tracy/public/client/TracyProfiler.hpp
Keno Fischer 5417227e83 Use patchable rdtsc sequence to avoid slowdowns under rr
We (Julia) ship both support for using tracy to trace julia applications,
as well as using `rr` (https://github.com/rr-debugger/rr) for record-replay debugging.
After our most recent rebuild of tracy, users have been reporting signfificant performance
slowdowns when `rr` recording a session that happens to also load the tracy library
(even if tracing is not enabled). Upon further examination, the recompile happened
to trigger a protective heuristic that disabled rr's patching of tracy's use of
`rdtsc` because an earlier part of the same function happened to look like a
conditional branch into the patch region. See https://github.com/rr-debugger/rr/pull/3580
for details. To avoid this issue occurring again in future rebuilds of tracy,
adjust tracy's `rdtsc` sequence to be `nopl; rdtsc`, which (as of of the
linked PR) is a sequence that is guaranteed to bypass this heuristic
and not incur the additional overhead when run under rr.

This functionality is kept behind a compile-time flag `TRACY_PATCHABLE_NOPSLEDS`
in order to avoid polluting the instruction cache unnecessarily.
2023-09-20 20:21:40 -04:00

1003 lines
32 KiB
C++

#ifndef __TRACYPROFILER_HPP__
#define __TRACYPROFILER_HPP__
#include <assert.h>
#include <atomic>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include "tracy_concurrentqueue.h"
#include "tracy_SPSCQueue.h"
#include "TracyCallstack.hpp"
#include "TracySysPower.hpp"
#include "TracySysTime.hpp"
#include "TracyFastVector.hpp"
#include "../common/TracyQueue.hpp"
#include "../common/TracyAlign.hpp"
#include "../common/TracyAlloc.hpp"
#include "../common/TracyMutex.hpp"
#include "../common/TracyProtocol.hpp"
#if defined _WIN32
# include <intrin.h>
#endif
#ifdef __APPLE__
# include <TargetConditionals.h>
# include <mach/mach_time.h>
#endif
#if ( defined _WIN32 || ( defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 ) || ( defined TARGET_OS_IOS && TARGET_OS_IOS == 1 ) )
# define TRACY_HW_TIMER
#endif
#ifdef __linux__
# include <signal.h>
#endif
#if defined TRACY_TIMER_FALLBACK || !defined TRACY_HW_TIMER
# include <chrono>
#endif
#ifndef TracyConcat
# define TracyConcat(x,y) TracyConcatIndirect(x,y)
#endif
#ifndef TracyConcatIndirect
# define TracyConcatIndirect(x,y) x##y
#endif
namespace tracy
{
#if defined(TRACY_DELAYED_INIT) && defined(TRACY_MANUAL_LIFETIME)
TRACY_API void StartupProfiler();
TRACY_API void ShutdownProfiler();
#endif
class GpuCtx;
class Profiler;
class Socket;
class UdpBroadcast;
struct GpuCtxWrapper
{
GpuCtx* ptr;
};
TRACY_API moodycamel::ConcurrentQueue<QueueItem>::ExplicitProducer* GetToken();
TRACY_API Profiler& GetProfiler();
TRACY_API std::atomic<uint32_t>& GetLockCounter();
TRACY_API std::atomic<uint8_t>& GetGpuCtxCounter();
TRACY_API GpuCtxWrapper& GetGpuCtx();
TRACY_API uint32_t GetThreadHandle();
TRACY_API bool ProfilerAvailable();
TRACY_API bool ProfilerAllocatorAvailable();
TRACY_API int64_t GetFrequencyQpc();
#if defined TRACY_TIMER_FALLBACK && defined TRACY_HW_TIMER && ( defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 )
TRACY_API bool HardwareSupportsInvariantTSC(); // check, if we need fallback scenario
#else
# if defined TRACY_HW_TIMER
tracy_force_inline bool HardwareSupportsInvariantTSC()
{
return true; // this is checked at startup
}
# else
tracy_force_inline bool HardwareSupportsInvariantTSC()
{
return false;
}
# endif
#endif
struct SourceLocationData
{
const char* name;
const char* function;
const char* file;
uint32_t line;
uint32_t color;
};
#ifdef TRACY_ON_DEMAND
struct LuaZoneState
{
uint32_t counter;
bool active;
};
#endif
#define TracyLfqPrepare( _type ) \
moodycamel::ConcurrentQueueDefaultTraits::index_t __magic; \
auto __token = GetToken(); \
auto& __tail = __token->get_tail_index(); \
auto item = __token->enqueue_begin( __magic ); \
MemWrite( &item->hdr.type, _type );
#define TracyLfqCommit \
__tail.store( __magic + 1, std::memory_order_release );
#define TracyLfqPrepareC( _type ) \
tracy::moodycamel::ConcurrentQueueDefaultTraits::index_t __magic; \
auto __token = tracy::GetToken(); \
auto& __tail = __token->get_tail_index(); \
auto item = __token->enqueue_begin( __magic ); \
tracy::MemWrite( &item->hdr.type, _type );
#define TracyLfqCommitC \
__tail.store( __magic + 1, std::memory_order_release );
#ifdef TRACY_FIBERS
# define TracyQueuePrepare( _type ) \
auto item = Profiler::QueueSerial(); \
MemWrite( &item->hdr.type, _type );
# define TracyQueueCommit( _name ) \
MemWrite( &item->_name.thread, GetThreadHandle() ); \
Profiler::QueueSerialFinish();
# define TracyQueuePrepareC( _type ) \
auto item = tracy::Profiler::QueueSerial(); \
tracy::MemWrite( &item->hdr.type, _type );
# define TracyQueueCommitC( _name ) \
tracy::MemWrite( &item->_name.thread, tracy::GetThreadHandle() ); \
tracy::Profiler::QueueSerialFinish();
#else
# define TracyQueuePrepare( _type ) TracyLfqPrepare( _type )
# define TracyQueueCommit( _name ) TracyLfqCommit
# define TracyQueuePrepareC( _type ) TracyLfqPrepareC( _type )
# define TracyQueueCommitC( _name ) TracyLfqCommitC
#endif
typedef void(*ParameterCallback)( void* data, uint32_t idx, int32_t val );
typedef char*(*SourceContentsCallback)( void* data, const char* filename, size_t& size );
class Profiler
{
struct FrameImageQueueItem
{
void* image;
uint32_t frame;
uint16_t w;
uint16_t h;
bool flip;
};
enum class SymbolQueueItemType
{
CallstackFrame,
SymbolQuery,
ExternalName,
KernelCode,
SourceCode
};
struct SymbolQueueItem
{
SymbolQueueItemType type;
uint64_t ptr;
uint64_t extra;
uint32_t id;
};
public:
Profiler();
~Profiler();
void SpawnWorkerThreads();
static tracy_force_inline int64_t GetTime()
{
#ifdef TRACY_HW_TIMER
# if defined TARGET_OS_IOS && TARGET_OS_IOS == 1
if( HardwareSupportsInvariantTSC() ) return mach_absolute_time();
# elif defined _WIN32
# ifdef TRACY_TIMER_QPC
return GetTimeQpc();
# else
if( HardwareSupportsInvariantTSC() ) return int64_t( __rdtsc() );
# endif
# elif defined __i386 || defined _M_IX86
if( HardwareSupportsInvariantTSC() )
{
uint32_t eax, edx;
asm volatile ( "rdtsc" : "=a" (eax), "=d" (edx) );
return ( uint64_t( edx ) << 32 ) + uint64_t( eax );
}
# elif defined __x86_64__ || defined _M_X64
if( HardwareSupportsInvariantTSC() )
{
uint64_t rax, rdx;
#ifdef TRACY_PATCHABLE_NOPSLEDS
// Some external tooling (such as rr) wants to patch our rdtsc and replace it by a
// branch to control the external input seen by a program. This kind of patching is
// not generally possible depending on the surrounding code and can lead to significant
// slowdowns if the compiler generated unlucky code and rr and tracy are used together.
// To avoid this, use the rr-safe `nopl 0(%rax, %rax, 1); rdtsc` instruction sequence,
// which rr promises will be patchable independent of the surrounding code.
asm volatile (
// This is nopl 0(%rax, %rax, 1), but assemblers are inconsistent about whether
// they emit that as a 4 or 5 byte sequence and we need to be guaranteed to use
// the 5 byte one.
".byte 0x0f, 0x1f, 0x44, 0x00, 0x00\n\t"
"rdtsc" : "=a" (rax), "=d" (rdx) );
#else
asm volatile ( "rdtsc" : "=a" (rax), "=d" (rdx) );
#endif
return (int64_t)(( rdx << 32 ) + rax);
}
# else
# error "TRACY_HW_TIMER detection logic needs fixing"
# endif
#endif
#if !defined TRACY_HW_TIMER || defined TRACY_TIMER_FALLBACK
# if defined __linux__ && defined CLOCK_MONOTONIC_RAW
struct timespec ts;
clock_gettime( CLOCK_MONOTONIC_RAW, &ts );
return int64_t( ts.tv_sec ) * 1000000000ll + int64_t( ts.tv_nsec );
# else
return std::chrono::duration_cast<std::chrono::nanoseconds>( std::chrono::high_resolution_clock::now().time_since_epoch() ).count();
# endif
#endif
#if !defined TRACY_TIMER_FALLBACK
return 0; // unreachable branch
#endif
}
tracy_force_inline uint32_t GetNextZoneId()
{
return m_zoneId.fetch_add( 1, std::memory_order_relaxed );
}
static tracy_force_inline QueueItem* QueueSerial()
{
auto& p = GetProfiler();
p.m_serialLock.lock();
return p.m_serialQueue.prepare_next();
}
static tracy_force_inline QueueItem* QueueSerialCallstack( void* ptr )
{
auto& p = GetProfiler();
p.m_serialLock.lock();
p.SendCallstackSerial( ptr );
return p.m_serialQueue.prepare_next();
}
static tracy_force_inline void QueueSerialFinish()
{
auto& p = GetProfiler();
p.m_serialQueue.commit_next();
p.m_serialLock.unlock();
}
static tracy_force_inline void SendFrameMark( const char* name )
{
if( !name ) GetProfiler().m_frameCount.fetch_add( 1, std::memory_order_relaxed );
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
auto item = QueueSerial();
MemWrite( &item->hdr.type, QueueType::FrameMarkMsg );
MemWrite( &item->frameMark.time, GetTime() );
MemWrite( &item->frameMark.name, uint64_t( name ) );
QueueSerialFinish();
}
static tracy_force_inline void SendFrameMark( const char* name, QueueType type )
{
assert( type == QueueType::FrameMarkMsgStart || type == QueueType::FrameMarkMsgEnd );
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
auto item = QueueSerial();
MemWrite( &item->hdr.type, type );
MemWrite( &item->frameMark.time, GetTime() );
MemWrite( &item->frameMark.name, uint64_t( name ) );
QueueSerialFinish();
}
static tracy_force_inline void SendFrameImage( const void* image, uint16_t w, uint16_t h, uint8_t offset, bool flip )
{
#ifndef TRACY_NO_FRAME_IMAGE
auto& profiler = GetProfiler();
assert( profiler.m_frameCount.load( std::memory_order_relaxed ) < (std::numeric_limits<uint32_t>::max)() );
# ifdef TRACY_ON_DEMAND
if( !profiler.IsConnected() ) return;
# endif
const auto sz = size_t( w ) * size_t( h ) * 4;
auto ptr = (char*)tracy_malloc( sz );
memcpy( ptr, image, sz );
profiler.m_fiLock.lock();
auto fi = profiler.m_fiQueue.prepare_next();
fi->image = ptr;
fi->frame = uint32_t( profiler.m_frameCount.load( std::memory_order_relaxed ) - offset );
fi->w = w;
fi->h = h;
fi->flip = flip;
profiler.m_fiQueue.commit_next();
profiler.m_fiLock.unlock();
#else
static_cast<void>(image); // unused
static_cast<void>(w); // unused
static_cast<void>(h); // unused
static_cast<void>(offset); // unused
static_cast<void>(flip); // unused
#endif
}
static tracy_force_inline void PlotData( const char* name, int64_t val )
{
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
TracyLfqPrepare( QueueType::PlotDataInt );
MemWrite( &item->plotDataInt.name, (uint64_t)name );
MemWrite( &item->plotDataInt.time, GetTime() );
MemWrite( &item->plotDataInt.val, val );
TracyLfqCommit;
}
static tracy_force_inline void PlotData( const char* name, float val )
{
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
TracyLfqPrepare( QueueType::PlotDataFloat );
MemWrite( &item->plotDataFloat.name, (uint64_t)name );
MemWrite( &item->plotDataFloat.time, GetTime() );
MemWrite( &item->plotDataFloat.val, val );
TracyLfqCommit;
}
static tracy_force_inline void PlotData( const char* name, double val )
{
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
TracyLfqPrepare( QueueType::PlotDataDouble );
MemWrite( &item->plotDataDouble.name, (uint64_t)name );
MemWrite( &item->plotDataDouble.time, GetTime() );
MemWrite( &item->plotDataDouble.val, val );
TracyLfqCommit;
}
static tracy_force_inline void ConfigurePlot( const char* name, PlotFormatType type, bool step, bool fill, uint32_t color )
{
TracyLfqPrepare( QueueType::PlotConfig );
MemWrite( &item->plotConfig.name, (uint64_t)name );
MemWrite( &item->plotConfig.type, (uint8_t)type );
MemWrite( &item->plotConfig.step, (uint8_t)step );
MemWrite( &item->plotConfig.fill, (uint8_t)fill );
MemWrite( &item->plotConfig.color, color );
#ifdef TRACY_ON_DEMAND
GetProfiler().DeferItem( *item );
#endif
TracyLfqCommit;
}
static tracy_force_inline void Message( const char* txt, size_t size, int callstack )
{
assert( size < (std::numeric_limits<uint16_t>::max)() );
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
if( callstack != 0 )
{
tracy::GetProfiler().SendCallstack( callstack );
}
auto ptr = (char*)tracy_malloc( size );
memcpy( ptr, txt, size );
TracyQueuePrepare( callstack == 0 ? QueueType::Message : QueueType::MessageCallstack );
MemWrite( &item->messageFat.time, GetTime() );
MemWrite( &item->messageFat.text, (uint64_t)ptr );
MemWrite( &item->messageFat.size, (uint16_t)size );
TracyQueueCommit( messageFatThread );
}
static tracy_force_inline void Message( const char* txt, int callstack )
{
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
if( callstack != 0 )
{
tracy::GetProfiler().SendCallstack( callstack );
}
TracyQueuePrepare( callstack == 0 ? QueueType::MessageLiteral : QueueType::MessageLiteralCallstack );
MemWrite( &item->messageLiteral.time, GetTime() );
MemWrite( &item->messageLiteral.text, (uint64_t)txt );
TracyQueueCommit( messageLiteralThread );
}
static tracy_force_inline void MessageColor( const char* txt, size_t size, uint32_t color, int callstack )
{
assert( size < (std::numeric_limits<uint16_t>::max)() );
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
if( callstack != 0 )
{
tracy::GetProfiler().SendCallstack( callstack );
}
auto ptr = (char*)tracy_malloc( size );
memcpy( ptr, txt, size );
TracyQueuePrepare( callstack == 0 ? QueueType::MessageColor : QueueType::MessageColorCallstack );
MemWrite( &item->messageColorFat.time, GetTime() );
MemWrite( &item->messageColorFat.text, (uint64_t)ptr );
MemWrite( &item->messageColorFat.b, uint8_t( ( color ) & 0xFF ) );
MemWrite( &item->messageColorFat.g, uint8_t( ( color >> 8 ) & 0xFF ) );
MemWrite( &item->messageColorFat.r, uint8_t( ( color >> 16 ) & 0xFF ) );
MemWrite( &item->messageColorFat.size, (uint16_t)size );
TracyQueueCommit( messageColorFatThread );
}
static tracy_force_inline void MessageColor( const char* txt, uint32_t color, int callstack )
{
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
if( callstack != 0 )
{
tracy::GetProfiler().SendCallstack( callstack );
}
TracyQueuePrepare( callstack == 0 ? QueueType::MessageLiteralColor : QueueType::MessageLiteralColorCallstack );
MemWrite( &item->messageColorLiteral.time, GetTime() );
MemWrite( &item->messageColorLiteral.text, (uint64_t)txt );
MemWrite( &item->messageColorLiteral.b, uint8_t( ( color ) & 0xFF ) );
MemWrite( &item->messageColorLiteral.g, uint8_t( ( color >> 8 ) & 0xFF ) );
MemWrite( &item->messageColorLiteral.r, uint8_t( ( color >> 16 ) & 0xFF ) );
TracyQueueCommit( messageColorLiteralThread );
}
static tracy_force_inline void MessageAppInfo( const char* txt, size_t size )
{
assert( size < (std::numeric_limits<uint16_t>::max)() );
auto ptr = (char*)tracy_malloc( size );
memcpy( ptr, txt, size );
TracyLfqPrepare( QueueType::MessageAppInfo );
MemWrite( &item->messageFat.time, GetTime() );
MemWrite( &item->messageFat.text, (uint64_t)ptr );
MemWrite( &item->messageFat.size, (uint16_t)size );
#ifdef TRACY_ON_DEMAND
GetProfiler().DeferItem( *item );
#endif
TracyLfqCommit;
}
static tracy_force_inline void MemAlloc( const void* ptr, size_t size, bool secure )
{
if( secure && !ProfilerAvailable() ) return;
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
const auto thread = GetThreadHandle();
GetProfiler().m_serialLock.lock();
SendMemAlloc( QueueType::MemAlloc, thread, ptr, size );
GetProfiler().m_serialLock.unlock();
}
static tracy_force_inline void MemFree( const void* ptr, bool secure )
{
if( secure && !ProfilerAvailable() ) return;
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
const auto thread = GetThreadHandle();
GetProfiler().m_serialLock.lock();
SendMemFree( QueueType::MemFree, thread, ptr );
GetProfiler().m_serialLock.unlock();
}
static tracy_force_inline void MemAllocCallstack( const void* ptr, size_t size, int depth, bool secure )
{
if( secure && !ProfilerAvailable() ) return;
#ifdef TRACY_HAS_CALLSTACK
auto& profiler = GetProfiler();
# ifdef TRACY_ON_DEMAND
if( !profiler.IsConnected() ) return;
# endif
const auto thread = GetThreadHandle();
auto callstack = Callstack( depth );
profiler.m_serialLock.lock();
SendCallstackSerial( callstack );
SendMemAlloc( QueueType::MemAllocCallstack, thread, ptr, size );
profiler.m_serialLock.unlock();
#else
static_cast<void>(depth); // unused
MemAlloc( ptr, size, secure );
#endif
}
static tracy_force_inline void MemFreeCallstack( const void* ptr, int depth, bool secure )
{
if( secure && !ProfilerAvailable() ) return;
if( !ProfilerAllocatorAvailable() )
{
MemFree( ptr, secure );
return;
}
#ifdef TRACY_HAS_CALLSTACK
auto& profiler = GetProfiler();
# ifdef TRACY_ON_DEMAND
if( !profiler.IsConnected() ) return;
# endif
const auto thread = GetThreadHandle();
auto callstack = Callstack( depth );
profiler.m_serialLock.lock();
SendCallstackSerial( callstack );
SendMemFree( QueueType::MemFreeCallstack, thread, ptr );
profiler.m_serialLock.unlock();
#else
static_cast<void>(depth); // unused
MemFree( ptr, secure );
#endif
}
static tracy_force_inline void MemAllocNamed( const void* ptr, size_t size, bool secure, const char* name )
{
if( secure && !ProfilerAvailable() ) return;
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
const auto thread = GetThreadHandle();
GetProfiler().m_serialLock.lock();
SendMemName( name );
SendMemAlloc( QueueType::MemAllocNamed, thread, ptr, size );
GetProfiler().m_serialLock.unlock();
}
static tracy_force_inline void MemFreeNamed( const void* ptr, bool secure, const char* name )
{
if( secure && !ProfilerAvailable() ) return;
#ifdef TRACY_ON_DEMAND
if( !GetProfiler().IsConnected() ) return;
#endif
const auto thread = GetThreadHandle();
GetProfiler().m_serialLock.lock();
SendMemName( name );
SendMemFree( QueueType::MemFreeNamed, thread, ptr );
GetProfiler().m_serialLock.unlock();
}
static tracy_force_inline void MemAllocCallstackNamed( const void* ptr, size_t size, int depth, bool secure, const char* name )
{
if( secure && !ProfilerAvailable() ) return;
#ifdef TRACY_HAS_CALLSTACK
auto& profiler = GetProfiler();
# ifdef TRACY_ON_DEMAND
if( !profiler.IsConnected() ) return;
# endif
const auto thread = GetThreadHandle();
auto callstack = Callstack( depth );
profiler.m_serialLock.lock();
SendCallstackSerial( callstack );
SendMemName( name );
SendMemAlloc( QueueType::MemAllocCallstackNamed, thread, ptr, size );
profiler.m_serialLock.unlock();
#else
static_cast<void>(depth); // unused
static_cast<void>(name); // unused
MemAlloc( ptr, size, secure );
#endif
}
static tracy_force_inline void MemFreeCallstackNamed( const void* ptr, int depth, bool secure, const char* name )
{
if( secure && !ProfilerAvailable() ) return;
#ifdef TRACY_HAS_CALLSTACK
auto& profiler = GetProfiler();
# ifdef TRACY_ON_DEMAND
if( !profiler.IsConnected() ) return;
# endif
const auto thread = GetThreadHandle();
auto callstack = Callstack( depth );
profiler.m_serialLock.lock();
SendCallstackSerial( callstack );
SendMemName( name );
SendMemFree( QueueType::MemFreeCallstackNamed, thread, ptr );
profiler.m_serialLock.unlock();
#else
static_cast<void>(depth); // unused
static_cast<void>(name); // unused
MemFree( ptr, secure );
#endif
}
static tracy_force_inline void SendCallstack( int depth )
{
#ifdef TRACY_HAS_CALLSTACK
auto ptr = Callstack( depth );
TracyQueuePrepare( QueueType::Callstack );
MemWrite( &item->callstackFat.ptr, (uint64_t)ptr );
TracyQueueCommit( callstackFatThread );
#else
static_cast<void>(depth); // unused
#endif
}
static tracy_force_inline void ParameterRegister( ParameterCallback cb, void* data )
{
auto& profiler = GetProfiler();
profiler.m_paramCallback = cb;
profiler.m_paramCallbackData = data;
}
static tracy_force_inline void ParameterSetup( uint32_t idx, const char* name, bool isBool, int32_t val )
{
TracyLfqPrepare( QueueType::ParamSetup );
tracy::MemWrite( &item->paramSetup.idx, idx );
tracy::MemWrite( &item->paramSetup.name, (uint64_t)name );
tracy::MemWrite( &item->paramSetup.isBool, (uint8_t)isBool );
tracy::MemWrite( &item->paramSetup.val, val );
#ifdef TRACY_ON_DEMAND
GetProfiler().DeferItem( *item );
#endif
TracyLfqCommit;
}
static tracy_force_inline void SourceCallbackRegister( SourceContentsCallback cb, void* data )
{
auto& profiler = GetProfiler();
profiler.m_sourceCallback = cb;
profiler.m_sourceCallbackData = data;
}
#ifdef TRACY_FIBERS
static tracy_force_inline void EnterFiber( const char* fiber )
{
TracyQueuePrepare( QueueType::FiberEnter );
MemWrite( &item->fiberEnter.time, GetTime() );
MemWrite( &item->fiberEnter.fiber, (uint64_t)fiber );
TracyQueueCommit( fiberEnter );
}
static tracy_force_inline void LeaveFiber()
{
TracyQueuePrepare( QueueType::FiberLeave );
MemWrite( &item->fiberLeave.time, GetTime() );
TracyQueueCommit( fiberLeave );
}
#endif
void SendCallstack( int depth, const char* skipBefore );
static void CutCallstack( void* callstack, const char* skipBefore );
static bool ShouldExit();
tracy_force_inline bool IsConnected() const
{
return m_isConnected.load( std::memory_order_acquire );
}
tracy_force_inline void SetProgramName( const char* name )
{
m_programNameLock.lock();
m_programName = name;
m_programNameLock.unlock();
}
#ifdef TRACY_ON_DEMAND
tracy_force_inline uint64_t ConnectionId() const
{
return m_connectionId.load( std::memory_order_acquire );
}
tracy_force_inline void DeferItem( const QueueItem& item )
{
m_deferredLock.lock();
auto dst = m_deferredQueue.push_next();
memcpy( dst, &item, sizeof( item ) );
m_deferredLock.unlock();
}
#endif
void RequestShutdown() { m_shutdown.store( true, std::memory_order_relaxed ); m_shutdownManual.store( true, std::memory_order_relaxed ); }
bool HasShutdownFinished() const { return m_shutdownFinished.load( std::memory_order_relaxed ); }
void SendString( uint64_t str, const char* ptr, QueueType type ) { SendString( str, ptr, strlen( ptr ), type ); }
void SendString( uint64_t str, const char* ptr, size_t len, QueueType type );
void SendSingleString( const char* ptr ) { SendSingleString( ptr, strlen( ptr ) ); }
void SendSingleString( const char* ptr, size_t len );
void SendSecondString( const char* ptr ) { SendSecondString( ptr, strlen( ptr ) ); }
void SendSecondString( const char* ptr, size_t len );
// Allocated source location data layout:
// 2b payload size
// 4b color
// 4b source line
// fsz function name
// 1b null terminator
// ssz source file name
// 1b null terminator
// nsz zone name (optional)
static tracy_force_inline uint64_t AllocSourceLocation( uint32_t line, const char* source, const char* function )
{
return AllocSourceLocation( line, source, function, nullptr, 0 );
}
static tracy_force_inline uint64_t AllocSourceLocation( uint32_t line, const char* source, const char* function, const char* name, size_t nameSz )
{
return AllocSourceLocation( line, source, strlen(source), function, strlen(function), name, nameSz );
}
static tracy_force_inline uint64_t AllocSourceLocation( uint32_t line, const char* source, size_t sourceSz, const char* function, size_t functionSz )
{
return AllocSourceLocation( line, source, sourceSz, function, functionSz, nullptr, 0 );
}
static tracy_force_inline uint64_t AllocSourceLocation( uint32_t line, const char* source, size_t sourceSz, const char* function, size_t functionSz, const char* name, size_t nameSz )
{
const auto sz32 = uint32_t( 2 + 4 + 4 + functionSz + 1 + sourceSz + 1 + nameSz );
assert( sz32 <= (std::numeric_limits<uint16_t>::max)() );
const auto sz = uint16_t( sz32 );
auto ptr = (char*)tracy_malloc( sz );
memcpy( ptr, &sz, 2 );
memset( ptr + 2, 0, 4 );
memcpy( ptr + 6, &line, 4 );
memcpy( ptr + 10, function, functionSz );
ptr[10 + functionSz] = '\0';
memcpy( ptr + 10 + functionSz + 1, source, sourceSz );
ptr[10 + functionSz + 1 + sourceSz] = '\0';
if( nameSz != 0 )
{
memcpy( ptr + 10 + functionSz + 1 + sourceSz + 1, name, nameSz );
}
return uint64_t( ptr );
}
private:
enum class DequeueStatus { DataDequeued, ConnectionLost, QueueEmpty };
enum class ThreadCtxStatus { Same, Changed, ConnectionLost };
static void LaunchWorker( void* ptr ) { ((Profiler*)ptr)->Worker(); }
void Worker();
#ifndef TRACY_NO_FRAME_IMAGE
static void LaunchCompressWorker( void* ptr ) { ((Profiler*)ptr)->CompressWorker(); }
void CompressWorker();
#endif
#ifdef TRACY_HAS_CALLSTACK
static void LaunchSymbolWorker( void* ptr ) { ((Profiler*)ptr)->SymbolWorker(); }
void SymbolWorker();
void HandleSymbolQueueItem( const SymbolQueueItem& si );
#endif
void ClearQueues( tracy::moodycamel::ConsumerToken& token );
void ClearSerial();
DequeueStatus Dequeue( tracy::moodycamel::ConsumerToken& token );
DequeueStatus DequeueContextSwitches( tracy::moodycamel::ConsumerToken& token, int64_t& timeStop );
DequeueStatus DequeueSerial();
ThreadCtxStatus ThreadCtxCheck( uint32_t threadId );
bool CommitData();
tracy_force_inline bool AppendData( const void* data, size_t len )
{
const auto ret = NeedDataSize( len );
AppendDataUnsafe( data, len );
return ret;
}
tracy_force_inline bool NeedDataSize( size_t len )
{
assert( len <= TargetFrameSize );
bool ret = true;
if( m_bufferOffset - m_bufferStart + (int)len > TargetFrameSize )
{
ret = CommitData();
}
return ret;
}
tracy_force_inline void AppendDataUnsafe( const void* data, size_t len )
{
memcpy( m_buffer + m_bufferOffset, data, len );
m_bufferOffset += int( len );
}
bool SendData( const char* data, size_t len );
void SendLongString( uint64_t ptr, const char* str, size_t len, QueueType type );
void SendSourceLocation( uint64_t ptr );
void SendSourceLocationPayload( uint64_t ptr );
void SendCallstackPayload( uint64_t ptr );
void SendCallstackPayload64( uint64_t ptr );
void SendCallstackAlloc( uint64_t ptr );
void QueueCallstackFrame( uint64_t ptr );
void QueueSymbolQuery( uint64_t symbol );
void QueueExternalName( uint64_t ptr );
void QueueKernelCode( uint64_t symbol, uint32_t size );
void QueueSourceCodeQuery( uint32_t id );
bool HandleServerQuery();
void HandleDisconnect();
void HandleParameter( uint64_t payload );
void HandleSymbolCodeQuery( uint64_t symbol, uint32_t size );
void HandleSourceCodeQuery( char* data, char* image, uint32_t id );
void AckServerQuery();
void AckSymbolCodeNotAvailable();
void CalibrateTimer();
void CalibrateDelay();
void ReportTopology();
static tracy_force_inline void SendCallstackSerial( void* ptr )
{
#ifdef TRACY_HAS_CALLSTACK
auto item = GetProfiler().m_serialQueue.prepare_next();
MemWrite( &item->hdr.type, QueueType::CallstackSerial );
MemWrite( &item->callstackFat.ptr, (uint64_t)ptr );
GetProfiler().m_serialQueue.commit_next();
#else
static_cast<void>(ptr); // unused
#endif
}
static tracy_force_inline void SendMemAlloc( QueueType type, const uint32_t thread, const void* ptr, size_t size )
{
assert( type == QueueType::MemAlloc || type == QueueType::MemAllocCallstack || type == QueueType::MemAllocNamed || type == QueueType::MemAllocCallstackNamed );
auto item = GetProfiler().m_serialQueue.prepare_next();
MemWrite( &item->hdr.type, type );
MemWrite( &item->memAlloc.time, GetTime() );
MemWrite( &item->memAlloc.thread, thread );
MemWrite( &item->memAlloc.ptr, (uint64_t)ptr );
if( compile_time_condition<sizeof( size ) == 4>::value )
{
memcpy( &item->memAlloc.size, &size, 4 );
memset( &item->memAlloc.size + 4, 0, 2 );
}
else
{
assert( sizeof( size ) == 8 );
memcpy( &item->memAlloc.size, &size, 4 );
memcpy( ((char*)&item->memAlloc.size)+4, ((char*)&size)+4, 2 );
}
GetProfiler().m_serialQueue.commit_next();
}
static tracy_force_inline void SendMemFree( QueueType type, const uint32_t thread, const void* ptr )
{
assert( type == QueueType::MemFree || type == QueueType::MemFreeCallstack || type == QueueType::MemFreeNamed || type == QueueType::MemFreeCallstackNamed );
auto item = GetProfiler().m_serialQueue.prepare_next();
MemWrite( &item->hdr.type, type );
MemWrite( &item->memFree.time, GetTime() );
MemWrite( &item->memFree.thread, thread );
MemWrite( &item->memFree.ptr, (uint64_t)ptr );
GetProfiler().m_serialQueue.commit_next();
}
static tracy_force_inline void SendMemName( const char* name )
{
assert( name );
auto item = GetProfiler().m_serialQueue.prepare_next();
MemWrite( &item->hdr.type, QueueType::MemNamePayload );
MemWrite( &item->memName.name, (uint64_t)name );
GetProfiler().m_serialQueue.commit_next();
}
#if defined _WIN32 && defined TRACY_TIMER_QPC
static int64_t GetTimeQpc();
#endif
double m_timerMul;
uint64_t m_resolution;
uint64_t m_delay;
std::atomic<int64_t> m_timeBegin;
uint32_t m_mainThread;
uint64_t m_epoch, m_exectime;
std::atomic<bool> m_shutdown;
std::atomic<bool> m_shutdownManual;
std::atomic<bool> m_shutdownFinished;
Socket* m_sock;
UdpBroadcast* m_broadcast;
bool m_noExit;
uint32_t m_userPort;
std::atomic<uint32_t> m_zoneId;
int64_t m_samplingPeriod;
uint32_t m_threadCtx;
int64_t m_refTimeThread;
int64_t m_refTimeSerial;
int64_t m_refTimeCtx;
int64_t m_refTimeGpu;
void* m_stream; // LZ4_stream_t*
char* m_buffer;
int m_bufferOffset;
int m_bufferStart;
char* m_lz4Buf;
FastVector<QueueItem> m_serialQueue, m_serialDequeue;
TracyMutex m_serialLock;
#ifndef TRACY_NO_FRAME_IMAGE
FastVector<FrameImageQueueItem> m_fiQueue, m_fiDequeue;
TracyMutex m_fiLock;
#endif
SPSCQueue<SymbolQueueItem> m_symbolQueue;
std::atomic<uint64_t> m_frameCount;
std::atomic<bool> m_isConnected;
#ifdef TRACY_ON_DEMAND
std::atomic<uint64_t> m_connectionId;
TracyMutex m_deferredLock;
FastVector<QueueItem> m_deferredQueue;
#endif
#ifdef TRACY_HAS_SYSTIME
void ProcessSysTime();
SysTime m_sysTime;
uint64_t m_sysTimeLast = 0;
#else
void ProcessSysTime() {}
#endif
#ifdef TRACY_HAS_SYSPOWER
SysPower m_sysPower;
#endif
ParameterCallback m_paramCallback;
void* m_paramCallbackData;
SourceContentsCallback m_sourceCallback;
void* m_sourceCallbackData;
char* m_queryImage;
char* m_queryData;
char* m_queryDataPtr;
#if defined _WIN32
void* m_exceptionHandler;
#endif
#ifdef __linux__
struct {
struct sigaction pwr, ill, fpe, segv, pipe, bus, abrt;
} m_prevSignal;
#endif
bool m_crashHandlerInstalled;
const char* m_programName;
TracyMutex m_programNameLock;
};
}
#endif