#ifdef TRACY_ENABLE #ifdef _MSC_VER # include # include #else # include #endif #ifdef _GNU_SOURCE # include #endif #include #include #include #include #include #include #include #include #include "../common/TracyAlign.hpp" #include "../common/TracyProtocol.hpp" #include "../common/TracySocket.hpp" #include "../common/TracySystem.hpp" #include "tracy_rpmalloc.hpp" #include "TracyCallstack.hpp" #include "TracyScoped.hpp" #include "TracyProfiler.hpp" #include "TracyThread.hpp" #ifdef __GNUC__ #define init_order( val ) __attribute__ ((init_priority(val))) #else #define init_order(x) #endif #if defined TRACY_HW_TIMER && __ARM_ARCH >= 6 # include # include #endif namespace tracy { struct RPMallocInit { RPMallocInit() { rpmalloc_initialize(); } }; struct RPMallocThreadInit { RPMallocThreadInit() { rpmalloc_thread_initialize(); } }; struct InitTimeWrapper { int64_t val; }; #if defined TRACY_HW_TIMER && __ARM_ARCH >= 6 int64_t (*GetTimeImpl)(); int64_t GetTimeImplFallback() { return std::chrono::duration_cast( std::chrono::high_resolution_clock::now().time_since_epoch() ).count(); } int64_t GetTimeImplCntvct() { int64_t t; # ifdef __aarch64__ asm volatile ( "mrs %0, cntvct_el0" : "=r" (t) ); # else asm volatile ( "mrrc p15, 1, %Q0, %R0, c14" : "=r" (t) ); # endif return t; } static sigjmp_buf SigIllEnv; static int SetupHwTimerFailed() { return sigsetjmp( SigIllEnv, 1 ); } static void SetupHwTimerSigIllHandler( int signum ) { siglongjmp( SigIllEnv, 1 ); } static int64_t SetupHwTimer() { struct sigaction act, oldact; memset( &act, 0, sizeof( act ) ); act.sa_handler = SetupHwTimerSigIllHandler; if( sigaction( SIGILL, &act, &oldact ) ) { GetTimeImpl = GetTimeImplFallback; return Profiler::GetTime(); } if( SetupHwTimerFailed() ) { sigaction( SIGILL, &oldact, nullptr ); GetTimeImpl = GetTimeImplFallback; return Profiler::GetTime(); } GetTimeImplCntvct(); sigaction( SIGILL, &oldact, nullptr ); GetTimeImpl = GetTimeImplCntvct; return Profiler::GetTime(); } #else static int64_t SetupHwTimer() { return Profiler::GetTime(); } #endif static const char* GetProcessName() { #if defined _MSC_VER static char buf[_MAX_PATH]; GetModuleFileNameA( nullptr, buf, _MAX_PATH ); const char* ptr = buf; while( *ptr != '\0' ) ptr++; while( ptr > buf && *ptr != '\\' && *ptr != '/' ) ptr--; if( ptr > buf ) ptr++; return ptr; #elif defined __ANDROID__ # if __ANDROID_API__ >= 21 auto buf = getprogname(); if( buf ) return buf; # endif #elif defined _GNU_SOURCE || defined __CYGWIN__ return program_invocation_short_name; #endif return "unknown"; } enum { QueuePrealloc = 256 * 1024 }; // MSVC static initialization order solution. gcc/clang uses init_order() to avoid all this. static Profiler* s_instance = nullptr; static Thread* s_thread = nullptr; // 1a. But s_queue is needed for initialization of variables in point 2. extern moodycamel::ConcurrentQueue s_queue; static thread_local RPMallocThreadInit init_order(106) s_rpmalloc_thread_init; // 2. If these variables would be in the .CRT$XCB section, they would be initialized only in main thread. static thread_local moodycamel::ProducerToken init_order(107) s_token_detail( s_queue ); thread_local ProducerWrapper init_order(108) s_token { s_queue.get_explicit_producer( s_token_detail ) }; #ifdef _MSC_VER // 1. Initialize these static variables before all other variables. # pragma warning( disable : 4075 ) # pragma init_seg( ".CRT$XCB" ) #endif static InitTimeWrapper init_order(101) s_initTime { SetupHwTimer() }; static RPMallocInit init_order(102) s_rpmalloc_init; moodycamel::ConcurrentQueue init_order(103) s_queue( QueuePrealloc ); std::atomic init_order(104) s_lockCounter( 0 ); std::atomic init_order(104) s_gpuCtxCounter( 0 ); thread_local GpuCtxWrapper init_order(104) s_gpuCtx { nullptr }; VkCtxWrapper init_order(104) s_vkCtx { nullptr }; #ifdef TRACY_COLLECT_THREAD_NAMES struct ThreadNameData; std::atomic init_order(104) s_threadNameData( nullptr ); #endif Profiler init_order(105) s_profiler; enum { BulkSize = TargetFrameSize / QueueItemSize }; Profiler::Profiler() : m_timeBegin( 0 ) , m_mainThread( GetThreadHandle() ) , m_epoch( std::chrono::duration_cast( std::chrono::system_clock::now().time_since_epoch() ).count() ) , m_shutdown( false ) , m_sock( nullptr ) , m_stream( LZ4_createStream() ) , m_buffer( (char*)tracy_malloc( TargetFrameSize*3 ) ) , m_bufferOffset( 0 ) , m_bufferStart( 0 ) , m_itemBuf( (QueueItem*)tracy_malloc( sizeof( QueueItem ) * BulkSize ) ) , m_lz4Buf( (char*)tracy_malloc( LZ4Size + sizeof( lz4sz_t ) ) ) , m_serialQueue( 1024*1024 ) , m_serialDequeue( 1024*1024 ) { assert( !s_instance ); s_instance = this; #ifdef _MSC_VER // 3. But these variables need to be initialized in main thread within the .CRT$XCB section. Do it here. s_token_detail = moodycamel::ProducerToken( s_queue ); s_token = ProducerWrapper { s_queue.get_explicit_producer( s_token_detail ) }; #endif CalibrateTimer(); CalibrateDelay(); s_thread = (Thread*)tracy_malloc( sizeof( Thread ) ); new(s_thread) Thread( LaunchWorker, this ); SetThreadName( s_thread->Handle(), "Tracy Profiler" ); #ifdef TRACY_HAS_CALLSTACK InitCallstack(); #endif m_timeBegin.store( GetTime(), std::memory_order_relaxed ); } Profiler::~Profiler() { m_shutdown.store( true, std::memory_order_relaxed ); s_thread->~Thread(); tracy_free( s_thread ); tracy_free( m_lz4Buf ); tracy_free( m_itemBuf ); tracy_free( m_buffer ); LZ4_freeStream( m_stream ); if( m_sock ) { m_sock->~Socket(); tracy_free( m_sock ); } assert( s_instance ); s_instance = nullptr; } bool Profiler::ShouldExit() { return s_instance->m_shutdown.load( std::memory_order_relaxed ); } void Profiler::Worker() { rpmalloc_thread_initialize(); const auto procname = GetProcessName(); const auto pnsz = std::min( strlen( procname ), WelcomeMessageProgramNameSize - 1 ); while( m_timeBegin.load( std::memory_order_relaxed ) == 0 ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); WelcomeMessage welcome; MemWrite( &welcome.timerMul, m_timerMul ); MemWrite( &welcome.initBegin, s_initTime.val ); MemWrite( &welcome.initEnd, m_timeBegin.load( std::memory_order_relaxed ) ); MemWrite( &welcome.delay, m_delay ); MemWrite( &welcome.resolution, m_resolution ); MemWrite( &welcome.epoch, m_epoch ); memcpy( welcome.programName, procname, pnsz ); memset( welcome.programName + pnsz, 0, WelcomeMessageProgramNameSize - pnsz ); moodycamel::ConsumerToken token( s_queue ); ListenSocket listen; listen.Listen( "8086", 8 ); for(;;) { for(;;) { #ifndef TRACY_NO_EXIT if( ShouldExit() ) return; #endif m_sock = listen.Accept(); if( m_sock ) break; } m_sock->Send( &welcome, sizeof( welcome ) ); LZ4_resetStream( m_stream ); for(;;) { const auto status = Dequeue( token ); const auto serialStatus = DequeueSerial(); if( status == ConnectionLost || serialStatus == ConnectionLost ) { break; } else if( status == QueueEmpty && serialStatus == QueueEmpty ) { if( ShouldExit() ) break; if( m_bufferOffset != m_bufferStart ) CommitData(); std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); } while( m_sock->HasData() ) { if( !HandleServerQuery() ) break; } } if( ShouldExit() ) break; } for(;;) { const auto status = Dequeue( token ); const auto serialStatus = DequeueSerial(); if( status == ConnectionLost || serialStatus == ConnectionLost ) { break; } else if( status == QueueEmpty && serialStatus == QueueEmpty ) { if( m_bufferOffset != m_bufferStart ) CommitData(); break; } while( m_sock->HasData() ) { if( !HandleServerQuery() ) break; } } QueueItem terminate; MemWrite( &terminate.hdr.type, QueueType::Terminate ); if( !SendData( (const char*)&terminate, 1 ) ) return; for(;;) { if( m_sock->HasData() ) { while( m_sock->HasData() ) { if( !HandleServerQuery() ) { if( m_bufferOffset != m_bufferStart ) CommitData(); return; } } while( Dequeue( token ) == Success ) {} while( DequeueSerial() == Success ) {} if( m_bufferOffset != m_bufferStart ) { if( !CommitData() ) return; } } else { if( m_bufferOffset != m_bufferStart ) CommitData(); std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); } } } Profiler::DequeueStatus Profiler::Dequeue( moodycamel::ConsumerToken& token ) { const auto sz = s_queue.try_dequeue_bulk( token, m_itemBuf, BulkSize ); if( sz > 0 ) { auto end = m_itemBuf + sz; auto item = m_itemBuf; while( item != end ) { uint64_t ptr; const auto idx = MemRead( &item->hdr.idx ); if( idx < (int)QueueType::Terminate ) { switch( (QueueType)idx ) { case QueueType::ZoneText: ptr = MemRead( &item->zoneText.text ); SendString( ptr, (const char*)ptr, QueueType::CustomStringData ); tracy_free( (void*)ptr ); break; case QueueType::Message: ptr = MemRead( &item->message.text ); SendString( ptr, (const char*)ptr, QueueType::CustomStringData ); tracy_free( (void*)ptr ); break; case QueueType::ZoneBeginAllocSrcLoc: ptr = MemRead( &item->zoneBegin.srcloc ); SendSourceLocationPayload( ptr ); tracy_free( (void*)ptr ); break; default: assert( false ); break; } } if( !AppendData( item, QueueDataSize[idx] ) ) return ConnectionLost; item++; } } else { return QueueEmpty; } return Success; } Profiler::DequeueStatus Profiler::DequeueSerial() { { std::lock_guard lock( m_serialLock ); m_serialQueue.swap( m_serialDequeue ); } const auto sz = m_serialDequeue.size(); if( sz > 0 ) { auto item = m_serialDequeue.data(); auto end = item + sz; while( item != end ) { const auto idx = MemRead( &item->hdr.idx ); if( !AppendData( item, QueueDataSize[idx] ) ) return ConnectionLost; item++; } m_serialDequeue.clear(); } else { return QueueEmpty; } return Success; } bool Profiler::AppendData( const void* data, size_t len ) { auto ret = true; ret = NeedDataSize( len ); memcpy( m_buffer + m_bufferOffset, data, len ); m_bufferOffset += int( len ); return ret; } bool Profiler::CommitData() { bool ret = SendData( m_buffer + m_bufferStart, m_bufferOffset - m_bufferStart ); if( m_bufferOffset > TargetFrameSize * 2 ) m_bufferOffset = 0; m_bufferStart = m_bufferOffset; return ret; } bool Profiler::NeedDataSize( size_t len ) { bool ret = true; if( m_bufferOffset - m_bufferStart + len > TargetFrameSize ) { ret = CommitData(); } return ret; } bool Profiler::SendData( const char* data, size_t len ) { const lz4sz_t lz4sz = LZ4_compress_fast_continue( m_stream, data, m_lz4Buf + sizeof( lz4sz_t ), (int)len, LZ4Size, 1 ); memcpy( m_lz4Buf, &lz4sz, sizeof( lz4sz ) ); return m_sock->Send( m_lz4Buf, lz4sz + sizeof( lz4sz_t ) ) != -1; } void Profiler::SendString( uint64_t str, const char* ptr, QueueType type ) { assert( type == QueueType::StringData || type == QueueType::ThreadName || type == QueueType::CustomStringData || type == QueueType::PlotName ); QueueItem item; MemWrite( &item.hdr.type, type ); MemWrite( &item.stringTransfer.ptr, str ); auto len = strlen( ptr ); assert( len <= std::numeric_limits::max() ); auto l16 = uint16_t( len ); NeedDataSize( QueueDataSize[(int)type] + sizeof( l16 ) + l16 ); AppendData( &item, QueueDataSize[(int)type] ); AppendData( &l16, sizeof( l16 ) ); AppendData( ptr, l16 ); } void Profiler::SendSourceLocation( uint64_t ptr ) { auto srcloc = (const SourceLocation*)ptr; QueueItem item; MemWrite( &item.hdr.type, QueueType::SourceLocation ); MemWrite( &item.srcloc.name, (uint64_t)srcloc->name ); MemWrite( &item.srcloc.file, (uint64_t)srcloc->file ); MemWrite( &item.srcloc.function, (uint64_t)srcloc->function ); MemWrite( &item.srcloc.line, srcloc->line ); MemWrite( &item.srcloc.r, uint8_t( ( srcloc->color ) & 0xFF ) ); MemWrite( &item.srcloc.g, uint8_t( ( srcloc->color >> 8 ) & 0xFF ) ); MemWrite( &item.srcloc.b, uint8_t( ( srcloc->color >> 16 ) & 0xFF ) ); AppendData( &item, QueueDataSize[(int)QueueType::SourceLocation] ); } void Profiler::SendSourceLocationPayload( uint64_t _ptr ) { auto ptr = (const char*)_ptr; QueueItem item; MemWrite( &item.hdr.type, QueueType::SourceLocationPayload ); MemWrite( &item.stringTransfer.ptr, _ptr ); const auto len = *((uint32_t*)ptr); assert( len <= std::numeric_limits::max() ); assert( len > 4 ); const auto l16 = uint16_t( len - 4 ); NeedDataSize( QueueDataSize[(int)QueueType::SourceLocationPayload] + sizeof( l16 ) + l16 ); AppendData( &item, QueueDataSize[(int)QueueType::SourceLocationPayload] ); AppendData( &l16, sizeof( l16 ) ); AppendData( ptr + 4, l16 ); } static bool DontExit() { return false; } bool Profiler::HandleServerQuery() { timeval tv; tv.tv_sec = 0; tv.tv_usec = 10000; uint8_t type; if( !m_sock->Read( &type, sizeof( type ), &tv, DontExit ) ) return false; uint64_t ptr; if( !m_sock->Read( &ptr, sizeof( ptr ), &tv, DontExit ) ) return false; switch( type ) { case ServerQueryString: SendString( ptr, (const char*)ptr, QueueType::StringData ); break; case ServerQueryThreadString: if( ptr == m_mainThread ) { SendString( ptr, "Main thread", QueueType::ThreadName ); } else { SendString( ptr, GetThreadName( ptr ), QueueType::ThreadName ); } break; case ServerQuerySourceLocation: SendSourceLocation( ptr ); break; case ServerQueryPlotName: SendString( ptr, (const char*)ptr, QueueType::PlotName ); break; case ServerQueryTerminate: return false; default: assert( false ); break; } return true; } void Profiler::CalibrateTimer() { #ifdef TRACY_HW_TIMER # if __ARM_ARCH >= 6 if( GetTimeImpl == GetTimeImplFallback ) { m_timerMul = 1.; return; } # endif std::atomic_signal_fence( std::memory_order_acq_rel ); const auto t0 = std::chrono::high_resolution_clock::now(); const auto r0 = GetTime(); std::atomic_signal_fence( std::memory_order_acq_rel ); std::this_thread::sleep_for( std::chrono::milliseconds( 200 ) ); std::atomic_signal_fence( std::memory_order_acq_rel ); const auto t1 = std::chrono::high_resolution_clock::now(); const auto r1 = GetTime(); std::atomic_signal_fence( std::memory_order_acq_rel ); const auto dt = std::chrono::duration_cast( t1 - t0 ).count(); const auto dr = r1 - r0; m_timerMul = double( dt ) / double( dr ); #else m_timerMul = 1.; #endif } class FakeZone { public: FakeZone( const SourceLocation* srcloc ) : m_id( (uint64_t)srcloc ) {} ~FakeZone() {} private: volatile uint64_t m_id; }; void Profiler::CalibrateDelay() { enum { Iterations = 50000 }; enum { Events = Iterations * 2 }; // start + end static_assert( Events * 2 < QueuePrealloc, "Delay calibration loop will allocate memory in queue" ); moodycamel::ProducerToken ptoken_detail( s_queue ); moodycamel::ConcurrentQueue::ExplicitProducer* ptoken = s_queue.get_explicit_producer( ptoken_detail ); for( int i=0; iget_tail_index(); auto item = ptoken->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::ZoneBegin ); MemWrite( &item->zoneBegin.thread, GetThreadHandle() ); #ifdef TRACY_RDTSCP_OPT MemWrite( &item->zoneBegin.time, Profiler::GetTime( item->zoneBegin.cpu ) ); #else uint32_t cpu; MemWrite( &item->zoneBegin.time, Profiler::GetTime( cpu ) ); MemWrite( &item->zoneBegin.cpu, cpu ); #endif MemWrite( &item->zoneBegin.srcloc, (uint64_t)&__tracy_source_location ); tail.store( magic + 1, std::memory_order_release ); } { Magic magic; auto& tail = ptoken->get_tail_index(); auto item = ptoken->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::ZoneEnd ); MemWrite( &item->zoneEnd.thread, uint64_t( 0 ) ); #ifdef TRACY_RDTSCP_OPT MemWrite( &item->zoneEnd.time, GetTime( item->zoneEnd.cpu ) ); #else uint32_t cpu; MemWrite( &item->zoneEnd.time, GetTime( cpu ) ); MemWrite( &item->zoneEnd.cpu, cpu ); #endif tail.store( magic + 1, std::memory_order_release ); } } const auto f0 = GetTime(); for( int i=0; iget_tail_index(); auto item = ptoken->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::ZoneBegin ); MemWrite( &item->zoneBegin.thread, GetThreadHandle() ); #ifdef TRACY_RDTSCP_OPT MemWrite( &item->zoneBegin.time, Profiler::GetTime( item->zoneBegin.cpu ) ); #else uint32_t cpu; MemWrite( &item->zoneBegin.time, Profiler::GetTime( cpu ) ); MemWrite( &item->zoneBegin.cpu, cpu ); #endif MemWrite( &item->zoneBegin.srcloc, (uint64_t)&__tracy_source_location ); tail.store( magic + 1, std::memory_order_release ); } { Magic magic; auto& tail = ptoken->get_tail_index(); auto item = ptoken->enqueue_begin( magic ); MemWrite( &item->hdr.type, QueueType::ZoneEnd ); MemWrite( &item->zoneEnd.thread, uint64_t( 0 ) ); #ifdef TRACY_RDTSCP_OPT MemWrite( &item->zoneEnd.time, GetTime( item->zoneEnd.cpu ) ); #else uint32_t cpu; MemWrite( &item->zoneEnd.time, GetTime( cpu ) ); MemWrite( &item->zoneEnd.cpu, cpu ); #endif tail.store( magic + 1, std::memory_order_release ); } } const auto t1 = GetTime(); const auto dt = t1 - t0; const auto df = t0 - f0; m_delay = ( dt - df ) / Events; auto mindiff = std::numeric_limits::max(); for( int i=0; i 0 && dt < mindiff ) mindiff = dt; } m_resolution = mindiff; enum { Bulk = 1000 }; moodycamel::ConsumerToken token( s_queue ); int left = Events * 2; QueueItem item[Bulk]; while( left != 0 ) { const auto sz = s_queue.try_dequeue_bulk( token, item, std::min( left, (int)Bulk ) ); assert( sz > 0 ); left -= (int)sz; } } } #endif