16(minIndexLo2, 2); __m256i minIndexHi3 = _mm256_slli_epi16(minIndexHi2, 2); sel0 = _mm256_or_si256(sel0, minIndexLo3); sel1 = _mm256_or_si256(sel1, minIndexHi3); } } _mm256_store_si256((__m256i*)terr[1], squareErrorSum0); _mm256_store_si256((__m256i*)terr[0], squareErrorSum1); // Interleave selector bits __m256i minIndexLo0 = _mm256_unpacklo_epi16(sel0, sel1); __m256i minIndexHi0 = _mm256_unpackhi_epi16(sel0, sel1); __m256i minIndexLo1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (0) | (2 << 4)); __m256i minIndexHi1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (1) | (3 << 4)); __m256i minIndexHi2 = _mm256_slli_epi32(minIndexHi1, 1); __m256i sel = _mm256_or_si256(minIndexLo1, minIndexHi2); _mm256_store_si256((__m256i*)tsel, sel); } uint64_t VS_VECTORCALL EncodeSelectors_AVX2( uint64_t d, const uint32_t terr[2][8], const uint32_t tsel[8], const bool rotate) noexcept { size_t tidx[2]; // Get index of minimum error (terr[0] and terr[1]) __m256i err0 = _mm256_load_si256((const __m256i*)terr[0]); __m256i err1 = _mm256_load_si256((const __m256i*)terr[1]); __m256i errLo = _mm256_permute2x128_si256(err0, err1, (0) | (2 << 4)); __m256i errHi = _mm256_permute2x128_si256(err0, err1, (1) | (3 << 4)); __m256i errMin0 = _mm256_min_epu32(errLo, errHi); __m256i errMin1 = _mm256_shuffle_epi32(errMin0, _MM_SHUFFLE(2, 3, 0, 1)); __m256i errMin2 = _mm256_min_epu32(errMin0, errMin1); __m256i errMin3 = _mm256_shuffle_epi32(errMin2, _MM_SHUFFLE(1, 0, 3, 2)); __m256i errMin4 = _mm256_min_epu32(errMin3, errMin2); __m256i errMin5 = _mm256_permute2x128_si256(errMin4, errMin4, (0) | (0 << 4)); __m256i errMin6 = _mm256_permute2x128_si256(errMin4, errMin4, (1) | (1 << 4)); __m256i errMask0 = _mm256_cmpeq_epi32(errMin5, err0); __m256i errMask1 = _mm256_cmpeq_epi32(errMin6, err1); uint32_t mask0 = _mm256_movemask_epi8(errMask0); uint32_t mask1 = _mm256_movemask_epi8(errMask1); tidx[0] = _bit_scan_forward(mask0) >> 2; tidx[1] = _bit_scan_forward(mask1) >> 2; d |= tidx[0] << 26; d |= tidx[1] << 29; unsigned int t0 = tsel[tidx[0]]; unsigned int t1 = tsel[tidx[1]]; if (!rotate) { t0 &= 0xFF00FF00; t1 &= 0x00FF00FF; } else { t0 &= 0xCCCCCCCC; t1 &= 0x33333333; } // Flip selectors from sign bit unsigned int t2 = (t0 | t1) ^ 0xFFFF0000; return d | static_cast(_bswap(t2)) << 32; } static uint64_t ProcessRGB( const uint8_t* src ) { uint64_t d = CheckSolid_AVX2( src ); if( d != 0 ) return d; alignas(32) v4i a[8]; __m128i err0 = PrepareAverages_AVX2( a, src ); // Get index of minimum error (err0) __m128i err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(2, 3, 0, 1)); __m128i errMin0 = _mm_min_epu32(err0, err1); __m128i errMin1 = _mm_shuffle_epi32(errMin0, _MM_SHUFFLE(1, 0, 3, 2)); __m128i errMin2 = _mm_min_epu32(errMin1, errMin0); __m128i errMask = _mm_cmpeq_epi32(errMin2, err0); uint32_t mask = _mm_movemask_epi8(errMask); uint32_t idx = _bit_scan_forward(mask) >> 2; d |= EncodeAverages_AVX2( a, idx ); alignas(32) uint32_t terr[2][8] = {}; alignas(32) uint32_t tsel[8]; if ((idx == 0) || (idx == 2)) { FindBestFit_4x2_AVX2( terr, tsel, a, idx * 2, src ); } else { FindBestFit_2x4_AVX2( terr, tsel, a, idx * 2, src ); } return EncodeSelectors_AVX2( d, terr, tsel, (idx % 2) == 1 ); } #else #ifdef __ARM_NEON # include #endif #ifdef __SSE4_1__ # ifdef _MSC_VER # include # include # define _bswap(x) _byteswap_ulong(x) # else # include # endif #else # ifndef _MSC_VER # ifdef __APPLE__ # include # ifndef _bswap # define _bswap(x) OSSwapInt32(x) # endif # else # include # ifndef _bswap # define _bswap(x) bswap_32(x) # endif # endif # endif #endif #ifndef _bswap # define _bswap(x) __builtin_bswap32(x) #endif namespace tracy { const uint32_t g_avg2[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF }; const int64_t g_table256[8][4] = { { 2*256, 8*256, -2*256, -8*256 }, { 5*256, 17*256, -5*256, -17*256 }, { 9*256, 29*256, -9*256, -29*256 }, { 13*256, 42*256, -13*256, -42*256 }, { 18*256, 60*256, -18*256, -60*256 }, { 24*256, 80*256, -24*256, -80*256 }, { 33*256, 106*256, -33*256, -106*256 }, { 47*256, 183*256, -47*256, -183*256 } }; const uint32_t g_id[4][16] = { { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, { 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2 }, { 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4 }, { 7, 7, 6, 6, 7, 7, 6, 6, 7, 7, 6, 6, 7, 7, 6, 6 } }; #ifdef __SSE4_1__ const __m128i g_table128_SIMD[2] = { _mm_setr_epi16( 2*128, 5*128, 9*128, 13*128, 18*128, 24*128, 33*128, 47*128), _mm_setr_epi16( 8*128, 17*128, 29*128, 42*128, 60*128, 80*128, 106*128, 183*128) }; #endif #ifdef __ARM_NEON const int16x8_t g_table128_NEON[2] = { { 2*128, 5*128, 9*128, 13*128, 18*128, 24*128, 33*128, 47*128 }, { 8*128, 17*128, 29*128, 42*128, 60*128, 80*128, 106*128, 183*128 } }; #endif template static inline T sq( T val ) { return val * val; } static inline int mul8bit( int a, int b ) { int t = a*b + 128; return ( t + ( t >> 8 ) ) >> 8; } template static size_t GetLeastError( const T* err, size_t num ) { size_t idx = 0; for( size_t i=1; i> 24 ) | ( ( d & 0x000000FF00000000 ) << 24 ) | ( ( d & 0x00FF000000000000 ) >> 8 ) | ( ( d & 0x0000FF0000000000 ) << 8 ); } template static uint64_t EncodeSelectors( uint64_t d, const T terr[2][8], const S tsel[16][8], const uint32_t* id ) { size_t tidx[2]; tidx[0] = GetLeastError( terr[0], 8 ); tidx[1] = GetLeastError( terr[1], 8 ); d |= tidx[0] << 26; d |= tidx[1] << 29; for( int i=0; i<16; i++ ) { uint64_t t = tsel[i][tidx[id[i]%2]]; d |= ( t & 0x1 ) << ( i + 32 ); d |= ( t & 0x2 ) << ( i + 47 ); } return d; } static void Average( const uint8_t* data, v4i* a ) { #ifdef __SSE4_1__ __m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0); __m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1); __m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2); __m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3); __m128i d0l = _mm_unpacklo_epi8(d0, _mm_setzero_si128()); __m128i d0h = _mm_unpackhi_epi8(d0, _mm_setzero_si128()); __m128i d1l = _mm_unpacklo_epi8(d1, _mm_setzero_si128()); __m128i d1h = _mm_unpackhi_epi8(d1, _mm_setzero_si128()); __m128i d2l = _mm_unpacklo_epi8(d2, _mm_setzero_si128()); __m128i d2h = _mm_unpackhi_epi8(d2, _mm_setzero_si128()); __m128i d3l = _mm_unpacklo_epi8(d3, _mm_setzero_si128()); __m128i d3h = _mm_unpackhi_epi8(d3, _mm_setzero_si128()); __m128i sum0 = _mm_add_epi16(d0l, d1l); __m128i sum1 = _mm_add_epi16(d0h, d1h); __m128i sum2 = _mm_add_epi16(d2l, d3l); __m128i sum3 = _mm_add_epi16(d2h, d3h); __m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128()); __m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128()); __m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128()); __m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128()); __m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128()); __m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128()); __m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128()); __m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128()); __m128i b0 = _mm_add_epi32(sum0l, sum0h); __m128i b1 = _mm_add_epi32(sum1l, sum1h); __m128i b2 = _mm_add_epi32(sum2l, sum2h); __m128i b3 = _mm_add_epi32(sum3l, sum3h); __m128i a0 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b2, b3), _mm_set1_epi32(4)), 3); __m128i a1 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b1), _mm_set1_epi32(4)), 3); __m128i a2 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b1, b3), _mm_set1_epi32(4)), 3); __m128i a3 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b2), _mm_set1_epi32(4)), 3); _mm_storeu_si128((__m128i*)&a[0], _mm_packus_epi32(_mm_shuffle_epi32(a0, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a1, _MM_SHUFFLE(3, 0, 1, 2)))); _mm_storeu_si128((__m128i*)&a[2], _mm_packus_epi32(_mm_shuffle_epi32(a2, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a3, _MM_SHUFFLE(3, 0, 1, 2)))); #elif defined __ARM_NEON uint8x16x2_t t0 = vzipq_u8(vld1q_u8(data + 0), uint8x16_t()); uint8x16x2_t t1 = vzipq_u8(vld1q_u8(data + 16), uint8x16_t()); uint8x16x2_t t2 = vzipq_u8(vld1q_u8(data + 32), uint8x16_t()); uint8x16x2_t t3 = vzipq_u8(vld1q_u8(data + 48), uint8x16_t()); uint16x8x2_t d0 = { vreinterpretq_u16_u8(t0.val[0]), vreinterpretq_u16_u8(t0.val[1]) }; uint16x8x2_t d1 = { vreinterpretq_u16_u8(t1.val[0]), vreinterpretq_u16_u8(t1.val[1]) }; uint16x8x2_t d2 = { vreinterpretq_u16_u8(t2.val[0]), vreinterpretq_u16_u8(t2.val[1]) }; uint16x8x2_t d3 = { vreinterpretq_u16_u8(t3.val[0]), vreinterpretq_u16_u8(t3.val[1]) }; uint16x8x2_t s0 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[0] ), vreinterpretq_s16_u16( d1.val[0] ) ) ), uint16x8_t()); uint16x8x2_t s1 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[1] ), vreinterpretq_s16_u16( d1.val[1] ) ) ), uint16x8_t()); uint16x8x2_t s2 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[0] ), vreinterpretq_s16_u16( d3.val[0] ) ) ), uint16x8_t()); uint16x8x2_t s3 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[1] ), vreinterpretq_s16_u16( d3.val[1] ) ) ), uint16x8_t()); uint32x4x2_t sum0 = { vreinterpretq_u32_u16(s0.val[0]), vreinterpretq_u32_u16(s0.val[1]) }; uint32x4x2_t sum1 = { vreinterpretq_u32_u16(s1.val[0]), vreinterpretq_u32_u16(s1.val[1]) }; uint32x4x2_t sum2 = { vreinterpretq_u32_u16(s2.val[0]), vreinterpretq_u32_u16(s2.val[1]) }; uint32x4x2_t sum3 = { vreinterpretq_u32_u16(s3.val[0]), vreinterpretq_u32_u16(s3.val[1]) }; uint32x4_t b0 = vaddq_u32(sum0.val[0], sum0.val[1]); uint32x4_t b1 = vaddq_u32(sum1.val[0], sum1.val[1]); uint32x4_t b2 = vaddq_u32(sum2.val[0], sum2.val[1]); uint32x4_t b3 = vaddq_u32(sum3.val[0], sum3.val[1]); uint32x4_t a0 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b2, b3), vdupq_n_u32(4)), 3); uint32x4_t a1 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b0, b1), vdupq_n_u32(4)), 3); uint32x4_t a2 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b1, b3), vdupq_n_u32(4)), 3); uint32x4_t a3 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b0, b2), vdupq_n_u32(4)), 3); uint16x8_t o0 = vcombine_u16(vqmovun_s32(vreinterpretq_s32_u32( a0 )), vqmovun_s32(vreinterpretq_s32_u32( a1 ))); uint16x8_t o1 = vcombine_u16(vqmovun_s32(vreinterpretq_s32_u32( a2 )), vqmovun_s32(vreinterpretq_s32_u32( a3 ))); a[0] = v4i{o0[2], o0[1], o0[0], 0}; a[1] = v4i{o0[6], o0[5], o0[4], 0}; a[2] = v4i{o1[2], o1[1], o1[0], 0}; a[3] = v4i{o1[6], o1[5], o1[4], 0}; #else uint32_t r[4]; uint32_t g[4]; uint32_t b[4]; memset(r, 0, sizeof(r)); memset(g, 0, sizeof(g)); memset(b, 0, sizeof(b)); for( int j=0; j<4; j++ ) { for( int i=0; i<4; i++ ) { int index = (j & 2) + (i >> 1); b[index] += *data++; g[index] += *data++; r[index] += *data++; data++; } } a[0] = v4i{ uint16_t( (r[2] + r[3] + 4) / 8 ), uint16_t( (g[2] + g[3] + 4) / 8 ), uint16_t( (b[2] + b[3] + 4) / 8 ), 0}; a[1] = v4i{ uint16_t( (r[0] + r[1] + 4) / 8 ), uint16_t( (g[0] + g[1] + 4) / 8 ), uint16_t( (b[0] + b[1] + 4) / 8 ), 0}; a[2] = v4i{ uint16_t( (r[1] + r[3] + 4) / 8 ), uint16_t( (g[1] + g[3] + 4) / 8 ), uint16_t( (b[1] + b[3] + 4) / 8 ), 0}; a[3] = v4i{ uint16_t( (r[0] + r[2] + 4) / 8 ), uint16_t( (g[0] + g[2] + 4) / 8 ), uint16_t( (b[0] + b[2] + 4) / 8 ), 0}; #endif } static void CalcErrorBlock( const uint8_t* data, unsigned int err[4][4] ) { #ifdef __SSE4_1__ __m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0); __m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1); __m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2); __m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3); __m128i dm0 = _mm_and_si128(d0, _mm_set1_epi32(0x00FFFFFF)); __m128i dm1 = _mm_and_si128(d1, _mm_set1_epi32(0x00FFFFFF)); __m128i dm2 = _mm_and_si128(d2, _mm_set1_epi32(0x00FFFFFF)); __m128i dm3 = _mm_and_si128(d3, _mm_set1_epi32(0x00FFFFFF)); __m128i d0l = _mm_unpacklo_epi8(dm0, _mm_setzero_si128()); __m128i d0h = _mm_unpackhi_epi8(dm0, _mm_setzero_si128()); __m128i d1l = _mm_unpacklo_epi8(dm1, _mm_setzero_si128()); __m128i d1h = _mm_unpackhi_epi8(dm1, _mm_setzero_si128()); __m128i d2l = _mm_unpacklo_epi8(dm2, _mm_setzero_si128()); __m128i d2h = _mm_unpackhi_epi8(dm2, _mm_setzero_si128()); __m128i d3l = _mm_unpacklo_epi8(dm3, _mm_setzero_si128()); __m128i d3h = _mm_unpackhi_epi8(dm3, _mm_setzero_si128()); __m128i sum0 = _mm_add_epi16(d0l, d1l); __m128i sum1 = _mm_add_epi16(d0h, d1h); __m128i sum2 = _mm_add_epi16(d2l, d3l); __m128i sum3 = _mm_add_epi16(d2h, d3h); __m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128()); __m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128()); __m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128()); __m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128()); __m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128()); __m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128()); __m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128()); __m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128()); __m128i b0 = _mm_add_epi32(sum0l, sum0h); __m128i b1 = _mm_add_epi32(sum1l, sum1h); __m128i b2 = _mm_add_epi32(sum2l, sum2h); __m128i b3 = _mm_add_epi32(sum3l, sum3h); __m128i a0 = _mm_add_epi32(b2, b3); __m128i a1 = _mm_add_epi32(b0, b1); __m128i a2 = _mm_add_epi32(b1, b3); __m128i a3 = _mm_add_epi32(b0, b2); _mm_storeu_si128((__m128i*)&err[0], a0); _mm_storeu_si128((__m128i*)&err[1], a1); _mm_storeu_si128((__m128i*)&err[2], a2); _mm_storeu_si128((__m128i*)&err[3], a3); #elif defined __ARM_NEON uint8x16x2_t t0 = vzipq_u8(vld1q_u8(data + 0), uint8x16_t()); uint8x16x2_t t1 = vzipq_u8(vld1q_u8(data + 16), uint8x16_t()); uint8x16x2_t t2 = vzipq_u8(vld1q_u8(data + 32), uint8x16_t()); uint8x16x2_t t3 = vzipq_u8(vld1q_u8(data + 48), uint8x16_t()); uint16x8x2_t d0 = { vreinterpretq_u16_u8(t0.val[0]), vreinterpretq_u16_u8(t0.val[1]) }; uint16x8x2_t d1 = { vreinterpretq_u16_u8(t1.val[0]), vreinterpretq_u16_u8(t1.val[1]) }; uint16x8x2_t d2 = { vreinterpretq_u16_u8(t2.val[0]), vreinterpretq_u16_u8(t2.val[1]) }; uint16x8x2_t d3 = { vreinterpretq_u16_u8(t3.val[0]), vreinterpretq_u16_u8(t3.val[1]) }; uint16x8x2_t s0 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[0] ), vreinterpretq_s16_u16( d1.val[0] ))), uint16x8_t()); uint16x8x2_t s1 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[1] ), vreinterpretq_s16_u16( d1.val[1] ))), uint16x8_t()); uint16x8x2_t s2 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[0] ), vreinterpretq_s16_u16( d3.val[0] ))), uint16x8_t()); uint16x8x2_t s3 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[1] ), vreinterpretq_s16_u16( d3.val[1] ))), uint16x8_t()); uint32x4x2_t sum0 = { vreinterpretq_u32_u16(s0.val[0]), vreinterpretq_u32_u16(s0.val[1]) }; uint32x4x2_t sum1 = { vreinterpretq_u32_u16(s1.val[0]), vreinterpretq_u32_u16(s1.val[1]) }; uint32x4x2_t sum2 = { vreinterpretq_u32_u16(s2.val[0]), vreinterpretq_u32_u16(s2.val[1]) }; uint32x4x2_t sum3 = { vreinterpretq_u32_u16(s3.val[0]), vreinterpretq_u32_u16(s3.val[1]) }; uint32x4_t b0 = vaddq_u32(sum0.val[0], sum0.val[1]); uint32x4_t b1 = vaddq_u32(sum1.val[0], sum1.val[1]); uint32x4_t b2 = vaddq_u32(sum2.val[0], sum2.val[1]); uint32x4_t b3 = vaddq_u32(sum3.val[0], sum3.val[1]); uint32x4_t a0 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b2, b3) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); uint32x4_t a1 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b0, b1) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); uint32x4_t a2 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b1, b3) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); uint32x4_t a3 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b0, b2) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); vst1q_u32(err[0], a0); vst1q_u32(err[1], a1); vst1q_u32(err[2], a2); vst1q_u32(err[3], a3); #else unsigned int terr[4][4]; memset(terr, 0, 16 * sizeof(unsigned int)); for( int j=0; j<4; j++ ) { for( int i=0; i<4; i++ ) { int index = (j & 2) + (i >> 1); unsigned int d = *data++; terr[index][0] += d; d = *data++; terr[index][1] += d; d = *data++; terr[index][2] += d; data++; } } for( int i=0; i<3; i++ ) { err[0][i] = terr[2][i] + terr[3][i]; err[1][i] = terr[0][i] + terr[1][i]; err[2][i] = terr[1][i] + terr[3][i]; err[3][i] = terr[0][i] + terr[2][i]; } for( int i=0; i<4; i++ ) { err[i][3] = 0; } #endif } static unsigned int CalcError( const unsigned int block[4], const v4i& average ) { unsigned int err = 0x3FFFFFFF; // Big value to prevent negative values, but small enough to prevent overflow err -= block[0] * 2 * average[2]; err -= block[1] * 2 * average[1]; err -= block[2] * 2 * average[0]; err += 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) ); return err; } void ProcessAverages( v4i* a ) { #ifdef __SSE4_1__ for( int i=0; i<2; i++ ) { __m128i d = _mm_loadu_si128((__m128i*)a[i*2].data()); __m128i t = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(31)), _mm_set1_epi16(128)); __m128i c = _mm_srli_epi16(_mm_add_epi16(t, _mm_srli_epi16(t, 8)), 8); __m128i c1 = _mm_shuffle_epi32(c, _MM_SHUFFLE(3, 2, 3, 2)); __m128i diff = _mm_sub_epi16(c, c1); diff = _mm_max_epi16(diff, _mm_set1_epi16(-4)); diff = _mm_min_epi16(diff, _mm_set1_epi16(3)); __m128i co = _mm_add_epi16(c1, diff); c = _mm_blend_epi16(co, c, 0xF0); __m128i a0 = _mm_or_si128(_mm_slli_epi16(c, 3), _mm_srli_epi16(c, 2)); _mm_storeu_si128((__m128i*)a[4+i*2].data(), a0); } for( int i=0; i<2; i++ ) { __m128i d = _mm_loadu_si128((__m128i*)a[i*2].data()); __m128i t0 = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(15)), _mm_set1_epi16(128)); __m128i t1 = _mm_srli_epi16(_mm_add_epi16(t0, _mm_srli_epi16(t0, 8)), 8); __m128i t2 = _mm_or_si128(t1, _mm_slli_epi16(t1, 4)); _mm_storeu_si128((__m128i*)a[i*2].data(), t2); } #elif defined __ARM_NEON for( int i=0; i<2; i++ ) { int16x8_t d = vld1q_s16((int16_t*)&a[i*2]); int16x8_t t = vaddq_s16(vmulq_s16(d, vdupq_n_s16(31)), vdupq_n_s16(128)); int16x8_t c = vshrq_n_s16(vaddq_s16(t, vshrq_n_s16(t, 8)), 8); int16x8_t c1 = vcombine_s16(vget_high_s16(c), vget_high_s16(c)); int16x8_t diff = vsubq_s16(c, c1); diff = vmaxq_s16(diff, vdupq_n_s16(-4)); diff = vminq_s16(diff, vdupq_n_s16(3)); int16x8_t co = vaddq_s16(c1, diff); c = vcombine_s16(vget_low_s16(co), vget_high_s16(c)); int16x8_t a0 = vorrq_s16(vshlq_n_s16(c, 3), vshrq_n_s16(c, 2)); vst1q_s16((int16_t*)&a[4+i*2], a0); } for( int i=0; i<2; i++ ) { int16x8_t d = vld1q_s16((int16_t*)&a[i*2]); int16x8_t t0 = vaddq_s16(vmulq_s16(d, vdupq_n_s16(15)), vdupq_n_s16(128)); int16x8_t t1 = vshrq_n_s16(vaddq_s16(t0, vshrq_n_s16(t0, 8)), 8); int16x8_t t2 = vorrq_s16(t1, vshlq_n_s16(t1, 4)); vst1q_s16((int16_t*)&a[i*2], t2); } #else for( int i=0; i<2; i++ ) { for( int j=0; j<3; j++ ) { int32_t c1 = mul8bit( a[i*2+1][j], 31 ); int32_t c2 = mul8bit( a[i*2][j], 31 ); int32_t diff = c2 - c1; if( diff > 3 ) diff = 3; else if( diff < -4 ) diff = -4; int32_t co = c1 + diff; a[5+i*2][j] = ( c1 << 3 ) | ( c1 >> 2 ); a[4+i*2][j] = ( co << 3 ) | ( co >> 2 ); } } for( int i=0; i<4; i++ ) { a[i][0] = g_avg2[mul8bit( a[i][0], 15 )]; a[i][1] = g_avg2[mul8bit( a[i][1], 15 )]; a[i][2] = g_avg2[mul8bit( a[i][2], 15 )]; } #endif } static void EncodeAverages( uint64_t& _d, const v4i* a, size_t idx ) { auto d = _d; d |= ( idx << 24 ); size_t base = idx << 1; if( ( idx & 0x2 ) == 0 ) { for( int i=0; i<3; i++ ) { d |= uint64_t( a[base+0][i] >> 4 ) << ( i*8 ); d |= uint64_t( a[base+1][i] >> 4 ) << ( i*8 + 4 ); } } else { for( int i=0; i<3; i++ ) { d |= uint64_t( a[base+1][i] & 0xF8 ) << ( i*8 ); int32_t c = ( ( a[base+0][i] & 0xF8 ) - ( a[base+1][i] & 0xF8 ) ) >> 3; c &= ~0xFFFFFFF8; d |= ((uint64_t)c) << ( i*8 ); } } _d = d; } static uint64_t CheckSolid( const uint8_t* src ) { #ifdef __SSE4_1__ __m128i d0 = _mm_loadu_si128(((__m128i*)src) + 0); __m128i d1 = _mm_loadu_si128(((__m128i*)src) + 1); __m128i d2 = _mm_loadu_si128(((__m128i*)src) + 2); __m128i d3 = _mm_loadu_si128(((__m128i*)src) + 3); __m128i c = _mm_shuffle_epi32(d0, _MM_SHUFFLE(0, 0, 0, 0)); __m128i c0 = _mm_cmpeq_epi8(d0, c); __m128i c1 = _mm_cmpeq_epi8(d1, c); __m128i c2 = _mm_cmpeq_epi8(d2, c); __m128i c3 = _mm_cmpeq_epi8(d3, c); __m128i m0 = _mm_and_si128(c0, c1); __m128i m1 = _mm_and_si128(c2, c3); __m128i m = _mm_and_si128(m0, m1); if (!_mm_testc_si128(m, _mm_set1_epi32(-1))) { return 0; } #elif defined __ARM_NEON int32x4_t d0 = vld1q_s32((int32_t*)src + 0); int32x4_t d1 = vld1q_s32((int32_t*)src + 4); int32x4_t d2 = vld1q_s32((int32_t*)src + 8); int32x4_t d3 = vld1q_s32((int32_t*)src + 12); int32x4_t c = vdupq_n_s32(d0[0]); int32x4_t c0 = vreinterpretq_s32_u32(vceqq_s32(d0, c)); int32x4_t c1 = vreinterpretq_s32_u32(vceqq_s32(d1, c)); int32x4_t c2 = vreinterpretq_s32_u32(vceqq_s32(d2, c)); int32x4_t c3 = vreinterpretq_s32_u32(vceqq_s32(d3, c)); int32x4_t m0 = vandq_s32(c0, c1); int32x4_t m1 = vandq_s32(c2, c3); int64x2_t m = vreinterpretq_s64_s32(vandq_s32(m0, m1)); if (m[0] != -1 || m[1] != -1) { return 0; } #else const uint8_t* ptr = src + 4; for( int i=1; i<16; i++ ) { if( memcmp( src, ptr, 4 ) != 0 ) { return 0; } ptr += 4; } #endif return 0x02000000 | ( (unsigned int)( src[0] & 0xF8 ) << 16 ) | ( (unsigned int)( src[1] & 0xF8 ) << 8 ) | ( (unsigned int)( src[2] & 0xF8 ) ); } static void PrepareAverages( v4i a[8], const uint8_t* src, unsigned int err[4] ) { Average( src, a ); ProcessAverages( a ); unsigned int errblock[4][4]; CalcErrorBlock( src, errblock ); for( int i=0; i<4; i++ ) { err[i/2] += CalcError( errblock[i], a[i] ); err[2+i/2] += CalcError( errblock[i], a[i+4] ); } } #if defined __SSE4_1__ || defined __ARM_NEON // Non-reference implementation, but faster. Produces same results as the AVX2 version static void FindBestFit( uint32_t terr[2][8], uint16_t tsel[16][8], v4i a[8], const uint32_t* id, const uint8_t* data ) { for( size_t i=0; i<16; i++ ) { uint16_t* sel = tsel[i]; unsigned int bid = id[i]; uint32_t* ter = terr[bid%2]; uint8_t b = *data++; uint8_t g = *data++; uint8_t r = *data++; data++; int dr = a[bid][0] - r; int dg = a[bid][1] - g; int db = a[bid][2] - b; #ifdef __SSE4_1__ // The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16 // This produces slightly different results, but is significant faster __m128i pixel = _mm_set1_epi16(dr * 38 + dg * 76 + db * 14); __m128i pix = _mm_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m128i error0 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[0])); __m128i error1 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[1])); __m128i index = _mm_and_si128(_mm_cmplt_epi16(error1, error0), _mm_set1_epi16(1)); __m128i minError = _mm_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit // This produces slightly different results, but is needed to produce same results as AVX2 implementation __m128i indexBit = _mm_andnot_si128(_mm_srli_epi16(pixel, 15), _mm_set1_epi8(-1)); __m128i minIndex = _mm_or_si128(index, _mm_add_epi16(indexBit, indexBit)); // Squaring the minimum error to produce correct values when adding __m128i squareErrorLo = _mm_mullo_epi16(minError, minError); __m128i squareErrorHi = _mm_mulhi_epi16(minError, minError); __m128i squareErrorLow = _mm_unpacklo_epi16(squareErrorLo, squareErrorHi); __m128i squareErrorHigh = _mm_unpackhi_epi16(squareErrorLo, squareErrorHi); squareErrorLow = _mm_add_epi32(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 0)); _mm_storeu_si128(((__m128i*)ter) + 0, squareErrorLow); squareErrorHigh = _mm_add_epi32(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 1)); _mm_storeu_si128(((__m128i*)ter) + 1, squareErrorHigh); _mm_storeu_si128((__m128i*)sel, minIndex); #else int16x8_t pixel = vdupq_n_s16( dr * 38 + dg * 76 + db * 14 ); int16x8_t pix = vabsq_s16( pixel ); int16x8_t error0 = vabsq_s16( vsubq_s16( pix, g_table128_NEON[0] ) ); int16x8_t error1 = vabsq_s16( vsubq_s16( pix, g_table128_NEON[1] ) ); int16x8_t index = vandq_s16( vreinterpretq_s16_u16( vcltq_s16( error1, error0 ) ), vdupq_n_s16( 1 ) ); int16x8_t minError = vminq_s16( error0, error1 ); int16x8_t indexBit = vandq_s16( vmvnq_s16( vshrq_n_s16( pixel, 15 ) ), vdupq_n_s16( -1 ) ); int16x8_t minIndex = vorrq_s16( index, vaddq_s16( indexBit, indexBit ) ); int16x4_t minErrorLow = vget_low_s16( minError ); int16x4_t minErrorHigh = vget_high_s16( minError ); int32x4_t squareErrorLow = vmull_s16( minErrorLow, minErrorLow ); int32x4_t squareErrorHigh = vmull_s16( minErrorHigh, minErrorHigh ); int32x4_t squareErrorSumLow = vaddq_s32( squareErrorLow, vld1q_s32( (int32_t*)ter ) ); int32x4_t squareErrorSumHigh = vaddq_s32( squareErrorHigh, vld1q_s32( (int32_t*)ter + 4 ) ); vst1q_s32( (int32_t*)ter, squareErrorSumLow ); vst1q_s32( (int32_t*)ter + 4, squareErrorSumHigh ); vst1q_s16( (int16_t*)sel, minIndex ); #endif } } #else static void FindBestFit( uint64_t terr[2][8], uint16_t tsel[16][8], v4i a[8], const uint32_t* id, const uint8_t* data ) { for( size_t i=0; i<16; i++ ) { uint16_t* sel = tsel[i]; unsigned int bid = id[i]; uint64_t* ter = terr[bid%2]; uint8_t b = *data++; uint8_t g = *data++; uint8_t r = *data++; data++; int dr = a[bid][0] - r; int dg = a[bid][1] - g; int db = a[bid][2] - b; int pix = dr * 77 + dg * 151 + db * 28; for( int t=0; t<8; t++ ) { const int64_t* tab = g_table256[t]; unsigned int idx = 0; uint64_t err = sq( tab[0] + pix ); for( int j=1; j<4; j++ ) { uint64_t local = sq( tab[j] + pix ); if( local < err ) { err = local; idx = j; } } *sel++ = idx; *ter++ += err; } } } #endif static uint64_t ProcessRGB( const uint8_t* src ) { uint64_t d = CheckSolid( src ); if( d != 0 ) return d; v4i a[8]; unsigned int err[4] = {}; PrepareAverages( a, src, err ); size_t idx = GetLeastError( err, 4 ); EncodeAverages( d, a, idx ); #if defined __SSE4_1__ || defined __ARM_NEON uint32_t terr[2][8] = {}; #else uint64_t terr[2][8] = {}; #endif uint16_t tsel[16][8]; auto id = g_id[idx]; FindBestFit( terr, tsel, a, id, src ); return FixByteOrder( EncodeSelectors( d, terr, tsel, id ) ); } #endif void CompressImageEtc1( const char* src, char* dst, int w, int h ) { assert( (w % 4) == 0 && (h % 4) == 0 ); uint32_t buf[4*4]; int i = 0; auto ptr = dst; auto blocks = w * h / 16; do { auto tmp = (char*)buf; for( int x=0; x<4; x++ ) { memcpy( tmp, src, 4 ); memcpy( tmp + 4, src + w * 4, 4 ); memcpy( tmp + 8, src + w * 8, 4 ); memcpy( tmp + 12, src + w * 12, 4 ); src += 4; tmp += 16; } if( ++i == w/4 ) { src += w * 3 * 4; i = 0; } const auto c = ProcessRGB( (uint8_t*)buf ); memcpy( ptr, &c, sizeof( uint64_t ) ); ptr += sizeof( uint64_t ); } while( --blocks ); } }