#ifndef __TRACYVECTOR_HPP__ #define __TRACYVECTOR_HPP__ #include #include #include #include #include #include "../common/TracyForceInline.hpp" #include "TracyMemory.hpp" #include "TracyPopcnt.hpp" #include "TracyShortPtr.hpp" #include "TracySlab.hpp" //#define TRACY_VECTOR_DEBUG namespace tracy { #pragma pack( 1 ) template class Vector { public: using iterator = T*; using const_iterator = const T*; tracy_force_inline Vector() : m_ptr( nullptr ) , m_size( 0 ) , m_capacity( 0 ) { } Vector( const Vector& ) = delete; tracy_force_inline Vector( Vector&& src ) noexcept { memcpy( this, &src, sizeof( Vector ) ); memset( &src, 0, sizeof( Vector ) ); } tracy_force_inline Vector( const T& value ) : m_ptr( new T[1] ) , m_size( 1 ) , m_capacity( 0 ) { memUsage.fetch_add( sizeof( T ), std::memory_order_relaxed ); m_ptr[0] = value; } tracy_force_inline ~Vector() { if( m_capacity != std::numeric_limits::max() ) { memUsage.fetch_sub( Capacity() * sizeof( T ), std::memory_order_relaxed ); delete[] (T*)m_ptr; } } Vector& operator=( const Vector& ) = delete; tracy_force_inline Vector& operator=( Vector&& src ) noexcept { delete[] (T*)m_ptr; memcpy( this, &src, sizeof( Vector ) ); memset( &src, 0, sizeof( Vector ) ); return *this; } tracy_force_inline void swap( Vector& other ) { std::swap( m_ptr, other.m_ptr ); std::swap( m_size, other.m_size ); std::swap( m_capacity, other.m_capacity ); } tracy_force_inline bool empty() const { return m_size == 0; } tracy_force_inline size_t size() const { return m_size; } tracy_force_inline void set_size( size_t sz ) { assert( m_capacity != std::numeric_limits::max() ); m_size = sz; } tracy_force_inline T* data() { return m_ptr; } tracy_force_inline const T* data() const { return m_ptr; }; tracy_force_inline T* begin() { return m_ptr; } tracy_force_inline const T* begin() const { return m_ptr; } tracy_force_inline T* end() { return m_ptr + m_size; } tracy_force_inline const T* end() const { return m_ptr + m_size; } tracy_force_inline T& front() { assert( m_size > 0 ); return m_ptr[0]; } tracy_force_inline const T& front() const { assert( m_size > 0 ); return m_ptr[0]; } tracy_force_inline T& back() { assert( m_size > 0 ); return m_ptr[m_size - 1]; } tracy_force_inline const T& back() const { assert( m_size > 0 ); return m_ptr[m_size - 1]; } tracy_force_inline T& operator[]( size_t idx ) { return m_ptr[idx]; } tracy_force_inline const T& operator[]( size_t idx ) const { return m_ptr[idx]; } tracy_force_inline void push_back( const T& v ) { assert( m_capacity != std::numeric_limits::max() ); if( m_size == Capacity() ) AllocMore(); m_ptr[m_size++] = v; } tracy_force_inline void push_back_non_empty( const T& v ) { assert( m_capacity != std::numeric_limits::max() ); if( m_size == CapacityNoNullptrCheck() ) AllocMore(); m_ptr[m_size++] = v; } tracy_force_inline void push_back_no_space_check( const T& v ) { assert( m_capacity != std::numeric_limits::max() ); assert( m_size < Capacity() ); m_ptr[m_size++] = v; } tracy_force_inline void push_back( T&& v ) { assert( m_capacity != std::numeric_limits::max() ); if( m_size == Capacity() ) AllocMore(); m_ptr[m_size++] = std::move( v ); } tracy_force_inline T& push_next() { assert( m_capacity != std::numeric_limits::max() ); if( m_size == Capacity() ) AllocMore(); return m_ptr[m_size++]; } tracy_force_inline T& push_next_no_space_check() { assert( m_capacity != std::numeric_limits::max() ); assert( m_size < Capacity() ); return m_ptr[m_size++]; } T* insert( T* it, const T& v ) { assert( m_capacity != std::numeric_limits::max() ); assert( it >= m_ptr && it <= m_ptr + m_size ); const auto dist = it - m_ptr; if( m_size == Capacity() ) AllocMore(); if( dist != m_size ) memmove( m_ptr + dist + 1, m_ptr + dist, ( m_size - dist ) * sizeof( T ) ); m_size++; m_ptr[dist] = v; return m_ptr + dist; } T* insert( T* it, T&& v ) { assert( m_capacity != std::numeric_limits::max() ); assert( it >= m_ptr && it <= m_ptr + m_size ); const auto dist = it - m_ptr; if( m_size == Capacity() ) AllocMore(); if( dist != m_size ) memmove( m_ptr + dist + 1, m_ptr + dist, ( m_size - dist ) * sizeof( T ) ); m_size++; m_ptr[dist] = std::move( v ); return m_ptr + dist; } void insert( T* it, T* begin, T* end ) { assert( m_capacity != std::numeric_limits::max() ); assert( it >= m_ptr && it <= m_ptr + m_size ); const auto sz = end - begin; const auto dist = it - m_ptr; while( m_size + sz > Capacity() ) AllocMore(); if( dist != m_size ) memmove( m_ptr + dist + sz, m_ptr + dist, ( m_size - dist ) * sizeof( T ) ); m_size += sz; memcpy( m_ptr + dist, begin, sz * sizeof( T ) ); } T* erase( T* it ) { assert( m_capacity != std::numeric_limits::max() ); assert( it >= m_ptr && it <= m_ptr + m_size ); m_size--; memmove( it, it+1, ( m_size - ( it - m_ptr ) ) * sizeof( T ) ); return it; } T* erase( T* begin, T* end ) { assert( m_capacity != std::numeric_limits::max() ); assert( begin >= m_ptr && begin <= m_ptr + m_size ); assert( end >= m_ptr && end <= m_ptr + m_size ); assert( begin <= end ); const auto dist = end - begin; if( dist > 0 ) { memmove( begin, end, ( m_size - ( end - m_ptr ) ) * sizeof( T ) ); m_size -= dist; } return begin; } tracy_force_inline void pop_back() { assert( m_capacity != std::numeric_limits::max() ); assert( m_size > 0 ); m_size--; } tracy_force_inline T& back_and_pop() { assert( m_capacity != std::numeric_limits::max() ); assert( m_size > 0 ); m_size--; return m_ptr[m_size]; } tracy_force_inline void reserve( size_t cap ) { if( cap == 0 || cap <= Capacity() ) return; reserve_non_zero( cap ); } void reserve_non_zero( size_t cap ) { assert( m_capacity != std::numeric_limits::max() ); cap--; cap |= cap >> 1; cap |= cap >> 2; cap |= cap >> 4; cap |= cap >> 8; cap |= cap >> 16; cap = TracyCountBits( cap ); memUsage.fetch_add( ( ( 1 << cap ) - Capacity() ) * sizeof( T ), std::memory_order_relaxed ); m_capacity = cap; Realloc(); } tracy_force_inline void reserve_and_use( size_t sz ) { assert( m_capacity != std::numeric_limits::max() ); reserve( sz ); m_size = sz; } template tracy_force_inline void reserve_exact( uint32_t sz, Slab& slab ) { assert( !m_ptr ); m_capacity = std::numeric_limits::max(); m_size = sz; m_ptr = (T*)slab.AllocBig( sizeof( T ) * sz ); } tracy_force_inline void clear() { assert( m_capacity != std::numeric_limits::max() ); m_size = 0; } private: tracy_no_inline void AllocMore() { assert( m_capacity != std::numeric_limits::max() ); if( m_ptr == nullptr ) { memUsage.fetch_add( sizeof( T ), std::memory_order_relaxed ); m_ptr = new T[1]; m_capacity = 0; } else { memUsage.fetch_add( Capacity() * sizeof( T ), std::memory_order_relaxed ); m_capacity++; Realloc(); } } void Realloc() { T* ptr = new T[CapacityNoNullptrCheck()]; if( m_size != 0 ) { if( std::is_trivially_copyable() ) { memcpy( ptr, m_ptr, m_size * sizeof( T ) ); } else { for( uint32_t i=0; i m_ptr; #endif uint32_t m_size; uint8_t m_capacity; }; #pragma pack() enum { VectorSize = sizeof( Vector ) }; } #endif