#include "TracyDxt1.hpp" #include #include #include #ifdef __ARM_NEON # include #endif #if defined __AVX__ && !defined __SSE4_1__ # define __SSE4_1__ #endif #ifdef _MSC_VER # ifdef __SSE4_1__ # include # else # include # endif #endif namespace tracy { static inline uint16_t to565( uint8_t r, uint8_t g, uint8_t b ) { return ( ( r & 0xF8 ) << 8 ) | ( ( g & 0xFC ) << 3 ) | ( b >> 3 ); } static inline uint16_t to565( uint32_t c ) { return ( ( c & 0xF80000 ) >> 19 ) | ( ( c & 0x00FC00 ) >> 5 ) | ( ( c & 0x0000F8 ) << 8 ); } static uint64_t CheckSolid( const uint8_t* src ) { #ifdef __SSE4_1__ __m128i mask = _mm_set1_epi32( 0xF8FCF8 ); __m128i d0 = _mm_and_si128( _mm_loadu_si128(((__m128i*)src) + 0), mask ); __m128i d1 = _mm_and_si128( _mm_loadu_si128(((__m128i*)src) + 1), mask ); __m128i d2 = _mm_and_si128( _mm_loadu_si128(((__m128i*)src) + 2), mask ); __m128i d3 = _mm_and_si128( _mm_loadu_si128(((__m128i*)src) + 3), mask ); __m128i c = _mm_shuffle_epi32(d0, _MM_SHUFFLE(0, 0, 0, 0)); __m128i c0 = _mm_cmpeq_epi8(d0, c); __m128i c1 = _mm_cmpeq_epi8(d1, c); __m128i c2 = _mm_cmpeq_epi8(d2, c); __m128i c3 = _mm_cmpeq_epi8(d3, c); __m128i m0 = _mm_and_si128(c0, c1); __m128i m1 = _mm_and_si128(c2, c3); __m128i m = _mm_and_si128(m0, m1); if (!_mm_testc_si128(m, _mm_set1_epi32(-1))) { return 0; } else { return to565( src[0], src[1], src[2] ); } #elif defined __ARM_NEON uint32x4_t mask = vdupq_n_u32( 0xF8FCF8 ); uint32x4_t d0 = vandq_u32( mask, vld1q_u32( (uint32_t*)src ) ); uint32x4_t d1 = vandq_u32( mask, vld1q_u32( (uint32_t*)src + 4 ) ); uint32x4_t d2 = vandq_u32( mask, vld1q_u32( (uint32_t*)src + 8 ) ); uint32x4_t d3 = vandq_u32( mask, vld1q_u32( (uint32_t*)src + 12 ) ); uint32x4_t c = vdupq_n_u32( d0[0] ); uint32x4_t c0 = vceqq_u32( d0, c ); uint32x4_t c1 = vceqq_u32( d1, c ); uint32x4_t c2 = vceqq_u32( d2, c ); uint32x4_t c3 = vceqq_u32( d3, c ); uint32x4_t m0 = vandq_u32( c0, c1 ); uint32x4_t m1 = vandq_u32( c2, c3 ); int64x2_t m = vreinterpretq_s64_u32( vandq_u32( m0, m1 ) ); if( m[0] != -1 || m[1] != -1 ) { return 0; } else { return to565( src[0], src[1], src[2] ); } #else const auto ref = to565( src[0], src[1], src[2] ); src += 4; for( int i=1; i<16; i++ ) { if( to565( src[0], src[1], src[2] ) != ref ) { return 0; } src += 4; } return uint64_t( ref ); #endif } static const uint8_t IndexTable[4] = { 1, 3, 2, 0 }; static uint64_t ProcessRGB( const uint8_t* src ) { const auto solid = CheckSolid( src ); if( solid != 0 ) return solid; #ifdef __SSE4_1__ __m128i mask = _mm_set1_epi32( 0xFFFFFF ); __m128i l0 = _mm_and_si128( _mm_loadu_si128(((__m128i*)src) + 0), mask ); __m128i l1 = _mm_and_si128( _mm_loadu_si128(((__m128i*)src) + 1), mask ); __m128i l2 = _mm_and_si128( _mm_loadu_si128(((__m128i*)src) + 2), mask ); __m128i l3 = _mm_and_si128( _mm_loadu_si128(((__m128i*)src) + 3), mask ); __m128i min0 = _mm_min_epu8( l0, l1 ); __m128i min1 = _mm_min_epu8( l2, l3 ); __m128i min2 = _mm_min_epu8( min0, min1 ); __m128i max0 = _mm_max_epu8( l0, l1 ); __m128i max1 = _mm_max_epu8( l2, l3 ); __m128i max2 = _mm_max_epu8( max0, max1 ); __m128i min3 = _mm_shuffle_epi32( min2, _MM_SHUFFLE( 2, 3, 0, 1 ) ); __m128i max3 = _mm_shuffle_epi32( max2, _MM_SHUFFLE( 2, 3, 0, 1 ) ); __m128i min4 = _mm_min_epu8( min2, min3 ); __m128i max4 = _mm_max_epu8( max2, max3 ); __m128i min5 = _mm_shuffle_epi32( min4, _MM_SHUFFLE( 0, 0, 2, 2 ) ); __m128i max5 = _mm_shuffle_epi32( max4, _MM_SHUFFLE( 0, 0, 2, 2 ) ); __m128i rmin = _mm_min_epu8( min4, min5 ); __m128i rmax = _mm_max_epu8( max4, max5 ); __m128i range1 = _mm_subs_epu8( rmax, rmin ); __m128i range2 = _mm_maddubs_epi16( range1, _mm_set1_epi8( 1 ) ); __m128i range3 = _mm_hadd_epi16( range2, range2 ); __m128i range4 = _mm_add_epi16( range3, _mm_set1_epi16( 1 ) ); uint32_t vrange1 = _mm_cvtsi128_si32( range4 ) & 0xFFFF; uint32_t vrange2 = ( 4 << 16 ) / vrange1; __m128i range = _mm_set1_epi16( vrange2 ); __m128i inset1 = _mm_srli_epi16( range1, 4 ); __m128i inset = _mm_and_si128( inset1, _mm_set1_epi8( 0xF ) ); __m128i min = _mm_adds_epu8( rmin, inset ); __m128i max = _mm_subs_epu8( rmax, inset ); __m128i c0 = _mm_subs_epu8( l0, rmin ); __m128i c1 = _mm_subs_epu8( l1, rmin ); __m128i c2 = _mm_subs_epu8( l2, rmin ); __m128i c3 = _mm_subs_epu8( l3, rmin ); __m128i is0 = _mm_maddubs_epi16( c0, _mm_set1_epi8( 1 ) ); __m128i is1 = _mm_maddubs_epi16( c1, _mm_set1_epi8( 1 ) ); __m128i is2 = _mm_maddubs_epi16( c2, _mm_set1_epi8( 1 ) ); __m128i is3 = _mm_maddubs_epi16( c3, _mm_set1_epi8( 1 ) ); __m128i s0 = _mm_hadd_epi16( is0, is1 ); __m128i s1 = _mm_hadd_epi16( is2, is3 ); __m128i m0 = _mm_mulhi_epu16( s0, range ); __m128i m1 = _mm_mulhi_epu16( s1, range ); __m128i p0 = _mm_packus_epi16( m0, m1 ); uint32_t vmin = _mm_cvtsi128_si32( min ); uint32_t vmax = _mm_cvtsi128_si32( max ); uint32_t vp[4]; _mm_store_si128( (__m128i*)vp, p0 ); uint32_t data = 0; int k = 0; for( int i=0; i<4; i++ ) { uint32_t p = vp[i]; for( int j=0; j<4; j++ ) { uint8_t idx = IndexTable[p & 0x3]; p >>= 8; data |= idx << (k*2); k++; } } return uint64_t( ( uint64_t( to565( vmin ) ) << 16 ) | to565( vmax ) | ( uint64_t( data ) << 32 ) ); #else uint8_t min[3] = { src[0], src[1], src[2] }; uint8_t max[3] = { src[0], src[1], src[2] }; auto tmp = src + 4; for( int i=1; i<16; i++ ) { for( int j=0; j<3; j++ ) { if( tmp[j] < min[j] ) min[j] = tmp[j]; else if( tmp[j] > max[j] ) max[j] = tmp[j]; } tmp += 4; } const uint32_t range = ( 4 << 16 ) / ( 1 + max[0] - min[0] + max[1] - min[1] + max[2] - min[2] ); const uint32_t rmin = min[0] + min[1] + min[2]; for( int i=0; i<3; i++ ) { const uint8_t inset = ( max[i] - min[i] ) >> 4; min[i] += inset; max[i] -= inset; } uint32_t data = 0; for( int i=0; i<16; i++ ) { const uint32_t c = src[0] + src[1] + src[2] - rmin; const uint8_t idx = IndexTable[( c * range ) >> 16]; data |= idx << (i*2); src += 4; } return uint64_t( ( uint64_t( to565( min[0], min[1], min[2] ) ) << 16 ) | to565( max[0], max[1], max[2] ) | ( uint64_t( data ) << 32 ) ); #endif } void CompressImageDxt1( const char* src, char* dst, int w, int h ) { assert( (w % 4) == 0 && (h % 4) == 0 ); uint32_t buf[4*4]; int i = 0; auto ptr = dst; auto blocks = w * h / 16; do { auto tmp = (char*)buf; memcpy( tmp, src, 4*4 ); memcpy( tmp + 4*4, src + w * 4, 4*4 ); memcpy( tmp + 8*4, src + w * 8, 4*4 ); memcpy( tmp + 12*4, src + w * 12, 4*4 ); src += 4*4; if( ++i == w/4 ) { src += w * 3 * 4; i = 0; } const auto c = ProcessRGB( (uint8_t*)buf ); memcpy( ptr, &c, sizeof( uint64_t ) ); ptr += sizeof( uint64_t ); } while( --blocks ); } }