#ifndef __TRACYPROFILER_HPP__ #define __TRACYPROFILER_HPP__ #include #include #include #include #include #include "tracy_concurrentqueue.h" #include "tracy_SPSCQueue.h" #include "TracyCallstack.hpp" #include "TracyKCore.hpp" #include "TracySysPower.hpp" #include "TracySysTime.hpp" #include "TracyFastVector.hpp" #include "../common/TracyQueue.hpp" #include "../common/TracyAlign.hpp" #include "../common/TracyAlloc.hpp" #include "../common/TracyMutex.hpp" #include "../common/TracyProtocol.hpp" #if defined _WIN32 # include #endif #ifdef __APPLE__ # include # include #endif #if ( defined _WIN32 || ( defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 ) || ( defined TARGET_OS_IOS && TARGET_OS_IOS == 1 ) ) # define TRACY_HW_TIMER #endif #ifdef __linux__ # include #endif #if defined TRACY_TIMER_FALLBACK || !defined TRACY_HW_TIMER # include #endif #ifndef TracyConcat # define TracyConcat(x,y) TracyConcatIndirect(x,y) #endif #ifndef TracyConcatIndirect # define TracyConcatIndirect(x,y) x##y #endif namespace tracy { #if defined(TRACY_DELAYED_INIT) && defined(TRACY_MANUAL_LIFETIME) TRACY_API void StartupProfiler(); TRACY_API void ShutdownProfiler(); TRACY_API bool IsProfilerStarted(); # define TracyIsStarted tracy::IsProfilerStarted() #else # define TracyIsStarted true #endif class GpuCtx; class Profiler; class Socket; class UdpBroadcast; struct GpuCtxWrapper { GpuCtx* ptr; }; TRACY_API moodycamel::ConcurrentQueue::ExplicitProducer* GetToken(); TRACY_API Profiler& GetProfiler(); TRACY_API std::atomic& GetLockCounter(); TRACY_API std::atomic& GetGpuCtxCounter(); TRACY_API GpuCtxWrapper& GetGpuCtx(); TRACY_API uint32_t GetThreadHandle(); TRACY_API bool ProfilerAvailable(); TRACY_API bool ProfilerAllocatorAvailable(); TRACY_API int64_t GetFrequencyQpc(); #if defined TRACY_TIMER_FALLBACK && defined TRACY_HW_TIMER && ( defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 ) TRACY_API bool HardwareSupportsInvariantTSC(); // check, if we need fallback scenario #else # if defined TRACY_HW_TIMER tracy_force_inline bool HardwareSupportsInvariantTSC() { return true; // this is checked at startup } # else tracy_force_inline bool HardwareSupportsInvariantTSC() { return false; } # endif #endif struct SourceLocationData { const char* name; const char* function; const char* file; uint32_t line; uint32_t color; }; #ifdef TRACY_ON_DEMAND struct LuaZoneState { uint32_t counter; bool active; }; #endif #define TracyLfqPrepare( _type ) \ moodycamel::ConcurrentQueueDefaultTraits::index_t __magic; \ auto __token = GetToken(); \ auto& __tail = __token->get_tail_index(); \ auto item = __token->enqueue_begin( __magic ); \ MemWrite( &item->hdr.type, _type ); #define TracyLfqCommit \ __tail.store( __magic + 1, std::memory_order_release ); #define TracyLfqPrepareC( _type ) \ tracy::moodycamel::ConcurrentQueueDefaultTraits::index_t __magic; \ auto __token = tracy::GetToken(); \ auto& __tail = __token->get_tail_index(); \ auto item = __token->enqueue_begin( __magic ); \ tracy::MemWrite( &item->hdr.type, _type ); #define TracyLfqCommitC \ __tail.store( __magic + 1, std::memory_order_release ); #ifdef TRACY_FIBERS # define TracyQueuePrepare( _type ) \ auto item = Profiler::QueueSerial(); \ MemWrite( &item->hdr.type, _type ); # define TracyQueueCommit( _name ) \ MemWrite( &item->_name.thread, GetThreadHandle() ); \ Profiler::QueueSerialFinish(); # define TracyQueuePrepareC( _type ) \ auto item = tracy::Profiler::QueueSerial(); \ tracy::MemWrite( &item->hdr.type, _type ); # define TracyQueueCommitC( _name ) \ tracy::MemWrite( &item->_name.thread, tracy::GetThreadHandle() ); \ tracy::Profiler::QueueSerialFinish(); #else # define TracyQueuePrepare( _type ) TracyLfqPrepare( _type ) # define TracyQueueCommit( _name ) TracyLfqCommit # define TracyQueuePrepareC( _type ) TracyLfqPrepareC( _type ) # define TracyQueueCommitC( _name ) TracyLfqCommitC #endif typedef void(*ParameterCallback)( void* data, uint32_t idx, int32_t val ); typedef char*(*SourceContentsCallback)( void* data, const char* filename, size_t& size ); class Profiler { struct FrameImageQueueItem { void* image; uint32_t frame; uint16_t w; uint16_t h; bool flip; }; enum class SymbolQueueItemType { CallstackFrame, SymbolQuery, ExternalName, KernelCode, SourceCode }; struct SymbolQueueItem { SymbolQueueItemType type; uint64_t ptr; uint64_t extra; uint32_t id; }; public: Profiler(); ~Profiler(); void SpawnWorkerThreads(); static tracy_force_inline int64_t GetTime() { #ifdef TRACY_HW_TIMER # if defined TARGET_OS_IOS && TARGET_OS_IOS == 1 if( HardwareSupportsInvariantTSC() ) return mach_absolute_time(); # elif defined _WIN32 # ifdef TRACY_TIMER_QPC return GetTimeQpc(); # else if( HardwareSupportsInvariantTSC() ) return int64_t( __rdtsc() ); # endif # elif defined __i386 || defined _M_IX86 if( HardwareSupportsInvariantTSC() ) { uint32_t eax, edx; asm volatile ( "rdtsc" : "=a" (eax), "=d" (edx) ); return ( uint64_t( edx ) << 32 ) + uint64_t( eax ); } # elif defined __x86_64__ || defined _M_X64 if( HardwareSupportsInvariantTSC() ) { uint64_t rax, rdx; #ifdef TRACY_PATCHABLE_NOPSLEDS // Some external tooling (such as rr) wants to patch our rdtsc and replace it by a // branch to control the external input seen by a program. This kind of patching is // not generally possible depending on the surrounding code and can lead to significant // slowdowns if the compiler generated unlucky code and rr and tracy are used together. // To avoid this, use the rr-safe `nopl 0(%rax, %rax, 1); rdtsc` instruction sequence, // which rr promises will be patchable independent of the surrounding code. asm volatile ( // This is nopl 0(%rax, %rax, 1), but assemblers are inconsistent about whether // they emit that as a 4 or 5 byte sequence and we need to be guaranteed to use // the 5 byte one. ".byte 0x0f, 0x1f, 0x44, 0x00, 0x00\n\t" "rdtsc" : "=a" (rax), "=d" (rdx) ); #else asm volatile ( "rdtsc" : "=a" (rax), "=d" (rdx) ); #endif return (int64_t)(( rdx << 32 ) + rax); } # else # error "TRACY_HW_TIMER detection logic needs fixing" # endif #endif #if !defined TRACY_HW_TIMER || defined TRACY_TIMER_FALLBACK # if defined __linux__ && defined CLOCK_MONOTONIC_RAW struct timespec ts; clock_gettime( CLOCK_MONOTONIC_RAW, &ts ); return int64_t( ts.tv_sec ) * 1000000000ll + int64_t( ts.tv_nsec ); # else return std::chrono::duration_cast( std::chrono::high_resolution_clock::now().time_since_epoch() ).count(); # endif #endif #if !defined TRACY_TIMER_FALLBACK return 0; // unreachable branch #endif } tracy_force_inline uint32_t GetNextZoneId() { return m_zoneId.fetch_add( 1, std::memory_order_relaxed ); } static tracy_force_inline QueueItem* QueueSerial() { auto& p = GetProfiler(); p.m_serialLock.lock(); return p.m_serialQueue.prepare_next(); } static tracy_force_inline QueueItem* QueueSerialCallstack( void* ptr ) { auto& p = GetProfiler(); p.m_serialLock.lock(); p.SendCallstackSerial( ptr ); return p.m_serialQueue.prepare_next(); } static tracy_force_inline void QueueSerialFinish() { auto& p = GetProfiler(); p.m_serialQueue.commit_next(); p.m_serialLock.unlock(); } static tracy_force_inline void SendFrameMark( const char* name ) { if( !name ) GetProfiler().m_frameCount.fetch_add( 1, std::memory_order_relaxed ); #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif auto item = QueueSerial(); MemWrite( &item->hdr.type, QueueType::FrameMarkMsg ); MemWrite( &item->frameMark.time, GetTime() ); MemWrite( &item->frameMark.name, uint64_t( name ) ); QueueSerialFinish(); } static tracy_force_inline void SendFrameMark( const char* name, QueueType type ) { assert( type == QueueType::FrameMarkMsgStart || type == QueueType::FrameMarkMsgEnd ); #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif auto item = QueueSerial(); MemWrite( &item->hdr.type, type ); MemWrite( &item->frameMark.time, GetTime() ); MemWrite( &item->frameMark.name, uint64_t( name ) ); QueueSerialFinish(); } static tracy_force_inline void SendFrameImage( const void* image, uint16_t w, uint16_t h, uint8_t offset, bool flip ) { #ifndef TRACY_NO_FRAME_IMAGE auto& profiler = GetProfiler(); assert( profiler.m_frameCount.load( std::memory_order_relaxed ) < (std::numeric_limits::max)() ); # ifdef TRACY_ON_DEMAND if( !profiler.IsConnected() ) return; # endif const auto sz = size_t( w ) * size_t( h ) * 4; auto ptr = (char*)tracy_malloc( sz ); memcpy( ptr, image, sz ); profiler.m_fiLock.lock(); auto fi = profiler.m_fiQueue.prepare_next(); fi->image = ptr; fi->frame = uint32_t( profiler.m_frameCount.load( std::memory_order_relaxed ) - offset ); fi->w = w; fi->h = h; fi->flip = flip; profiler.m_fiQueue.commit_next(); profiler.m_fiLock.unlock(); #else static_cast(image); // unused static_cast(w); // unused static_cast(h); // unused static_cast(offset); // unused static_cast(flip); // unused #endif } static tracy_force_inline void PlotData( const char* name, int64_t val ) { #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif TracyLfqPrepare( QueueType::PlotDataInt ); MemWrite( &item->plotDataInt.name, (uint64_t)name ); MemWrite( &item->plotDataInt.time, GetTime() ); MemWrite( &item->plotDataInt.val, val ); TracyLfqCommit; } static tracy_force_inline void PlotData( const char* name, float val ) { #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif TracyLfqPrepare( QueueType::PlotDataFloat ); MemWrite( &item->plotDataFloat.name, (uint64_t)name ); MemWrite( &item->plotDataFloat.time, GetTime() ); MemWrite( &item->plotDataFloat.val, val ); TracyLfqCommit; } static tracy_force_inline void PlotData( const char* name, double val ) { #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif TracyLfqPrepare( QueueType::PlotDataDouble ); MemWrite( &item->plotDataDouble.name, (uint64_t)name ); MemWrite( &item->plotDataDouble.time, GetTime() ); MemWrite( &item->plotDataDouble.val, val ); TracyLfqCommit; } static tracy_force_inline void ConfigurePlot( const char* name, PlotFormatType type, bool step, bool fill, uint32_t color ) { TracyLfqPrepare( QueueType::PlotConfig ); MemWrite( &item->plotConfig.name, (uint64_t)name ); MemWrite( &item->plotConfig.type, (uint8_t)type ); MemWrite( &item->plotConfig.step, (uint8_t)step ); MemWrite( &item->plotConfig.fill, (uint8_t)fill ); MemWrite( &item->plotConfig.color, color ); #ifdef TRACY_ON_DEMAND GetProfiler().DeferItem( *item ); #endif TracyLfqCommit; } static tracy_force_inline void Message( const char* txt, size_t size, int callstack ) { assert( size < (std::numeric_limits::max)() ); #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif if( callstack != 0 ) { tracy::GetProfiler().SendCallstack( callstack ); } auto ptr = (char*)tracy_malloc( size ); memcpy( ptr, txt, size ); TracyQueuePrepare( callstack == 0 ? QueueType::Message : QueueType::MessageCallstack ); MemWrite( &item->messageFat.time, GetTime() ); MemWrite( &item->messageFat.text, (uint64_t)ptr ); MemWrite( &item->messageFat.size, (uint16_t)size ); TracyQueueCommit( messageFatThread ); } static tracy_force_inline void Message( const char* txt, int callstack ) { #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif if( callstack != 0 ) { tracy::GetProfiler().SendCallstack( callstack ); } TracyQueuePrepare( callstack == 0 ? QueueType::MessageLiteral : QueueType::MessageLiteralCallstack ); MemWrite( &item->messageLiteral.time, GetTime() ); MemWrite( &item->messageLiteral.text, (uint64_t)txt ); TracyQueueCommit( messageLiteralThread ); } static tracy_force_inline void MessageColor( const char* txt, size_t size, uint32_t color, int callstack ) { assert( size < (std::numeric_limits::max)() ); #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif if( callstack != 0 ) { tracy::GetProfiler().SendCallstack( callstack ); } auto ptr = (char*)tracy_malloc( size ); memcpy( ptr, txt, size ); TracyQueuePrepare( callstack == 0 ? QueueType::MessageColor : QueueType::MessageColorCallstack ); MemWrite( &item->messageColorFat.time, GetTime() ); MemWrite( &item->messageColorFat.text, (uint64_t)ptr ); MemWrite( &item->messageColorFat.b, uint8_t( ( color ) & 0xFF ) ); MemWrite( &item->messageColorFat.g, uint8_t( ( color >> 8 ) & 0xFF ) ); MemWrite( &item->messageColorFat.r, uint8_t( ( color >> 16 ) & 0xFF ) ); MemWrite( &item->messageColorFat.size, (uint16_t)size ); TracyQueueCommit( messageColorFatThread ); } static tracy_force_inline void MessageColor( const char* txt, uint32_t color, int callstack ) { #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif if( callstack != 0 ) { tracy::GetProfiler().SendCallstack( callstack ); } TracyQueuePrepare( callstack == 0 ? QueueType::MessageLiteralColor : QueueType::MessageLiteralColorCallstack ); MemWrite( &item->messageColorLiteral.time, GetTime() ); MemWrite( &item->messageColorLiteral.text, (uint64_t)txt ); MemWrite( &item->messageColorLiteral.b, uint8_t( ( color ) & 0xFF ) ); MemWrite( &item->messageColorLiteral.g, uint8_t( ( color >> 8 ) & 0xFF ) ); MemWrite( &item->messageColorLiteral.r, uint8_t( ( color >> 16 ) & 0xFF ) ); TracyQueueCommit( messageColorLiteralThread ); } static tracy_force_inline void MessageAppInfo( const char* txt, size_t size ) { assert( size < (std::numeric_limits::max)() ); auto ptr = (char*)tracy_malloc( size ); memcpy( ptr, txt, size ); TracyLfqPrepare( QueueType::MessageAppInfo ); MemWrite( &item->messageFat.time, GetTime() ); MemWrite( &item->messageFat.text, (uint64_t)ptr ); MemWrite( &item->messageFat.size, (uint16_t)size ); #ifdef TRACY_ON_DEMAND GetProfiler().DeferItem( *item ); #endif TracyLfqCommit; } static tracy_force_inline void MemAlloc( const void* ptr, size_t size, bool secure ) { if( secure && !ProfilerAvailable() ) return; #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif const auto thread = GetThreadHandle(); GetProfiler().m_serialLock.lock(); SendMemAlloc( QueueType::MemAlloc, thread, ptr, size ); GetProfiler().m_serialLock.unlock(); } static tracy_force_inline void MemFree( const void* ptr, bool secure ) { if( secure && !ProfilerAvailable() ) return; #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif const auto thread = GetThreadHandle(); GetProfiler().m_serialLock.lock(); SendMemFree( QueueType::MemFree, thread, ptr ); GetProfiler().m_serialLock.unlock(); } static tracy_force_inline void MemAllocCallstack( const void* ptr, size_t size, int depth, bool secure ) { if( secure && !ProfilerAvailable() ) return; #ifdef TRACY_HAS_CALLSTACK auto& profiler = GetProfiler(); # ifdef TRACY_ON_DEMAND if( !profiler.IsConnected() ) return; # endif const auto thread = GetThreadHandle(); auto callstack = Callstack( depth ); profiler.m_serialLock.lock(); SendCallstackSerial( callstack ); SendMemAlloc( QueueType::MemAllocCallstack, thread, ptr, size ); profiler.m_serialLock.unlock(); #else static_cast(depth); // unused MemAlloc( ptr, size, secure ); #endif } static tracy_force_inline void MemFreeCallstack( const void* ptr, int depth, bool secure ) { if( secure && !ProfilerAvailable() ) return; if( !ProfilerAllocatorAvailable() ) { MemFree( ptr, secure ); return; } #ifdef TRACY_HAS_CALLSTACK auto& profiler = GetProfiler(); # ifdef TRACY_ON_DEMAND if( !profiler.IsConnected() ) return; # endif const auto thread = GetThreadHandle(); auto callstack = Callstack( depth ); profiler.m_serialLock.lock(); SendCallstackSerial( callstack ); SendMemFree( QueueType::MemFreeCallstack, thread, ptr ); profiler.m_serialLock.unlock(); #else static_cast(depth); // unused MemFree( ptr, secure ); #endif } static tracy_force_inline void MemAllocNamed( const void* ptr, size_t size, bool secure, const char* name ) { if( secure && !ProfilerAvailable() ) return; #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif const auto thread = GetThreadHandle(); GetProfiler().m_serialLock.lock(); SendMemName( name ); SendMemAlloc( QueueType::MemAllocNamed, thread, ptr, size ); GetProfiler().m_serialLock.unlock(); } static tracy_force_inline void MemFreeNamed( const void* ptr, bool secure, const char* name ) { if( secure && !ProfilerAvailable() ) return; #ifdef TRACY_ON_DEMAND if( !GetProfiler().IsConnected() ) return; #endif const auto thread = GetThreadHandle(); GetProfiler().m_serialLock.lock(); SendMemName( name ); SendMemFree( QueueType::MemFreeNamed, thread, ptr ); GetProfiler().m_serialLock.unlock(); } static tracy_force_inline void MemAllocCallstackNamed( const void* ptr, size_t size, int depth, bool secure, const char* name ) { if( secure && !ProfilerAvailable() ) return; #ifdef TRACY_HAS_CALLSTACK auto& profiler = GetProfiler(); # ifdef TRACY_ON_DEMAND if( !profiler.IsConnected() ) return; # endif const auto thread = GetThreadHandle(); auto callstack = Callstack( depth ); profiler.m_serialLock.lock(); SendCallstackSerial( callstack ); SendMemName( name ); SendMemAlloc( QueueType::MemAllocCallstackNamed, thread, ptr, size ); profiler.m_serialLock.unlock(); #else static_cast(depth); // unused MemAllocNamed( ptr, size, secure, name ); #endif } static tracy_force_inline void MemFreeCallstackNamed( const void* ptr, int depth, bool secure, const char* name ) { if( secure && !ProfilerAvailable() ) return; #ifdef TRACY_HAS_CALLSTACK auto& profiler = GetProfiler(); # ifdef TRACY_ON_DEMAND if( !profiler.IsConnected() ) return; # endif const auto thread = GetThreadHandle(); auto callstack = Callstack( depth ); profiler.m_serialLock.lock(); SendCallstackSerial( callstack ); SendMemName( name ); SendMemFree( QueueType::MemFreeCallstackNamed, thread, ptr ); profiler.m_serialLock.unlock(); #else static_cast(depth); // unused MemFreeNamed( ptr, secure, name ); #endif } static tracy_force_inline void SendCallstack( int depth ) { #ifdef TRACY_HAS_CALLSTACK auto ptr = Callstack( depth ); TracyQueuePrepare( QueueType::Callstack ); MemWrite( &item->callstackFat.ptr, (uint64_t)ptr ); TracyQueueCommit( callstackFatThread ); #else static_cast(depth); // unused #endif } static tracy_force_inline void ParameterRegister( ParameterCallback cb, void* data ) { auto& profiler = GetProfiler(); profiler.m_paramCallback = cb; profiler.m_paramCallbackData = data; } static tracy_force_inline void ParameterSetup( uint32_t idx, const char* name, bool isBool, int32_t val ) { TracyLfqPrepare( QueueType::ParamSetup ); tracy::MemWrite( &item->paramSetup.idx, idx ); tracy::MemWrite( &item->paramSetup.name, (uint64_t)name ); tracy::MemWrite( &item->paramSetup.isBool, (uint8_t)isBool ); tracy::MemWrite( &item->paramSetup.val, val ); #ifdef TRACY_ON_DEMAND GetProfiler().DeferItem( *item ); #endif TracyLfqCommit; } static tracy_force_inline void SourceCallbackRegister( SourceContentsCallback cb, void* data ) { auto& profiler = GetProfiler(); profiler.m_sourceCallback = cb; profiler.m_sourceCallbackData = data; } #ifdef TRACY_FIBERS static tracy_force_inline void EnterFiber( const char* fiber ) { TracyQueuePrepare( QueueType::FiberEnter ); MemWrite( &item->fiberEnter.time, GetTime() ); MemWrite( &item->fiberEnter.fiber, (uint64_t)fiber ); TracyQueueCommit( fiberEnter ); } static tracy_force_inline void LeaveFiber() { TracyQueuePrepare( QueueType::FiberLeave ); MemWrite( &item->fiberLeave.time, GetTime() ); TracyQueueCommit( fiberLeave ); } #endif void SendCallstack( int depth, const char* skipBefore ); static void CutCallstack( void* callstack, const char* skipBefore ); static bool ShouldExit(); tracy_force_inline bool IsConnected() const { return m_isConnected.load( std::memory_order_acquire ); } tracy_force_inline void SetProgramName( const char* name ) { m_programNameLock.lock(); m_programName = name; m_programNameLock.unlock(); } #ifdef TRACY_ON_DEMAND tracy_force_inline uint64_t ConnectionId() const { return m_connectionId.load( std::memory_order_acquire ); } tracy_force_inline void DeferItem( const QueueItem& item ) { m_deferredLock.lock(); auto dst = m_deferredQueue.push_next(); memcpy( dst, &item, sizeof( item ) ); m_deferredLock.unlock(); } #endif void RequestShutdown() { m_shutdown.store( true, std::memory_order_relaxed ); m_shutdownManual.store( true, std::memory_order_relaxed ); } bool HasShutdownFinished() const { return m_shutdownFinished.load( std::memory_order_relaxed ); } void SendString( uint64_t str, const char* ptr, QueueType type ) { SendString( str, ptr, strlen( ptr ), type ); } void SendString( uint64_t str, const char* ptr, size_t len, QueueType type ); void SendSingleString( const char* ptr ) { SendSingleString( ptr, strlen( ptr ) ); } void SendSingleString( const char* ptr, size_t len ); void SendSecondString( const char* ptr ) { SendSecondString( ptr, strlen( ptr ) ); } void SendSecondString( const char* ptr, size_t len ); // Allocated source location data layout: // 2b payload size // 4b color // 4b source line // fsz function name // 1b null terminator // ssz source file name // 1b null terminator // nsz zone name (optional) static tracy_force_inline uint64_t AllocSourceLocation( uint32_t line, const char* source, const char* function, uint32_t color = 0 ) { return AllocSourceLocation( line, source, function, nullptr, 0, color ); } static tracy_force_inline uint64_t AllocSourceLocation( uint32_t line, const char* source, const char* function, const char* name, size_t nameSz, uint32_t color = 0 ) { return AllocSourceLocation( line, source, strlen(source), function, strlen(function), name, nameSz, color ); } static tracy_force_inline uint64_t AllocSourceLocation( uint32_t line, const char* source, size_t sourceSz, const char* function, size_t functionSz, uint32_t color = 0 ) { return AllocSourceLocation( line, source, sourceSz, function, functionSz, nullptr, 0, color ); } static tracy_force_inline uint64_t AllocSourceLocation( uint32_t line, const char* source, size_t sourceSz, const char* function, size_t functionSz, const char* name, size_t nameSz, uint32_t color = 0 ) { const auto sz32 = uint32_t( 2 + 4 + 4 + functionSz + 1 + sourceSz + 1 + nameSz ); assert( sz32 <= (std::numeric_limits::max)() ); const auto sz = uint16_t( sz32 ); auto ptr = (char*)tracy_malloc( sz ); memcpy( ptr, &sz, 2 ); memcpy( ptr + 2, &color, 4 ); memcpy( ptr + 6, &line, 4 ); memcpy( ptr + 10, function, functionSz ); ptr[10 + functionSz] = '\0'; memcpy( ptr + 10 + functionSz + 1, source, sourceSz ); ptr[10 + functionSz + 1 + sourceSz] = '\0'; if( nameSz != 0 ) { memcpy( ptr + 10 + functionSz + 1 + sourceSz + 1, name, nameSz ); } return uint64_t( ptr ); } private: enum class DequeueStatus { DataDequeued, ConnectionLost, QueueEmpty }; enum class ThreadCtxStatus { Same, Changed, ConnectionLost }; static void LaunchWorker( void* ptr ) { ((Profiler*)ptr)->Worker(); } void Worker(); #ifndef TRACY_NO_FRAME_IMAGE static void LaunchCompressWorker( void* ptr ) { ((Profiler*)ptr)->CompressWorker(); } void CompressWorker(); #endif #ifdef TRACY_HAS_CALLSTACK static void LaunchSymbolWorker( void* ptr ) { ((Profiler*)ptr)->SymbolWorker(); } void SymbolWorker(); void HandleSymbolQueueItem( const SymbolQueueItem& si ); #endif void InstallCrashHandler(); void RemoveCrashHandler(); void ClearQueues( tracy::moodycamel::ConsumerToken& token ); void ClearSerial(); DequeueStatus Dequeue( tracy::moodycamel::ConsumerToken& token ); DequeueStatus DequeueContextSwitches( tracy::moodycamel::ConsumerToken& token, int64_t& timeStop ); DequeueStatus DequeueSerial(); ThreadCtxStatus ThreadCtxCheck( uint32_t threadId ); bool CommitData(); tracy_force_inline bool AppendData( const void* data, size_t len ) { const auto ret = NeedDataSize( len ); AppendDataUnsafe( data, len ); return ret; } tracy_force_inline bool NeedDataSize( size_t len ) { assert( len <= TargetFrameSize ); bool ret = true; if( m_bufferOffset - m_bufferStart + (int)len > TargetFrameSize ) { ret = CommitData(); } return ret; } tracy_force_inline void AppendDataUnsafe( const void* data, size_t len ) { memcpy( m_buffer + m_bufferOffset, data, len ); m_bufferOffset += int( len ); } bool SendData( const char* data, size_t len ); void SendLongString( uint64_t ptr, const char* str, size_t len, QueueType type ); void SendSourceLocation( uint64_t ptr ); void SendSourceLocationPayload( uint64_t ptr ); void SendCallstackPayload( uint64_t ptr ); void SendCallstackPayload64( uint64_t ptr ); void SendCallstackAlloc( uint64_t ptr ); void QueueCallstackFrame( uint64_t ptr ); void QueueSymbolQuery( uint64_t symbol ); void QueueExternalName( uint64_t ptr ); void QueueKernelCode( uint64_t symbol, uint32_t size ); void QueueSourceCodeQuery( uint32_t id ); bool HandleServerQuery(); void HandleDisconnect(); void HandleParameter( uint64_t payload ); void HandleSymbolCodeQuery( uint64_t symbol, uint32_t size ); void HandleSourceCodeQuery( char* data, char* image, uint32_t id ); void AckServerQuery(); void AckSymbolCodeNotAvailable(); void CalibrateTimer(); void CalibrateDelay(); void ReportTopology(); static tracy_force_inline void SendCallstackSerial( void* ptr ) { #ifdef TRACY_HAS_CALLSTACK auto item = GetProfiler().m_serialQueue.prepare_next(); MemWrite( &item->hdr.type, QueueType::CallstackSerial ); MemWrite( &item->callstackFat.ptr, (uint64_t)ptr ); GetProfiler().m_serialQueue.commit_next(); #else static_cast(ptr); // unused #endif } static tracy_force_inline void SendMemAlloc( QueueType type, const uint32_t thread, const void* ptr, size_t size ) { assert( type == QueueType::MemAlloc || type == QueueType::MemAllocCallstack || type == QueueType::MemAllocNamed || type == QueueType::MemAllocCallstackNamed ); auto item = GetProfiler().m_serialQueue.prepare_next(); MemWrite( &item->hdr.type, type ); MemWrite( &item->memAlloc.time, GetTime() ); MemWrite( &item->memAlloc.thread, thread ); MemWrite( &item->memAlloc.ptr, (uint64_t)ptr ); if( compile_time_condition::value ) { memcpy( &item->memAlloc.size, &size, 4 ); memset( &item->memAlloc.size + 4, 0, 2 ); } else { assert( sizeof( size ) == 8 ); memcpy( &item->memAlloc.size, &size, 4 ); memcpy( ((char*)&item->memAlloc.size)+4, ((char*)&size)+4, 2 ); } GetProfiler().m_serialQueue.commit_next(); } static tracy_force_inline void SendMemFree( QueueType type, const uint32_t thread, const void* ptr ) { assert( type == QueueType::MemFree || type == QueueType::MemFreeCallstack || type == QueueType::MemFreeNamed || type == QueueType::MemFreeCallstackNamed ); auto item = GetProfiler().m_serialQueue.prepare_next(); MemWrite( &item->hdr.type, type ); MemWrite( &item->memFree.time, GetTime() ); MemWrite( &item->memFree.thread, thread ); MemWrite( &item->memFree.ptr, (uint64_t)ptr ); GetProfiler().m_serialQueue.commit_next(); } static tracy_force_inline void SendMemName( const char* name ) { assert( name ); auto item = GetProfiler().m_serialQueue.prepare_next(); MemWrite( &item->hdr.type, QueueType::MemNamePayload ); MemWrite( &item->memName.name, (uint64_t)name ); GetProfiler().m_serialQueue.commit_next(); } #if defined _WIN32 && defined TRACY_TIMER_QPC static int64_t GetTimeQpc(); #endif double m_timerMul; uint64_t m_resolution; uint64_t m_delay; std::atomic m_timeBegin; uint32_t m_mainThread; uint64_t m_epoch, m_exectime; std::atomic m_shutdown; std::atomic m_shutdownManual; std::atomic m_shutdownFinished; Socket* m_sock; UdpBroadcast* m_broadcast; bool m_noExit; uint32_t m_userPort; std::atomic m_zoneId; int64_t m_samplingPeriod; uint32_t m_threadCtx; int64_t m_refTimeThread; int64_t m_refTimeSerial; int64_t m_refTimeCtx; int64_t m_refTimeGpu; void* m_stream; // LZ4_stream_t* char* m_buffer; int m_bufferOffset; int m_bufferStart; char* m_lz4Buf; FastVector m_serialQueue, m_serialDequeue; TracyMutex m_serialLock; #ifndef TRACY_NO_FRAME_IMAGE FastVector m_fiQueue, m_fiDequeue; TracyMutex m_fiLock; #endif SPSCQueue m_symbolQueue; std::atomic m_frameCount; std::atomic m_isConnected; #ifdef TRACY_ON_DEMAND std::atomic m_connectionId; TracyMutex m_deferredLock; FastVector m_deferredQueue; #endif #ifdef TRACY_HAS_SYSTIME void ProcessSysTime(); SysTime m_sysTime; uint64_t m_sysTimeLast = 0; #else void ProcessSysTime() {} #endif #ifdef TRACY_HAS_SYSPOWER SysPower m_sysPower; #endif ParameterCallback m_paramCallback; void* m_paramCallbackData; SourceContentsCallback m_sourceCallback; void* m_sourceCallbackData; char* m_queryImage; char* m_queryData; char* m_queryDataPtr; #if defined _WIN32 void* m_exceptionHandler; #endif #ifdef __linux__ struct { struct sigaction pwr, ill, fpe, segv, pipe, bus, abrt; } m_prevSignal; KCore* m_kcore; #endif bool m_crashHandlerInstalled; const char* m_programName; TracyMutex m_programNameLock; }; } #endif