mirror of
https://github.com/wolfpld/tracy.git
synced 2024-11-10 10:41:50 +00:00
c2c234cf5a
Instantiating Tracy from within a DLL will tie its internal threads life-time to the DLL. Windows does not guarantee that threads will be alive after the main function. This has implications in the Profiler dtor since will try to perform some deallocations, however, _memory_deallocate_large will try to get the heap of the current thread which can be invalid at the point of shutdown causing a crash. Checking the pointer here will won't make TRACE_NO_EXIT work, but it will prevent the Profiler from crashing.
2496 lines
86 KiB
C++
2496 lines
86 KiB
C++
#ifdef TRACY_ENABLE
|
|
|
|
/* rpmalloc.c - Memory allocator - Public Domain - 2016 Mattias Jansson
|
|
*
|
|
* This library provides a cross-platform lock free thread caching malloc implementation in C11.
|
|
* The latest source code is always available at
|
|
*
|
|
* https://github.com/mjansson/rpmalloc
|
|
*
|
|
* This library is put in the public domain; you can redistribute it and/or modify it without any restrictions.
|
|
*
|
|
*/
|
|
|
|
#include "tracy_rpmalloc.hpp"
|
|
|
|
/// Build time configurable limits
|
|
#ifndef HEAP_ARRAY_SIZE
|
|
//! Size of heap hashmap
|
|
#define HEAP_ARRAY_SIZE 47
|
|
#endif
|
|
#ifndef ENABLE_THREAD_CACHE
|
|
//! Enable per-thread cache
|
|
#define ENABLE_THREAD_CACHE 1
|
|
#endif
|
|
#ifndef ENABLE_GLOBAL_CACHE
|
|
//! Enable global cache shared between all threads, requires thread cache
|
|
#define ENABLE_GLOBAL_CACHE 1
|
|
#endif
|
|
#ifndef ENABLE_VALIDATE_ARGS
|
|
//! Enable validation of args to public entry points
|
|
#define ENABLE_VALIDATE_ARGS 0
|
|
#endif
|
|
#ifndef ENABLE_STATISTICS
|
|
//! Enable statistics collection
|
|
#define ENABLE_STATISTICS 0
|
|
#endif
|
|
#ifndef ENABLE_ASSERTS
|
|
//! Enable asserts
|
|
#define ENABLE_ASSERTS 0
|
|
#endif
|
|
#ifndef ENABLE_OVERRIDE
|
|
//! Override standard library malloc/free and new/delete entry points
|
|
#define ENABLE_OVERRIDE 0
|
|
#endif
|
|
#ifndef ENABLE_PRELOAD
|
|
//! Support preloading
|
|
#define ENABLE_PRELOAD 0
|
|
#endif
|
|
#ifndef DISABLE_UNMAP
|
|
//! Disable unmapping memory pages
|
|
#define DISABLE_UNMAP 0
|
|
#endif
|
|
#ifndef DEFAULT_SPAN_MAP_COUNT
|
|
//! Default number of spans to map in call to map more virtual memory (default values yield 4MiB here)
|
|
#define DEFAULT_SPAN_MAP_COUNT 64
|
|
#endif
|
|
|
|
#if ENABLE_THREAD_CACHE
|
|
#ifndef ENABLE_UNLIMITED_CACHE
|
|
//! Unlimited thread and global cache
|
|
#define ENABLE_UNLIMITED_CACHE 0
|
|
#endif
|
|
#ifndef ENABLE_UNLIMITED_THREAD_CACHE
|
|
//! Unlimited cache disables any thread cache limitations
|
|
#define ENABLE_UNLIMITED_THREAD_CACHE ENABLE_UNLIMITED_CACHE
|
|
#endif
|
|
#if !ENABLE_UNLIMITED_THREAD_CACHE
|
|
#ifndef THREAD_CACHE_MULTIPLIER
|
|
//! Multiplier for thread cache (cache limit will be span release count multiplied by this value)
|
|
#define THREAD_CACHE_MULTIPLIER 16
|
|
#endif
|
|
#ifndef ENABLE_ADAPTIVE_THREAD_CACHE
|
|
//! Enable adaptive size of per-thread cache (still bounded by THREAD_CACHE_MULTIPLIER hard limit)
|
|
#define ENABLE_ADAPTIVE_THREAD_CACHE 0
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLE_GLOBAL_CACHE && ENABLE_THREAD_CACHE
|
|
#ifndef ENABLE_UNLIMITED_GLOBAL_CACHE
|
|
//! Unlimited cache disables any global cache limitations
|
|
#define ENABLE_UNLIMITED_GLOBAL_CACHE ENABLE_UNLIMITED_CACHE
|
|
#endif
|
|
#if !ENABLE_UNLIMITED_GLOBAL_CACHE
|
|
//! Multiplier for global cache (cache limit will be span release count multiplied by this value)
|
|
#define GLOBAL_CACHE_MULTIPLIER (THREAD_CACHE_MULTIPLIER * 6)
|
|
#endif
|
|
#else
|
|
# undef ENABLE_GLOBAL_CACHE
|
|
# define ENABLE_GLOBAL_CACHE 0
|
|
#endif
|
|
|
|
#if !ENABLE_THREAD_CACHE || ENABLE_UNLIMITED_THREAD_CACHE
|
|
# undef ENABLE_ADAPTIVE_THREAD_CACHE
|
|
# define ENABLE_ADAPTIVE_THREAD_CACHE 0
|
|
#endif
|
|
|
|
#if DISABLE_UNMAP && !ENABLE_GLOBAL_CACHE
|
|
# error Must use global cache if unmap is disabled
|
|
#endif
|
|
|
|
#if defined( _WIN32 ) || defined( __WIN32__ ) || defined( _WIN64 )
|
|
# define PLATFORM_WINDOWS 1
|
|
# define PLATFORM_POSIX 0
|
|
#else
|
|
# define PLATFORM_WINDOWS 0
|
|
# define PLATFORM_POSIX 1
|
|
#endif
|
|
|
|
#define _Static_assert static_assert
|
|
|
|
/// Platform and arch specifics
|
|
#ifndef FORCEINLINE
|
|
# if defined(_MSC_VER) && !defined(__clang__)
|
|
# define FORCEINLINE inline __forceinline
|
|
# else
|
|
# define FORCEINLINE inline __attribute__((__always_inline__))
|
|
# endif
|
|
#endif
|
|
#if PLATFORM_WINDOWS
|
|
# ifndef WIN32_LEAN_AND_MEAN
|
|
# define WIN32_LEAN_AND_MEAN
|
|
# endif
|
|
# include <windows.h>
|
|
# if ENABLE_VALIDATE_ARGS
|
|
# include <Intsafe.h>
|
|
# endif
|
|
#else
|
|
# include <unistd.h>
|
|
# include <stdio.h>
|
|
# include <stdlib.h>
|
|
# if defined(__APPLE__)
|
|
# include <mach/mach_vm.h>
|
|
# include <mach/vm_statistics.h>
|
|
# include <pthread.h>
|
|
# endif
|
|
# if defined(__HAIKU__)
|
|
# include <OS.h>
|
|
# include <pthread.h>
|
|
# endif
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#if ENABLE_ASSERTS
|
|
# undef NDEBUG
|
|
# if defined(_MSC_VER) && !defined(_DEBUG)
|
|
# define _DEBUG
|
|
# endif
|
|
# include <assert.h>
|
|
#else
|
|
# undef assert
|
|
# define assert(x) do {} while(0)
|
|
#endif
|
|
#if ENABLE_STATISTICS
|
|
# include <stdio.h>
|
|
#endif
|
|
|
|
#include <atomic>
|
|
|
|
namespace tracy
|
|
{
|
|
|
|
typedef std::atomic<int32_t> atomic32_t;
|
|
typedef std::atomic<int64_t> atomic64_t;
|
|
typedef std::atomic<void*> atomicptr_t;
|
|
|
|
#define atomic_thread_fence_acquire() std::atomic_thread_fence(std::memory_order_acquire)
|
|
#define atomic_thread_fence_release() std::atomic_thread_fence(std::memory_order_release)
|
|
|
|
static FORCEINLINE int32_t atomic_load32(atomic32_t* src) { return std::atomic_load_explicit(src, std::memory_order_relaxed); }
|
|
static FORCEINLINE void atomic_store32(atomic32_t* dst, int32_t val) { std::atomic_store_explicit(dst, val, std::memory_order_relaxed); }
|
|
static FORCEINLINE int32_t atomic_incr32(atomic32_t* val) { return std::atomic_fetch_add_explicit(val, 1, std::memory_order_relaxed) + 1; }
|
|
#if ENABLE_STATISTICS || ENABLE_ADAPTIVE_THREAD_CACHE
|
|
static FORCEINLINE int32_t atomic_decr32(atomic32_t* val) { return atomic_fetch_add_explicit(val, -1, memory_order_relaxed) - 1; }
|
|
#endif
|
|
static FORCEINLINE int32_t atomic_add32(atomic32_t* val, int32_t add) { return std::atomic_fetch_add_explicit(val, add, std::memory_order_relaxed) + add; }
|
|
static FORCEINLINE void* atomic_load_ptr(atomicptr_t* src) { return std::atomic_load_explicit(src, std::memory_order_relaxed); }
|
|
static FORCEINLINE void atomic_store_ptr(atomicptr_t* dst, void* val) { std::atomic_store_explicit(dst, val, std::memory_order_relaxed); }
|
|
static FORCEINLINE int atomic_cas_ptr(atomicptr_t* dst, void* val, void* ref) { return std::atomic_compare_exchange_weak_explicit(dst, &ref, val, std::memory_order_release, std::memory_order_acquire); }
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
# define EXPECTED(x) (x)
|
|
# define UNEXPECTED(x) (x)
|
|
#else
|
|
# define EXPECTED(x) __builtin_expect((x), 1)
|
|
# define UNEXPECTED(x) __builtin_expect((x), 0)
|
|
#endif
|
|
|
|
/// Preconfigured limits and sizes
|
|
//! Granularity of a small allocation block
|
|
#define SMALL_GRANULARITY 16
|
|
//! Small granularity shift count
|
|
#define SMALL_GRANULARITY_SHIFT 4
|
|
//! Number of small block size classes
|
|
#define SMALL_CLASS_COUNT 65
|
|
//! Maximum size of a small block
|
|
#define SMALL_SIZE_LIMIT (SMALL_GRANULARITY * (SMALL_CLASS_COUNT - 1))
|
|
//! Granularity of a medium allocation block
|
|
#define MEDIUM_GRANULARITY 512
|
|
//! Medium granularity shift count
|
|
#define MEDIUM_GRANULARITY_SHIFT 9
|
|
//! Number of medium block size classes
|
|
#define MEDIUM_CLASS_COUNT 61
|
|
//! Total number of small + medium size classes
|
|
#define SIZE_CLASS_COUNT (SMALL_CLASS_COUNT + MEDIUM_CLASS_COUNT)
|
|
//! Number of large block size classes
|
|
#define LARGE_CLASS_COUNT 32
|
|
//! Maximum size of a medium block
|
|
#define MEDIUM_SIZE_LIMIT (SMALL_SIZE_LIMIT + (MEDIUM_GRANULARITY * MEDIUM_CLASS_COUNT))
|
|
//! Maximum size of a large block
|
|
#define LARGE_SIZE_LIMIT ((LARGE_CLASS_COUNT * _memory_span_size) - SPAN_HEADER_SIZE)
|
|
//! Size of a span header (must be a multiple of SMALL_GRANULARITY)
|
|
#define SPAN_HEADER_SIZE 96
|
|
|
|
#if ENABLE_VALIDATE_ARGS
|
|
//! Maximum allocation size to avoid integer overflow
|
|
#undef MAX_ALLOC_SIZE
|
|
#define MAX_ALLOC_SIZE (((size_t)-1) - _memory_span_size)
|
|
#endif
|
|
|
|
#define pointer_offset(ptr, ofs) (void*)((char*)(ptr) + (ptrdiff_t)(ofs))
|
|
#define pointer_diff(first, second) (ptrdiff_t)((const char*)(first) - (const char*)(second))
|
|
|
|
#define INVALID_POINTER ((void*)((uintptr_t)-1))
|
|
|
|
/// Data types
|
|
//! A memory heap, per thread
|
|
typedef struct heap_t heap_t;
|
|
//! Heap spans per size class
|
|
typedef struct heap_class_t heap_class_t;
|
|
//! Span of memory pages
|
|
typedef struct span_t span_t;
|
|
//! Span list
|
|
typedef struct span_list_t span_list_t;
|
|
//! Span active data
|
|
typedef struct span_active_t span_active_t;
|
|
//! Size class definition
|
|
typedef struct size_class_t size_class_t;
|
|
//! Global cache
|
|
typedef struct global_cache_t global_cache_t;
|
|
|
|
//! Flag indicating span is the first (master) span of a split superspan
|
|
#define SPAN_FLAG_MASTER 1U
|
|
//! Flag indicating span is a secondary (sub) span of a split superspan
|
|
#define SPAN_FLAG_SUBSPAN 2U
|
|
//! Flag indicating span has blocks with increased alignment
|
|
#define SPAN_FLAG_ALIGNED_BLOCKS 4U
|
|
|
|
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
|
|
struct span_use_t {
|
|
//! Current number of spans used (actually used, not in cache)
|
|
atomic32_t current;
|
|
//! High water mark of spans used
|
|
uint32_t high;
|
|
#if ENABLE_STATISTICS
|
|
//! Number of spans transitioned to global cache
|
|
uint32_t spans_to_global;
|
|
//! Number of spans transitioned from global cache
|
|
uint32_t spans_from_global;
|
|
//! Number of spans transitioned to thread cache
|
|
uint32_t spans_to_cache;
|
|
//! Number of spans transitioned from thread cache
|
|
uint32_t spans_from_cache;
|
|
//! Number of spans transitioned to reserved state
|
|
uint32_t spans_to_reserved;
|
|
//! Number of spans transitioned from reserved state
|
|
uint32_t spans_from_reserved;
|
|
//! Number of raw memory map calls
|
|
uint32_t spans_map_calls;
|
|
#endif
|
|
};
|
|
typedef struct span_use_t span_use_t;
|
|
#endif
|
|
|
|
#if ENABLE_STATISTICS
|
|
struct size_class_use_t {
|
|
//! Current number of allocations
|
|
atomic32_t alloc_current;
|
|
//! Peak number of allocations
|
|
int32_t alloc_peak;
|
|
//! Total number of allocations
|
|
int32_t alloc_total;
|
|
//! Total number of frees
|
|
atomic32_t free_total;
|
|
//! Number of spans in use
|
|
uint32_t spans_current;
|
|
//! Number of spans transitioned to cache
|
|
uint32_t spans_peak;
|
|
//! Number of spans transitioned to cache
|
|
uint32_t spans_to_cache;
|
|
//! Number of spans transitioned from cache
|
|
uint32_t spans_from_cache;
|
|
//! Number of spans transitioned from reserved state
|
|
uint32_t spans_from_reserved;
|
|
//! Number of spans mapped
|
|
uint32_t spans_map_calls;
|
|
};
|
|
typedef struct size_class_use_t size_class_use_t;
|
|
#endif
|
|
|
|
typedef enum span_state_t {
|
|
SPAN_STATE_ACTIVE = 0,
|
|
SPAN_STATE_PARTIAL,
|
|
SPAN_STATE_FULL
|
|
} span_state_t;
|
|
|
|
//A span can either represent a single span of memory pages with size declared by span_map_count configuration variable,
|
|
//or a set of spans in a continuous region, a super span. Any reference to the term "span" usually refers to both a single
|
|
//span or a super span. A super span can further be divided into multiple spans (or this, super spans), where the first
|
|
//(super)span is the master and subsequent (super)spans are subspans. The master span keeps track of how many subspans
|
|
//that are still alive and mapped in virtual memory, and once all subspans and master have been unmapped the entire
|
|
//superspan region is released and unmapped (on Windows for example, the entire superspan range has to be released
|
|
//in the same call to release the virtual memory range, but individual subranges can be decommitted individually
|
|
//to reduce physical memory use).
|
|
struct span_t {
|
|
//! Free list
|
|
void* free_list;
|
|
//! State
|
|
uint32_t state;
|
|
//! Used count when not active (not including deferred free list)
|
|
uint32_t used_count;
|
|
//! Block count
|
|
uint32_t block_count;
|
|
//! Size class
|
|
uint32_t size_class;
|
|
//! Index of last block initialized in free list
|
|
uint32_t free_list_limit;
|
|
//! Span list size when part of a cache list, or size of deferred free list when partial/full
|
|
uint32_t list_size;
|
|
//! Deferred free list
|
|
atomicptr_t free_list_deferred;
|
|
//! Size of a block
|
|
uint32_t block_size;
|
|
//! Flags and counters
|
|
uint32_t flags;
|
|
//! Number of spans
|
|
uint32_t span_count;
|
|
//! Total span counter for master spans, distance for subspans
|
|
uint32_t total_spans_or_distance;
|
|
//! Remaining span counter, for master spans
|
|
atomic32_t remaining_spans;
|
|
//! Alignment offset
|
|
uint32_t align_offset;
|
|
//! Owning heap
|
|
heap_t* heap;
|
|
//! Next span
|
|
span_t* next;
|
|
//! Previous span
|
|
span_t* prev;
|
|
};
|
|
_Static_assert(sizeof(span_t) <= SPAN_HEADER_SIZE, "span size mismatch");
|
|
|
|
struct heap_class_t {
|
|
//! Free list of active span
|
|
void* free_list;
|
|
//! Double linked list of partially used spans with free blocks for each size class.
|
|
// Current active span is at head of list. Previous span pointer in head points to tail span of list.
|
|
span_t* partial_span;
|
|
};
|
|
|
|
struct heap_t {
|
|
//! Active and semi-used span data per size class
|
|
heap_class_t span_class[SIZE_CLASS_COUNT];
|
|
#if ENABLE_THREAD_CACHE
|
|
//! List of free spans (single linked list)
|
|
span_t* span_cache[LARGE_CLASS_COUNT];
|
|
//! List of deferred free spans of class 0 (single linked list)
|
|
atomicptr_t span_cache_deferred;
|
|
#endif
|
|
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
|
|
//! Current and high water mark of spans used per span count
|
|
span_use_t span_use[LARGE_CLASS_COUNT];
|
|
#endif
|
|
//! Mapped but unused spans
|
|
span_t* span_reserve;
|
|
//! Master span for mapped but unused spans
|
|
span_t* span_reserve_master;
|
|
//! Number of mapped but unused spans
|
|
size_t spans_reserved;
|
|
//! Next heap in id list
|
|
heap_t* next_heap;
|
|
//! Next heap in orphan list
|
|
heap_t* next_orphan;
|
|
//! Memory pages alignment offset
|
|
size_t align_offset;
|
|
//! Heap ID
|
|
int32_t id;
|
|
#if ENABLE_STATISTICS
|
|
//! Number of bytes transitioned thread -> global
|
|
size_t thread_to_global;
|
|
//! Number of bytes transitioned global -> thread
|
|
size_t global_to_thread;
|
|
//! Allocation stats per size class
|
|
size_class_use_t size_class_use[SIZE_CLASS_COUNT + 1];
|
|
#endif
|
|
};
|
|
|
|
struct size_class_t {
|
|
//! Size of blocks in this class
|
|
uint32_t block_size;
|
|
//! Number of blocks in each chunk
|
|
uint16_t block_count;
|
|
//! Class index this class is merged with
|
|
uint16_t class_idx;
|
|
};
|
|
_Static_assert(sizeof(size_class_t) == 8, "Size class size mismatch");
|
|
|
|
struct global_cache_t {
|
|
//! Cache list pointer
|
|
atomicptr_t cache;
|
|
//! Cache size
|
|
atomic32_t size;
|
|
//! ABA counter
|
|
atomic32_t counter;
|
|
};
|
|
|
|
/// Global data
|
|
//! Initialized flag
|
|
static int _rpmalloc_initialized;
|
|
//! Configuration
|
|
static rpmalloc_config_t _memory_config;
|
|
//! Memory page size
|
|
static size_t _memory_page_size;
|
|
//! Shift to divide by page size
|
|
static size_t _memory_page_size_shift;
|
|
//! Granularity at which memory pages are mapped by OS
|
|
static size_t _memory_map_granularity;
|
|
#if RPMALLOC_CONFIGURABLE
|
|
//! Size of a span of memory pages
|
|
static size_t _memory_span_size;
|
|
//! Shift to divide by span size
|
|
static size_t _memory_span_size_shift;
|
|
//! Mask to get to start of a memory span
|
|
static uintptr_t _memory_span_mask;
|
|
#else
|
|
//! Hardwired span size (64KiB)
|
|
#define _memory_span_size (64 * 1024)
|
|
#define _memory_span_size_shift 16
|
|
#define _memory_span_mask (~((uintptr_t)(_memory_span_size - 1)))
|
|
#endif
|
|
//! Number of spans to map in each map call
|
|
static size_t _memory_span_map_count;
|
|
//! Number of spans to release from thread cache to global cache (single spans)
|
|
static size_t _memory_span_release_count;
|
|
//! Number of spans to release from thread cache to global cache (large multiple spans)
|
|
static size_t _memory_span_release_count_large;
|
|
//! Global size classes
|
|
static size_class_t _memory_size_class[SIZE_CLASS_COUNT];
|
|
//! Run-time size limit of medium blocks
|
|
static size_t _memory_medium_size_limit;
|
|
//! Heap ID counter
|
|
static atomic32_t _memory_heap_id;
|
|
//! Huge page support
|
|
static int _memory_huge_pages;
|
|
#if ENABLE_GLOBAL_CACHE
|
|
//! Global span cache
|
|
static global_cache_t _memory_span_cache[LARGE_CLASS_COUNT];
|
|
#endif
|
|
//! All heaps
|
|
static atomicptr_t _memory_heaps[HEAP_ARRAY_SIZE];
|
|
//! Orphaned heaps
|
|
static atomicptr_t _memory_orphan_heaps;
|
|
//! Running orphan counter to avoid ABA issues in linked list
|
|
static atomic32_t _memory_orphan_counter;
|
|
#if ENABLE_STATISTICS
|
|
//! Active heap count
|
|
static atomic32_t _memory_active_heaps;
|
|
//! Number of currently mapped memory pages
|
|
static atomic32_t _mapped_pages;
|
|
//! Peak number of concurrently mapped memory pages
|
|
static int32_t _mapped_pages_peak;
|
|
//! Number of currently unused spans
|
|
static atomic32_t _reserved_spans;
|
|
//! Running counter of total number of mapped memory pages since start
|
|
static atomic32_t _mapped_total;
|
|
//! Running counter of total number of unmapped memory pages since start
|
|
static atomic32_t _unmapped_total;
|
|
//! Number of currently mapped memory pages in OS calls
|
|
static atomic32_t _mapped_pages_os;
|
|
//! Number of currently allocated pages in huge allocations
|
|
static atomic32_t _huge_pages_current;
|
|
//! Peak number of currently allocated pages in huge allocations
|
|
static int32_t _huge_pages_peak;
|
|
#endif
|
|
|
|
//! Current thread heap
|
|
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
|
|
static pthread_key_t _memory_thread_heap;
|
|
#else
|
|
# ifdef _MSC_VER
|
|
# define _Thread_local __declspec(thread)
|
|
# define TLS_MODEL
|
|
# else
|
|
# define TLS_MODEL __attribute__((tls_model("initial-exec")))
|
|
# if !defined(__clang__) && defined(__GNUC__)
|
|
# define _Thread_local __thread
|
|
# endif
|
|
# endif
|
|
static _Thread_local heap_t* _memory_thread_heap TLS_MODEL;
|
|
#endif
|
|
|
|
static inline heap_t*
|
|
get_thread_heap_raw(void) {
|
|
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
|
|
return pthread_getspecific(_memory_thread_heap);
|
|
#else
|
|
return _memory_thread_heap;
|
|
#endif
|
|
}
|
|
|
|
//! Get the current thread heap
|
|
static inline heap_t*
|
|
get_thread_heap(void) {
|
|
heap_t* heap = get_thread_heap_raw();
|
|
#if ENABLE_PRELOAD
|
|
if (EXPECTED(heap != 0))
|
|
return heap;
|
|
rpmalloc_initialize();
|
|
return get_thread_heap_raw();
|
|
#else
|
|
return heap;
|
|
#endif
|
|
}
|
|
|
|
//! Set the current thread heap
|
|
static void
|
|
set_thread_heap(heap_t* heap) {
|
|
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
|
|
pthread_setspecific(_memory_thread_heap, heap);
|
|
#else
|
|
_memory_thread_heap = heap;
|
|
#endif
|
|
}
|
|
|
|
//! Default implementation to map more virtual memory
|
|
static void*
|
|
_memory_map_os(size_t size, size_t* offset);
|
|
|
|
//! Default implementation to unmap virtual memory
|
|
static void
|
|
_memory_unmap_os(void* address, size_t size, size_t offset, size_t release);
|
|
|
|
//! Lookup a memory heap from heap ID
|
|
static heap_t*
|
|
_memory_heap_lookup(int32_t id) {
|
|
uint32_t list_idx = id % HEAP_ARRAY_SIZE;
|
|
heap_t* heap = (heap_t*)atomic_load_ptr(&_memory_heaps[list_idx]);
|
|
while (heap && (heap->id != id))
|
|
heap = heap->next_heap;
|
|
return heap;
|
|
}
|
|
|
|
#if ENABLE_STATISTICS
|
|
# define _memory_statistics_inc(counter, value) counter += value
|
|
# define _memory_statistics_dec(counter, value) counter -= value
|
|
# define _memory_statistics_add(atomic_counter, value) atomic_add32(atomic_counter, (int32_t)(value))
|
|
# define _memory_statistics_add_peak(atomic_counter, value, peak) do { int32_t _cur_count = atomic_add32(atomic_counter, (int32_t)(value)); if (_cur_count > (peak)) peak = _cur_count; } while (0)
|
|
# define _memory_statistics_sub(atomic_counter, value) atomic_add32(atomic_counter, -(int32_t)(value))
|
|
# define _memory_statistics_inc_alloc(heap, class_idx) do { \
|
|
int32_t alloc_current = atomic_incr32(&heap->size_class_use[class_idx].alloc_current); \
|
|
if (alloc_current > heap->size_class_use[class_idx].alloc_peak) \
|
|
heap->size_class_use[class_idx].alloc_peak = alloc_current; \
|
|
heap->size_class_use[class_idx].alloc_total++; \
|
|
} while(0)
|
|
# define _memory_statistics_inc_free(heap, class_idx) do { \
|
|
atomic_decr32(&heap->size_class_use[class_idx].alloc_current); \
|
|
atomic_incr32(&heap->size_class_use[class_idx].free_total); \
|
|
} while(0)
|
|
#else
|
|
# define _memory_statistics_inc(counter, value) do {} while(0)
|
|
# define _memory_statistics_dec(counter, value) do {} while(0)
|
|
# define _memory_statistics_add(atomic_counter, value) do {} while(0)
|
|
# define _memory_statistics_add_peak(atomic_counter, value, peak) do {} while (0)
|
|
# define _memory_statistics_sub(atomic_counter, value) do {} while(0)
|
|
# define _memory_statistics_inc_alloc(heap, class_idx) do {} while(0)
|
|
# define _memory_statistics_inc_free(heap, class_idx) do {} while(0)
|
|
#endif
|
|
|
|
static void
|
|
_memory_heap_cache_insert(heap_t* heap, span_t* span);
|
|
|
|
//! Map more virtual memory
|
|
static void*
|
|
_memory_map(size_t size, size_t* offset) {
|
|
assert(!(size % _memory_page_size));
|
|
assert(size >= _memory_page_size);
|
|
_memory_statistics_add_peak(&_mapped_pages, (size >> _memory_page_size_shift), _mapped_pages_peak);
|
|
_memory_statistics_add(&_mapped_total, (size >> _memory_page_size_shift));
|
|
return _memory_config.memory_map(size, offset);
|
|
}
|
|
|
|
//! Unmap virtual memory
|
|
static void
|
|
_memory_unmap(void* address, size_t size, size_t offset, size_t release) {
|
|
assert(!release || (release >= size));
|
|
assert(!release || (release >= _memory_page_size));
|
|
if (release) {
|
|
assert(!(release % _memory_page_size));
|
|
_memory_statistics_sub(&_mapped_pages, (release >> _memory_page_size_shift));
|
|
_memory_statistics_add(&_unmapped_total, (release >> _memory_page_size_shift));
|
|
}
|
|
_memory_config.memory_unmap(address, size, offset, release);
|
|
}
|
|
|
|
//! Declare the span to be a subspan and store distance from master span and span count
|
|
static void
|
|
_memory_span_mark_as_subspan_unless_master(span_t* master, span_t* subspan, size_t span_count) {
|
|
assert((subspan != master) || (subspan->flags & SPAN_FLAG_MASTER));
|
|
if (subspan != master) {
|
|
subspan->flags = SPAN_FLAG_SUBSPAN;
|
|
subspan->total_spans_or_distance = (uint32_t)((uintptr_t)pointer_diff(subspan, master) >> _memory_span_size_shift);
|
|
subspan->align_offset = 0;
|
|
}
|
|
subspan->span_count = (uint32_t)span_count;
|
|
}
|
|
|
|
//! Use reserved spans to fulfill a memory map request (reserve size must be checked by caller)
|
|
static span_t*
|
|
_memory_map_from_reserve(heap_t* heap, size_t span_count) {
|
|
//Update the heap span reserve
|
|
span_t* span = heap->span_reserve;
|
|
heap->span_reserve = (span_t*)pointer_offset(span, span_count * _memory_span_size);
|
|
heap->spans_reserved -= span_count;
|
|
|
|
_memory_span_mark_as_subspan_unless_master(heap->span_reserve_master, span, span_count);
|
|
if (span_count <= LARGE_CLASS_COUNT)
|
|
_memory_statistics_inc(heap->span_use[span_count - 1].spans_from_reserved, 1);
|
|
|
|
return span;
|
|
}
|
|
|
|
//! Get the aligned number of spans to map in based on wanted count, configured mapping granularity and the page size
|
|
static size_t
|
|
_memory_map_align_span_count(size_t span_count) {
|
|
size_t request_count = (span_count > _memory_span_map_count) ? span_count : _memory_span_map_count;
|
|
if ((_memory_page_size > _memory_span_size) && ((request_count * _memory_span_size) % _memory_page_size))
|
|
request_count += _memory_span_map_count - (request_count % _memory_span_map_count);
|
|
return request_count;
|
|
}
|
|
|
|
//! Store the given spans as reserve in the given heap
|
|
static void
|
|
_memory_heap_set_reserved_spans(heap_t* heap, span_t* master, span_t* reserve, size_t reserve_span_count) {
|
|
heap->span_reserve_master = master;
|
|
heap->span_reserve = reserve;
|
|
heap->spans_reserved = reserve_span_count;
|
|
}
|
|
|
|
//! Setup a newly mapped span
|
|
static void
|
|
_memory_span_initialize(span_t* span, size_t total_span_count, size_t span_count, size_t align_offset) {
|
|
span->total_spans_or_distance = (uint32_t)total_span_count;
|
|
span->span_count = (uint32_t)span_count;
|
|
span->align_offset = (uint32_t)align_offset;
|
|
span->flags = SPAN_FLAG_MASTER;
|
|
atomic_store32(&span->remaining_spans, (int32_t)total_span_count);
|
|
}
|
|
|
|
//! Map a akigned set of spans, taking configured mapping granularity and the page size into account
|
|
static span_t*
|
|
_memory_map_aligned_span_count(heap_t* heap, size_t span_count) {
|
|
//If we already have some, but not enough, reserved spans, release those to heap cache and map a new
|
|
//full set of spans. Otherwise we would waste memory if page size > span size (huge pages)
|
|
size_t aligned_span_count = _memory_map_align_span_count(span_count);
|
|
size_t align_offset = 0;
|
|
span_t* span = (span_t*)_memory_map(aligned_span_count * _memory_span_size, &align_offset);
|
|
if (!span)
|
|
return 0;
|
|
_memory_span_initialize(span, aligned_span_count, span_count, align_offset);
|
|
_memory_statistics_add(&_reserved_spans, aligned_span_count);
|
|
if (span_count <= LARGE_CLASS_COUNT)
|
|
_memory_statistics_inc(heap->span_use[span_count - 1].spans_map_calls, 1);
|
|
if (aligned_span_count > span_count) {
|
|
if (heap->spans_reserved) {
|
|
_memory_span_mark_as_subspan_unless_master(heap->span_reserve_master, heap->span_reserve, heap->spans_reserved);
|
|
_memory_heap_cache_insert(heap, heap->span_reserve);
|
|
}
|
|
_memory_heap_set_reserved_spans(heap, span, (span_t*)pointer_offset(span, span_count * _memory_span_size), aligned_span_count - span_count);
|
|
}
|
|
return span;
|
|
}
|
|
|
|
//! Map in memory pages for the given number of spans (or use previously reserved pages)
|
|
static span_t*
|
|
_memory_map_spans(heap_t* heap, size_t span_count) {
|
|
if (span_count <= heap->spans_reserved)
|
|
return _memory_map_from_reserve(heap, span_count);
|
|
return _memory_map_aligned_span_count(heap, span_count);
|
|
}
|
|
|
|
//! Unmap memory pages for the given number of spans (or mark as unused if no partial unmappings)
|
|
static void
|
|
_memory_unmap_span(span_t* span) {
|
|
assert((span->flags & SPAN_FLAG_MASTER) || (span->flags & SPAN_FLAG_SUBSPAN));
|
|
assert(!(span->flags & SPAN_FLAG_MASTER) || !(span->flags & SPAN_FLAG_SUBSPAN));
|
|
|
|
int is_master = !!(span->flags & SPAN_FLAG_MASTER);
|
|
span_t* master = is_master ? span : (span_t*)(pointer_offset(span, -(int32_t)(span->total_spans_or_distance * _memory_span_size)));
|
|
assert(is_master || (span->flags & SPAN_FLAG_SUBSPAN));
|
|
assert(master->flags & SPAN_FLAG_MASTER);
|
|
|
|
size_t span_count = span->span_count;
|
|
if (!is_master) {
|
|
//Directly unmap subspans (unless huge pages, in which case we defer and unmap entire page range with master)
|
|
assert(span->align_offset == 0);
|
|
if (_memory_span_size >= _memory_page_size) {
|
|
_memory_unmap(span, span_count * _memory_span_size, 0, 0);
|
|
_memory_statistics_sub(&_reserved_spans, span_count);
|
|
}
|
|
} else {
|
|
//Special double flag to denote an unmapped master
|
|
//It must be kept in memory since span header must be used
|
|
span->flags |= SPAN_FLAG_MASTER | SPAN_FLAG_SUBSPAN;
|
|
}
|
|
|
|
if (atomic_add32(&master->remaining_spans, -(int32_t)span_count) <= 0) {
|
|
//Everything unmapped, unmap the master span with release flag to unmap the entire range of the super span
|
|
assert(!!(master->flags & SPAN_FLAG_MASTER) && !!(master->flags & SPAN_FLAG_SUBSPAN));
|
|
size_t unmap_count = master->span_count;
|
|
if (_memory_span_size < _memory_page_size)
|
|
unmap_count = master->total_spans_or_distance;
|
|
_memory_statistics_sub(&_reserved_spans, unmap_count);
|
|
_memory_unmap(master, unmap_count * _memory_span_size, master->align_offset, master->total_spans_or_distance * _memory_span_size);
|
|
}
|
|
}
|
|
|
|
#if ENABLE_THREAD_CACHE
|
|
|
|
//! Unmap a single linked list of spans
|
|
static void
|
|
_memory_unmap_span_list(span_t* span) {
|
|
size_t list_size = span->list_size;
|
|
for (size_t ispan = 0; ispan < list_size; ++ispan) {
|
|
span_t* next_span = span->next;
|
|
_memory_unmap_span(span);
|
|
span = next_span;
|
|
}
|
|
assert(!span);
|
|
}
|
|
|
|
//! Add span to head of single linked span list
|
|
static size_t
|
|
_memory_span_list_push(span_t** head, span_t* span) {
|
|
span->next = *head;
|
|
if (*head)
|
|
span->list_size = (*head)->list_size + 1;
|
|
else
|
|
span->list_size = 1;
|
|
*head = span;
|
|
return span->list_size;
|
|
}
|
|
|
|
//! Remove span from head of single linked span list, returns the new list head
|
|
static span_t*
|
|
_memory_span_list_pop(span_t** head) {
|
|
span_t* span = *head;
|
|
span_t* next_span = 0;
|
|
if (span->list_size > 1) {
|
|
assert(span->next);
|
|
next_span = span->next;
|
|
assert(next_span);
|
|
next_span->list_size = span->list_size - 1;
|
|
}
|
|
*head = next_span;
|
|
return span;
|
|
}
|
|
|
|
//! Split a single linked span list
|
|
static span_t*
|
|
_memory_span_list_split(span_t* span, size_t limit) {
|
|
span_t* next = 0;
|
|
if (limit < 2)
|
|
limit = 2;
|
|
if (span->list_size > limit) {
|
|
uint32_t list_size = 1;
|
|
span_t* last = span;
|
|
next = span->next;
|
|
while (list_size < limit) {
|
|
last = next;
|
|
next = next->next;
|
|
++list_size;
|
|
}
|
|
last->next = 0;
|
|
assert(next);
|
|
next->list_size = span->list_size - list_size;
|
|
span->list_size = list_size;
|
|
span->prev = 0;
|
|
}
|
|
return next;
|
|
}
|
|
|
|
#endif
|
|
|
|
//! Add a span to partial span double linked list at the head
|
|
static void
|
|
_memory_span_partial_list_add(span_t** head, span_t* span) {
|
|
if (*head) {
|
|
span->next = *head;
|
|
//Maintain pointer to tail span
|
|
span->prev = (*head)->prev;
|
|
(*head)->prev = span;
|
|
} else {
|
|
span->next = 0;
|
|
span->prev = span;
|
|
}
|
|
*head = span;
|
|
}
|
|
|
|
//! Add a span to partial span double linked list at the tail
|
|
static void
|
|
_memory_span_partial_list_add_tail(span_t** head, span_t* span) {
|
|
span->next = 0;
|
|
if (*head) {
|
|
span_t* tail = (*head)->prev;
|
|
tail->next = span;
|
|
span->prev = tail;
|
|
//Maintain pointer to tail span
|
|
(*head)->prev = span;
|
|
} else {
|
|
span->prev = span;
|
|
*head = span;
|
|
}
|
|
}
|
|
|
|
//! Pop head span from partial span double linked list
|
|
static void
|
|
_memory_span_partial_list_pop_head(span_t** head) {
|
|
span_t* span = *head;
|
|
*head = span->next;
|
|
if (*head) {
|
|
//Maintain pointer to tail span
|
|
(*head)->prev = span->prev;
|
|
}
|
|
}
|
|
|
|
//! Remove a span from partial span double linked list
|
|
static void
|
|
_memory_span_partial_list_remove(span_t** head, span_t* span) {
|
|
if (UNEXPECTED(*head == span)) {
|
|
_memory_span_partial_list_pop_head(head);
|
|
} else {
|
|
span_t* next_span = span->next;
|
|
span_t* prev_span = span->prev;
|
|
prev_span->next = next_span;
|
|
if (EXPECTED(next_span != 0)) {
|
|
next_span->prev = prev_span;
|
|
} else {
|
|
//Update pointer to tail span
|
|
(*head)->prev = prev_span;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if ENABLE_GLOBAL_CACHE
|
|
|
|
//! Insert the given list of memory page spans in the global cache
|
|
static void
|
|
_memory_cache_insert(global_cache_t* cache, span_t* span, size_t cache_limit) {
|
|
assert((span->list_size == 1) || (span->next != 0));
|
|
int32_t list_size = (int32_t)span->list_size;
|
|
//Unmap if cache has reached the limit
|
|
if (atomic_add32(&cache->size, list_size) > (int32_t)cache_limit) {
|
|
#if !ENABLE_UNLIMITED_GLOBAL_CACHE
|
|
_memory_unmap_span_list(span);
|
|
atomic_add32(&cache->size, -list_size);
|
|
return;
|
|
#endif
|
|
}
|
|
void* current_cache, *new_cache;
|
|
do {
|
|
current_cache = atomic_load_ptr(&cache->cache);
|
|
span->prev = (span_t*)((uintptr_t)current_cache & _memory_span_mask);
|
|
new_cache = (void*)((uintptr_t)span | ((uintptr_t)atomic_incr32(&cache->counter) & ~_memory_span_mask));
|
|
} while (!atomic_cas_ptr(&cache->cache, new_cache, current_cache));
|
|
}
|
|
|
|
//! Extract a number of memory page spans from the global cache
|
|
static span_t*
|
|
_memory_cache_extract(global_cache_t* cache) {
|
|
uintptr_t span_ptr;
|
|
do {
|
|
void* global_span = atomic_load_ptr(&cache->cache);
|
|
span_ptr = (uintptr_t)global_span & _memory_span_mask;
|
|
if (span_ptr) {
|
|
span_t* span = (span_t*)span_ptr;
|
|
//By accessing the span ptr before it is swapped out of list we assume that a contending thread
|
|
//does not manage to traverse the span to being unmapped before we access it
|
|
void* new_cache = (void*)((uintptr_t)span->prev | ((uintptr_t)atomic_incr32(&cache->counter) & ~_memory_span_mask));
|
|
if (atomic_cas_ptr(&cache->cache, new_cache, global_span)) {
|
|
atomic_add32(&cache->size, -(int32_t)span->list_size);
|
|
return span;
|
|
}
|
|
}
|
|
} while (span_ptr);
|
|
return 0;
|
|
}
|
|
|
|
//! Finalize a global cache, only valid from allocator finalization (not thread safe)
|
|
static void
|
|
_memory_cache_finalize(global_cache_t* cache) {
|
|
void* current_cache = atomic_load_ptr(&cache->cache);
|
|
span_t* span = (span_t*)((uintptr_t)current_cache & _memory_span_mask);
|
|
while (span) {
|
|
span_t* skip_span = (span_t*)((uintptr_t)span->prev & _memory_span_mask);
|
|
atomic_add32(&cache->size, -(int32_t)span->list_size);
|
|
_memory_unmap_span_list(span);
|
|
span = skip_span;
|
|
}
|
|
assert(!atomic_load32(&cache->size));
|
|
atomic_store_ptr(&cache->cache, 0);
|
|
atomic_store32(&cache->size, 0);
|
|
}
|
|
|
|
//! Insert the given list of memory page spans in the global cache
|
|
static void
|
|
_memory_global_cache_insert(span_t* span) {
|
|
size_t span_count = span->span_count;
|
|
#if ENABLE_UNLIMITED_GLOBAL_CACHE
|
|
_memory_cache_insert(&_memory_span_cache[span_count - 1], span, 0);
|
|
#else
|
|
const size_t cache_limit = (GLOBAL_CACHE_MULTIPLIER * ((span_count == 1) ? _memory_span_release_count : _memory_span_release_count_large));
|
|
_memory_cache_insert(&_memory_span_cache[span_count - 1], span, cache_limit);
|
|
#endif
|
|
}
|
|
|
|
//! Extract a number of memory page spans from the global cache for large blocks
|
|
static span_t*
|
|
_memory_global_cache_extract(size_t span_count) {
|
|
span_t* span = _memory_cache_extract(&_memory_span_cache[span_count - 1]);
|
|
assert(!span || (span->span_count == span_count));
|
|
return span;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLE_THREAD_CACHE
|
|
//! Adopt the deferred span cache list
|
|
static void
|
|
_memory_heap_cache_adopt_deferred(heap_t* heap) {
|
|
atomic_thread_fence_acquire();
|
|
span_t* span = (span_t*)atomic_load_ptr(&heap->span_cache_deferred);
|
|
if (!span)
|
|
return;
|
|
do {
|
|
span = (span_t*)atomic_load_ptr(&heap->span_cache_deferred);
|
|
} while (!atomic_cas_ptr(&heap->span_cache_deferred, 0, span));
|
|
while (span) {
|
|
span_t* next_span = span->next;
|
|
_memory_span_list_push(&heap->span_cache[0], span);
|
|
#if ENABLE_STATISTICS
|
|
atomic_decr32(&heap->span_use[span->span_count - 1].current);
|
|
++heap->size_class_use[span->size_class].spans_to_cache;
|
|
--heap->size_class_use[span->size_class].spans_current;
|
|
#endif
|
|
span = next_span;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//! Insert a single span into thread heap cache, releasing to global cache if overflow
|
|
static void
|
|
_memory_heap_cache_insert(heap_t* heap, span_t* span) {
|
|
#if ENABLE_THREAD_CACHE
|
|
size_t span_count = span->span_count;
|
|
size_t idx = span_count - 1;
|
|
_memory_statistics_inc(heap->span_use[idx].spans_to_cache, 1);
|
|
if (!idx)
|
|
_memory_heap_cache_adopt_deferred(heap);
|
|
#if ENABLE_UNLIMITED_THREAD_CACHE
|
|
_memory_span_list_push(&heap->span_cache[idx], span);
|
|
#else
|
|
const size_t release_count = (!idx ? _memory_span_release_count : _memory_span_release_count_large);
|
|
size_t current_cache_size = _memory_span_list_push(&heap->span_cache[idx], span);
|
|
if (current_cache_size <= release_count)
|
|
return;
|
|
const size_t hard_limit = release_count * THREAD_CACHE_MULTIPLIER;
|
|
if (current_cache_size <= hard_limit) {
|
|
#if ENABLE_ADAPTIVE_THREAD_CACHE
|
|
//Require 25% of high water mark to remain in cache (and at least 1, if use is 0)
|
|
const size_t high_mark = heap->span_use[idx].high;
|
|
const size_t min_limit = (high_mark >> 2) + release_count + 1;
|
|
if (current_cache_size < min_limit)
|
|
return;
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
heap->span_cache[idx] = _memory_span_list_split(span, release_count);
|
|
assert(span->list_size == release_count);
|
|
#if ENABLE_STATISTICS
|
|
heap->thread_to_global += (size_t)span->list_size * span_count * _memory_span_size;
|
|
heap->span_use[idx].spans_to_global += span->list_size;
|
|
#endif
|
|
#if ENABLE_GLOBAL_CACHE
|
|
_memory_global_cache_insert(span);
|
|
#else
|
|
_memory_unmap_span_list(span);
|
|
#endif
|
|
#endif
|
|
#else
|
|
(void)sizeof(heap);
|
|
_memory_unmap_span(span);
|
|
#endif
|
|
}
|
|
|
|
//! Extract the given number of spans from the different cache levels
|
|
static span_t*
|
|
_memory_heap_thread_cache_extract(heap_t* heap, size_t span_count) {
|
|
#if ENABLE_THREAD_CACHE
|
|
size_t idx = span_count - 1;
|
|
if (!idx)
|
|
_memory_heap_cache_adopt_deferred(heap);
|
|
if (heap->span_cache[idx]) {
|
|
#if ENABLE_STATISTICS
|
|
heap->span_use[idx].spans_from_cache++;
|
|
#endif
|
|
return _memory_span_list_pop(&heap->span_cache[idx]);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static span_t*
|
|
_memory_heap_reserved_extract(heap_t* heap, size_t span_count) {
|
|
if (heap->spans_reserved >= span_count)
|
|
return _memory_map_spans(heap, span_count);
|
|
return 0;
|
|
}
|
|
|
|
//! Extract a span from the global cache
|
|
static span_t*
|
|
_memory_heap_global_cache_extract(heap_t* heap, size_t span_count) {
|
|
#if ENABLE_GLOBAL_CACHE
|
|
size_t idx = span_count - 1;
|
|
heap->span_cache[idx] = _memory_global_cache_extract(span_count);
|
|
if (heap->span_cache[idx]) {
|
|
#if ENABLE_STATISTICS
|
|
heap->global_to_thread += (size_t)heap->span_cache[idx]->list_size * span_count * _memory_span_size;
|
|
heap->span_use[idx].spans_from_global += heap->span_cache[idx]->list_size;
|
|
#endif
|
|
return _memory_span_list_pop(&heap->span_cache[idx]);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
//! Get a span from one of the cache levels (thread cache, reserved, global cache) or fallback to mapping more memory
|
|
static span_t*
|
|
_memory_heap_extract_new_span(heap_t* heap, size_t span_count, uint32_t class_idx) {
|
|
(void)sizeof(class_idx);
|
|
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
|
|
uint32_t idx = (uint32_t)span_count - 1;
|
|
uint32_t current_count = (uint32_t)atomic_incr32(&heap->span_use[idx].current);
|
|
if (current_count > heap->span_use[idx].high)
|
|
heap->span_use[idx].high = current_count;
|
|
#if ENABLE_STATISTICS
|
|
uint32_t spans_current = ++heap->size_class_use[class_idx].spans_current;
|
|
if (spans_current > heap->size_class_use[class_idx].spans_peak)
|
|
heap->size_class_use[class_idx].spans_peak = spans_current;
|
|
#endif
|
|
#endif
|
|
span_t* span = _memory_heap_thread_cache_extract(heap, span_count);
|
|
if (EXPECTED(span != 0)) {
|
|
_memory_statistics_inc(heap->size_class_use[class_idx].spans_from_cache, 1);
|
|
return span;
|
|
}
|
|
span = _memory_heap_reserved_extract(heap, span_count);
|
|
if (EXPECTED(span != 0)) {
|
|
_memory_statistics_inc(heap->size_class_use[class_idx].spans_from_reserved, 1);
|
|
return span;
|
|
}
|
|
span = _memory_heap_global_cache_extract(heap, span_count);
|
|
if (EXPECTED(span != 0)) {
|
|
_memory_statistics_inc(heap->size_class_use[class_idx].spans_from_cache, 1);
|
|
return span;
|
|
}
|
|
//Final fallback, map in more virtual memory
|
|
span = _memory_map_spans(heap, span_count);
|
|
_memory_statistics_inc(heap->size_class_use[class_idx].spans_map_calls, 1);
|
|
return span;
|
|
}
|
|
|
|
//! Move the span (used for small or medium allocations) to the heap thread cache
|
|
static void
|
|
_memory_span_release_to_cache(heap_t* heap, span_t* span) {
|
|
heap_class_t* heap_class = heap->span_class + span->size_class;
|
|
assert(heap_class->partial_span != span);
|
|
if (span->state == SPAN_STATE_PARTIAL)
|
|
_memory_span_partial_list_remove(&heap_class->partial_span, span);
|
|
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
|
|
atomic_decr32(&heap->span_use[0].current);
|
|
#endif
|
|
_memory_statistics_inc(heap->span_use[0].spans_to_cache, 1);
|
|
_memory_statistics_inc(heap->size_class_use[span->size_class].spans_to_cache, 1);
|
|
_memory_statistics_dec(heap->size_class_use[span->size_class].spans_current, 1);
|
|
_memory_heap_cache_insert(heap, span);
|
|
}
|
|
|
|
//! Initialize a (partial) free list up to next system memory page, while reserving the first block
|
|
//! as allocated, returning number of blocks in list
|
|
static uint32_t
|
|
free_list_partial_init(void** list, void** first_block, void* page_start, void* block_start,
|
|
uint32_t block_count, uint32_t block_size) {
|
|
assert(block_count);
|
|
*first_block = block_start;
|
|
if (block_count > 1) {
|
|
void* free_block = pointer_offset(block_start, block_size);
|
|
void* block_end = pointer_offset(block_start, block_size * block_count);
|
|
//If block size is less than half a memory page, bound init to next memory page boundary
|
|
if (block_size < (_memory_page_size >> 1)) {
|
|
void* page_end = pointer_offset(page_start, _memory_page_size);
|
|
if (page_end < block_end)
|
|
block_end = page_end;
|
|
}
|
|
*list = free_block;
|
|
block_count = 2;
|
|
void* next_block = pointer_offset(free_block, block_size);
|
|
while (next_block < block_end) {
|
|
*((void**)free_block) = next_block;
|
|
free_block = next_block;
|
|
++block_count;
|
|
next_block = pointer_offset(next_block, block_size);
|
|
}
|
|
*((void**)free_block) = 0;
|
|
} else {
|
|
*list = 0;
|
|
}
|
|
return block_count;
|
|
}
|
|
|
|
//! Initialize an unused span (from cache or mapped) to be new active span
|
|
static void*
|
|
_memory_span_set_new_active(heap_t* heap, heap_class_t* heap_class, span_t* span, uint32_t class_idx) {
|
|
assert(span->span_count == 1);
|
|
size_class_t* size_class = _memory_size_class + class_idx;
|
|
span->size_class = class_idx;
|
|
span->heap = heap;
|
|
span->flags &= ~SPAN_FLAG_ALIGNED_BLOCKS;
|
|
span->block_count = size_class->block_count;
|
|
span->block_size = size_class->block_size;
|
|
span->state = SPAN_STATE_ACTIVE;
|
|
span->free_list = 0;
|
|
|
|
//Setup free list. Only initialize one system page worth of free blocks in list
|
|
void* block;
|
|
span->free_list_limit = free_list_partial_init(&heap_class->free_list, &block,
|
|
span, pointer_offset(span, SPAN_HEADER_SIZE), size_class->block_count, size_class->block_size);
|
|
atomic_store_ptr(&span->free_list_deferred, 0);
|
|
span->list_size = 0;
|
|
atomic_thread_fence_release();
|
|
|
|
_memory_span_partial_list_add(&heap_class->partial_span, span);
|
|
return block;
|
|
}
|
|
|
|
//! Promote a partially used span (from heap used list) to be new active span
|
|
static void
|
|
_memory_span_set_partial_active(heap_class_t* heap_class, span_t* span) {
|
|
assert(span->state == SPAN_STATE_PARTIAL);
|
|
assert(span->block_count == _memory_size_class[span->size_class].block_count);
|
|
//Move data to heap size class and set span as active
|
|
heap_class->free_list = span->free_list;
|
|
span->state = SPAN_STATE_ACTIVE;
|
|
span->free_list = 0;
|
|
assert(heap_class->free_list);
|
|
}
|
|
|
|
//! Mark span as full (from active)
|
|
static void
|
|
_memory_span_set_active_full(heap_class_t* heap_class, span_t* span) {
|
|
assert(span->state == SPAN_STATE_ACTIVE);
|
|
assert(span == heap_class->partial_span);
|
|
_memory_span_partial_list_pop_head(&heap_class->partial_span);
|
|
span->used_count = span->block_count;
|
|
span->state = SPAN_STATE_FULL;
|
|
span->free_list = 0;
|
|
}
|
|
|
|
//! Move span from full to partial state
|
|
static void
|
|
_memory_span_set_full_partial(heap_t* heap, span_t* span) {
|
|
assert(span->state == SPAN_STATE_FULL);
|
|
heap_class_t* heap_class = &heap->span_class[span->size_class];
|
|
span->state = SPAN_STATE_PARTIAL;
|
|
_memory_span_partial_list_add_tail(&heap_class->partial_span, span);
|
|
}
|
|
|
|
static void*
|
|
_memory_span_extract_deferred(span_t* span) {
|
|
void* free_list;
|
|
do {
|
|
free_list = atomic_load_ptr(&span->free_list_deferred);
|
|
} while ((free_list == INVALID_POINTER) || !atomic_cas_ptr(&span->free_list_deferred, INVALID_POINTER, free_list));
|
|
span->list_size = 0;
|
|
atomic_store_ptr(&span->free_list_deferred, 0);
|
|
atomic_thread_fence_release();
|
|
return free_list;
|
|
}
|
|
|
|
//! Pop first block from a free list
|
|
static void*
|
|
free_list_pop(void** list) {
|
|
void* block = *list;
|
|
*list = *((void**)block);
|
|
return block;
|
|
}
|
|
|
|
//! Allocate a small/medium sized memory block from the given heap
|
|
static void*
|
|
_memory_allocate_from_heap_fallback(heap_t* heap, uint32_t class_idx) {
|
|
heap_class_t* heap_class = &heap->span_class[class_idx];
|
|
void* block;
|
|
|
|
span_t* active_span = heap_class->partial_span;
|
|
if (EXPECTED(active_span != 0)) {
|
|
assert(active_span->state == SPAN_STATE_ACTIVE);
|
|
assert(active_span->block_count == _memory_size_class[active_span->size_class].block_count);
|
|
//Swap in free list if not empty
|
|
if (active_span->free_list) {
|
|
heap_class->free_list = active_span->free_list;
|
|
active_span->free_list = 0;
|
|
return free_list_pop(&heap_class->free_list);
|
|
}
|
|
//If the span did not fully initialize free list, link up another page worth of blocks
|
|
if (active_span->free_list_limit < active_span->block_count) {
|
|
void* block_start = pointer_offset(active_span, SPAN_HEADER_SIZE + (active_span->free_list_limit * active_span->block_size));
|
|
active_span->free_list_limit += free_list_partial_init(&heap_class->free_list, &block,
|
|
(void*)((uintptr_t)block_start & ~(_memory_page_size - 1)), block_start,
|
|
active_span->block_count - active_span->free_list_limit, active_span->block_size);
|
|
return block;
|
|
}
|
|
//Swap in deferred free list
|
|
atomic_thread_fence_acquire();
|
|
if (atomic_load_ptr(&active_span->free_list_deferred)) {
|
|
heap_class->free_list = _memory_span_extract_deferred(active_span);
|
|
return free_list_pop(&heap_class->free_list);
|
|
}
|
|
|
|
//If the active span is fully allocated, mark span as free floating (fully allocated and not part of any list)
|
|
assert(!heap_class->free_list);
|
|
assert(active_span->free_list_limit >= active_span->block_count);
|
|
_memory_span_set_active_full(heap_class, active_span);
|
|
}
|
|
assert(!heap_class->free_list);
|
|
|
|
//Try promoting a semi-used span to active
|
|
active_span = heap_class->partial_span;
|
|
if (EXPECTED(active_span != 0)) {
|
|
_memory_span_set_partial_active(heap_class, active_span);
|
|
return free_list_pop(&heap_class->free_list);
|
|
}
|
|
assert(!heap_class->free_list);
|
|
assert(!heap_class->partial_span);
|
|
|
|
//Find a span in one of the cache levels
|
|
active_span = _memory_heap_extract_new_span(heap, 1, class_idx);
|
|
|
|
//Mark span as owned by this heap and set base data, return first block
|
|
return _memory_span_set_new_active(heap, heap_class, active_span, class_idx);
|
|
}
|
|
|
|
//! Allocate a small sized memory block from the given heap
|
|
static void*
|
|
_memory_allocate_small(heap_t* heap, size_t size) {
|
|
//Small sizes have unique size classes
|
|
const uint32_t class_idx = (uint32_t)((size + (SMALL_GRANULARITY - 1)) >> SMALL_GRANULARITY_SHIFT);
|
|
_memory_statistics_inc_alloc(heap, class_idx);
|
|
if (EXPECTED(heap->span_class[class_idx].free_list != 0))
|
|
return free_list_pop(&heap->span_class[class_idx].free_list);
|
|
return _memory_allocate_from_heap_fallback(heap, class_idx);
|
|
}
|
|
|
|
//! Allocate a medium sized memory block from the given heap
|
|
static void*
|
|
_memory_allocate_medium(heap_t* heap, size_t size) {
|
|
//Calculate the size class index and do a dependent lookup of the final class index (in case of merged classes)
|
|
const uint32_t base_idx = (uint32_t)(SMALL_CLASS_COUNT + ((size - (SMALL_SIZE_LIMIT + 1)) >> MEDIUM_GRANULARITY_SHIFT));
|
|
const uint32_t class_idx = _memory_size_class[base_idx].class_idx;
|
|
_memory_statistics_inc_alloc(heap, class_idx);
|
|
if (EXPECTED(heap->span_class[class_idx].free_list != 0))
|
|
return free_list_pop(&heap->span_class[class_idx].free_list);
|
|
return _memory_allocate_from_heap_fallback(heap, class_idx);
|
|
}
|
|
|
|
//! Allocate a large sized memory block from the given heap
|
|
static void*
|
|
_memory_allocate_large(heap_t* heap, size_t size) {
|
|
//Calculate number of needed max sized spans (including header)
|
|
//Since this function is never called if size > LARGE_SIZE_LIMIT
|
|
//the span_count is guaranteed to be <= LARGE_CLASS_COUNT
|
|
size += SPAN_HEADER_SIZE;
|
|
size_t span_count = size >> _memory_span_size_shift;
|
|
if (size & (_memory_span_size - 1))
|
|
++span_count;
|
|
size_t idx = span_count - 1;
|
|
|
|
//Find a span in one of the cache levels
|
|
span_t* span = _memory_heap_extract_new_span(heap, span_count, SIZE_CLASS_COUNT);
|
|
|
|
//Mark span as owned by this heap and set base data
|
|
assert(span->span_count == span_count);
|
|
span->size_class = (uint32_t)(SIZE_CLASS_COUNT + idx);
|
|
span->heap = heap;
|
|
atomic_thread_fence_release();
|
|
|
|
return pointer_offset(span, SPAN_HEADER_SIZE);
|
|
}
|
|
|
|
//! Allocate a huge block by mapping memory pages directly
|
|
static void*
|
|
_memory_allocate_huge(size_t size) {
|
|
size += SPAN_HEADER_SIZE;
|
|
size_t num_pages = size >> _memory_page_size_shift;
|
|
if (size & (_memory_page_size - 1))
|
|
++num_pages;
|
|
size_t align_offset = 0;
|
|
span_t* span = (span_t*)_memory_map(num_pages * _memory_page_size, &align_offset);
|
|
if (!span)
|
|
return span;
|
|
//Store page count in span_count
|
|
span->size_class = (uint32_t)-1;
|
|
span->span_count = (uint32_t)num_pages;
|
|
span->align_offset = (uint32_t)align_offset;
|
|
_memory_statistics_add_peak(&_huge_pages_current, num_pages, _huge_pages_peak);
|
|
|
|
return pointer_offset(span, SPAN_HEADER_SIZE);
|
|
}
|
|
|
|
//! Allocate a block larger than medium size
|
|
static void*
|
|
_memory_allocate_oversized(heap_t* heap, size_t size) {
|
|
if (size <= LARGE_SIZE_LIMIT)
|
|
return _memory_allocate_large(heap, size);
|
|
return _memory_allocate_huge(size);
|
|
}
|
|
|
|
//! Allocate a block of the given size
|
|
static void*
|
|
_memory_allocate(heap_t* heap, size_t size) {
|
|
if (EXPECTED(size <= SMALL_SIZE_LIMIT))
|
|
return _memory_allocate_small(heap, size);
|
|
else if (size <= _memory_medium_size_limit)
|
|
return _memory_allocate_medium(heap, size);
|
|
return _memory_allocate_oversized(heap, size);
|
|
}
|
|
|
|
//! Allocate a new heap
|
|
static heap_t*
|
|
_memory_allocate_heap(void) {
|
|
void* raw_heap;
|
|
void* next_raw_heap;
|
|
uintptr_t orphan_counter;
|
|
heap_t* heap;
|
|
heap_t* next_heap;
|
|
//Try getting an orphaned heap
|
|
atomic_thread_fence_acquire();
|
|
do {
|
|
raw_heap = atomic_load_ptr(&_memory_orphan_heaps);
|
|
heap = (heap_t*)((uintptr_t)raw_heap & ~(uintptr_t)0x1FF);
|
|
if (!heap)
|
|
break;
|
|
next_heap = heap->next_orphan;
|
|
orphan_counter = (uintptr_t)atomic_incr32(&_memory_orphan_counter);
|
|
next_raw_heap = (void*)((uintptr_t)next_heap | (orphan_counter & (uintptr_t)0x1FF));
|
|
} while (!atomic_cas_ptr(&_memory_orphan_heaps, next_raw_heap, raw_heap));
|
|
|
|
if (!heap) {
|
|
//Map in pages for a new heap
|
|
size_t align_offset = 0;
|
|
heap = (heap_t*)_memory_map((1 + (sizeof(heap_t) >> _memory_page_size_shift)) * _memory_page_size, &align_offset);
|
|
if (!heap)
|
|
return heap;
|
|
memset(heap, 0, sizeof(heap_t));
|
|
heap->align_offset = align_offset;
|
|
|
|
//Get a new heap ID
|
|
do {
|
|
heap->id = atomic_incr32(&_memory_heap_id);
|
|
if (_memory_heap_lookup(heap->id))
|
|
heap->id = 0;
|
|
} while (!heap->id);
|
|
|
|
//Link in heap in heap ID map
|
|
size_t list_idx = heap->id % HEAP_ARRAY_SIZE;
|
|
do {
|
|
next_heap = (heap_t*)atomic_load_ptr(&_memory_heaps[list_idx]);
|
|
heap->next_heap = next_heap;
|
|
} while (!atomic_cas_ptr(&_memory_heaps[list_idx], heap, next_heap));
|
|
}
|
|
|
|
return heap;
|
|
}
|
|
|
|
//! Deallocate the given small/medium memory block in the current thread local heap
|
|
static void
|
|
_memory_deallocate_direct(span_t* span, void* block) {
|
|
assert(span->heap == get_thread_heap_raw());
|
|
uint32_t state = span->state;
|
|
//Add block to free list
|
|
*((void**)block) = span->free_list;
|
|
span->free_list = block;
|
|
if (UNEXPECTED(state == SPAN_STATE_ACTIVE))
|
|
return;
|
|
uint32_t used = --span->used_count;
|
|
uint32_t free = span->list_size;
|
|
if (UNEXPECTED(used == free))
|
|
_memory_span_release_to_cache(span->heap, span);
|
|
else if (UNEXPECTED(state == SPAN_STATE_FULL))
|
|
_memory_span_set_full_partial(span->heap, span);
|
|
}
|
|
|
|
//! Put the block in the deferred free list of the owning span
|
|
static void
|
|
_memory_deallocate_defer(span_t* span, void* block) {
|
|
atomic_thread_fence_acquire();
|
|
if (span->state == SPAN_STATE_FULL) {
|
|
if ((span->list_size + 1) == span->block_count) {
|
|
//Span will be completely freed by deferred deallocations, no other thread can
|
|
//currently touch it. Safe to move to owner heap deferred cache
|
|
span_t* last_head;
|
|
heap_t* heap = span->heap;
|
|
do {
|
|
last_head = (span_t*)atomic_load_ptr(&heap->span_cache_deferred);
|
|
span->next = last_head;
|
|
} while (!atomic_cas_ptr(&heap->span_cache_deferred, span, last_head));
|
|
return;
|
|
}
|
|
}
|
|
|
|
void* free_list;
|
|
do {
|
|
atomic_thread_fence_acquire();
|
|
free_list = atomic_load_ptr(&span->free_list_deferred);
|
|
*((void**)block) = free_list;
|
|
} while ((free_list == INVALID_POINTER) || !atomic_cas_ptr(&span->free_list_deferred, INVALID_POINTER, free_list));
|
|
++span->list_size;
|
|
atomic_store_ptr(&span->free_list_deferred, block);
|
|
}
|
|
|
|
static void
|
|
_memory_deallocate_small_or_medium(span_t* span, void* p) {
|
|
_memory_statistics_inc_free(span->heap, span->size_class);
|
|
if (span->flags & SPAN_FLAG_ALIGNED_BLOCKS) {
|
|
//Realign pointer to block start
|
|
void* blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
|
|
uint32_t block_offset = (uint32_t)pointer_diff(p, blocks_start);
|
|
p = pointer_offset(p, -(int32_t)(block_offset % span->block_size));
|
|
}
|
|
//Check if block belongs to this heap or if deallocation should be deferred
|
|
if (span->heap == get_thread_heap_raw())
|
|
_memory_deallocate_direct(span, p);
|
|
else
|
|
_memory_deallocate_defer(span, p);
|
|
}
|
|
|
|
//! Deallocate the given large memory block to the current heap
|
|
static void
|
|
_memory_deallocate_large(span_t* span) {
|
|
//Decrease counter
|
|
assert(span->span_count == ((size_t)span->size_class - SIZE_CLASS_COUNT + 1));
|
|
assert(span->size_class >= SIZE_CLASS_COUNT);
|
|
assert(span->size_class - SIZE_CLASS_COUNT < LARGE_CLASS_COUNT);
|
|
assert(!(span->flags & SPAN_FLAG_MASTER) || !(span->flags & SPAN_FLAG_SUBSPAN));
|
|
assert((span->flags & SPAN_FLAG_MASTER) || (span->flags & SPAN_FLAG_SUBSPAN));
|
|
//Large blocks can always be deallocated and transferred between heaps
|
|
//Investigate if it is better to defer large spans as well through span_cache_deferred,
|
|
//possibly with some heuristics to pick either scheme at runtime per deallocation
|
|
heap_t* heap = get_thread_heap();
|
|
if (!heap) return;
|
|
#if ENABLE_ADAPTIVE_THREAD_CACHE || ENABLE_STATISTICS
|
|
size_t idx = span->span_count - 1;
|
|
atomic_decr32(&span->heap->span_use[idx].current);
|
|
#endif
|
|
if ((span->span_count > 1) && !heap->spans_reserved) {
|
|
heap->span_reserve = span;
|
|
heap->spans_reserved = span->span_count;
|
|
if (span->flags & SPAN_FLAG_MASTER) {
|
|
heap->span_reserve_master = span;
|
|
} else { //SPAN_FLAG_SUBSPAN
|
|
uint32_t distance = span->total_spans_or_distance;
|
|
span_t* master = (span_t*)pointer_offset(span, -(int32_t)(distance * _memory_span_size));
|
|
heap->span_reserve_master = master;
|
|
assert(master->flags & SPAN_FLAG_MASTER);
|
|
assert(atomic_load32(&master->remaining_spans) >= (int32_t)span->span_count);
|
|
}
|
|
_memory_statistics_inc(heap->span_use[idx].spans_to_reserved, 1);
|
|
} else {
|
|
//Insert into cache list
|
|
_memory_heap_cache_insert(heap, span);
|
|
}
|
|
}
|
|
|
|
//! Deallocate the given huge span
|
|
static void
|
|
_memory_deallocate_huge(span_t* span) {
|
|
//Oversized allocation, page count is stored in span_count
|
|
size_t num_pages = span->span_count;
|
|
_memory_unmap(span, num_pages * _memory_page_size, span->align_offset, num_pages * _memory_page_size);
|
|
_memory_statistics_sub(&_huge_pages_current, num_pages);
|
|
}
|
|
|
|
//! Deallocate the given block
|
|
static void
|
|
_memory_deallocate(void* p) {
|
|
//Grab the span (always at start of span, using span alignment)
|
|
span_t* span = (span_t*)((uintptr_t)p & _memory_span_mask);
|
|
if (UNEXPECTED(!span))
|
|
return;
|
|
if (EXPECTED(span->size_class < SIZE_CLASS_COUNT))
|
|
_memory_deallocate_small_or_medium(span, p);
|
|
else if (span->size_class != (uint32_t)-1)
|
|
_memory_deallocate_large(span);
|
|
else
|
|
_memory_deallocate_huge(span);
|
|
}
|
|
|
|
//! Reallocate the given block to the given size
|
|
static void*
|
|
_memory_reallocate(void* p, size_t size, size_t oldsize, unsigned int flags) {
|
|
if (p) {
|
|
//Grab the span using guaranteed span alignment
|
|
span_t* span = (span_t*)((uintptr_t)p & _memory_span_mask);
|
|
if (span->heap) {
|
|
if (span->size_class < SIZE_CLASS_COUNT) {
|
|
//Small/medium sized block
|
|
assert(span->span_count == 1);
|
|
void* blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
|
|
uint32_t block_offset = (uint32_t)pointer_diff(p, blocks_start);
|
|
uint32_t block_idx = block_offset / span->block_size;
|
|
void* block = pointer_offset(blocks_start, block_idx * span->block_size);
|
|
if (!oldsize)
|
|
oldsize = span->block_size - (uint32_t)pointer_diff(p, block);
|
|
if ((size_t)span->block_size >= size) {
|
|
//Still fits in block, never mind trying to save memory, but preserve data if alignment changed
|
|
if ((p != block) && !(flags & RPMALLOC_NO_PRESERVE))
|
|
memmove(block, p, oldsize);
|
|
return block;
|
|
}
|
|
} else {
|
|
//Large block
|
|
size_t total_size = size + SPAN_HEADER_SIZE;
|
|
size_t num_spans = total_size >> _memory_span_size_shift;
|
|
if (total_size & (_memory_span_mask - 1))
|
|
++num_spans;
|
|
size_t current_spans = span->span_count;
|
|
assert(current_spans == ((span->size_class - SIZE_CLASS_COUNT) + 1));
|
|
void* block = pointer_offset(span, SPAN_HEADER_SIZE);
|
|
if (!oldsize)
|
|
oldsize = (current_spans * _memory_span_size) - (size_t)pointer_diff(p, block) - SPAN_HEADER_SIZE;
|
|
if ((current_spans >= num_spans) && (num_spans >= (current_spans / 2))) {
|
|
//Still fits in block, never mind trying to save memory, but preserve data if alignment changed
|
|
if ((p != block) && !(flags & RPMALLOC_NO_PRESERVE))
|
|
memmove(block, p, oldsize);
|
|
return block;
|
|
}
|
|
}
|
|
} else {
|
|
//Oversized block
|
|
size_t total_size = size + SPAN_HEADER_SIZE;
|
|
size_t num_pages = total_size >> _memory_page_size_shift;
|
|
if (total_size & (_memory_page_size - 1))
|
|
++num_pages;
|
|
//Page count is stored in span_count
|
|
size_t current_pages = span->span_count;
|
|
void* block = pointer_offset(span, SPAN_HEADER_SIZE);
|
|
if (!oldsize)
|
|
oldsize = (current_pages * _memory_page_size) - (size_t)pointer_diff(p, block) - SPAN_HEADER_SIZE;
|
|
if ((current_pages >= num_pages) && (num_pages >= (current_pages / 2))) {
|
|
//Still fits in block, never mind trying to save memory, but preserve data if alignment changed
|
|
if ((p != block) && !(flags & RPMALLOC_NO_PRESERVE))
|
|
memmove(block, p, oldsize);
|
|
return block;
|
|
}
|
|
}
|
|
} else {
|
|
oldsize = 0;
|
|
}
|
|
|
|
//Size is greater than block size, need to allocate a new block and deallocate the old
|
|
heap_t* heap = get_thread_heap();
|
|
//Avoid hysteresis by overallocating if increase is small (below 37%)
|
|
size_t lower_bound = oldsize + (oldsize >> 2) + (oldsize >> 3);
|
|
size_t new_size = (size > lower_bound) ? size : ((size > oldsize) ? lower_bound : size);
|
|
void* block = _memory_allocate(heap, new_size);
|
|
if (p && block) {
|
|
if (!(flags & RPMALLOC_NO_PRESERVE))
|
|
memcpy(block, p, oldsize < new_size ? oldsize : new_size);
|
|
_memory_deallocate(p);
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
//! Get the usable size of the given block
|
|
static size_t
|
|
_memory_usable_size(void* p) {
|
|
//Grab the span using guaranteed span alignment
|
|
span_t* span = (span_t*)((uintptr_t)p & _memory_span_mask);
|
|
if (span->heap) {
|
|
//Small/medium block
|
|
if (span->size_class < SIZE_CLASS_COUNT) {
|
|
void* blocks_start = pointer_offset(span, SPAN_HEADER_SIZE);
|
|
return span->block_size - ((size_t)pointer_diff(p, blocks_start) % span->block_size);
|
|
}
|
|
|
|
//Large block
|
|
size_t current_spans = (span->size_class - SIZE_CLASS_COUNT) + 1;
|
|
return (current_spans * _memory_span_size) - (size_t)pointer_diff(p, span);
|
|
}
|
|
|
|
//Oversized block, page count is stored in span_count
|
|
size_t current_pages = span->span_count;
|
|
return (current_pages * _memory_page_size) - (size_t)pointer_diff(p, span);
|
|
}
|
|
|
|
//! Adjust and optimize the size class properties for the given class
|
|
static void
|
|
_memory_adjust_size_class(size_t iclass) {
|
|
size_t block_size = _memory_size_class[iclass].block_size;
|
|
size_t block_count = (_memory_span_size - SPAN_HEADER_SIZE) / block_size;
|
|
|
|
_memory_size_class[iclass].block_count = (uint16_t)block_count;
|
|
_memory_size_class[iclass].class_idx = (uint16_t)iclass;
|
|
|
|
//Check if previous size classes can be merged
|
|
size_t prevclass = iclass;
|
|
while (prevclass > 0) {
|
|
--prevclass;
|
|
//A class can be merged if number of pages and number of blocks are equal
|
|
if (_memory_size_class[prevclass].block_count == _memory_size_class[iclass].block_count)
|
|
memcpy(_memory_size_class + prevclass, _memory_size_class + iclass, sizeof(_memory_size_class[iclass]));
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
_memory_heap_finalize(void* heapptr) {
|
|
heap_t* heap = (heap_t*)heapptr;
|
|
if (!heap)
|
|
return;
|
|
//Release thread cache spans back to global cache
|
|
#if ENABLE_THREAD_CACHE
|
|
_memory_heap_cache_adopt_deferred(heap);
|
|
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
|
|
span_t* span = heap->span_cache[iclass];
|
|
#if ENABLE_GLOBAL_CACHE
|
|
while (span) {
|
|
assert(span->span_count == (iclass + 1));
|
|
size_t release_count = (!iclass ? _memory_span_release_count : _memory_span_release_count_large);
|
|
span_t* next = _memory_span_list_split(span, (uint32_t)release_count);
|
|
#if ENABLE_STATISTICS
|
|
heap->thread_to_global += (size_t)span->list_size * span->span_count * _memory_span_size;
|
|
heap->span_use[iclass].spans_to_global += span->list_size;
|
|
#endif
|
|
_memory_global_cache_insert(span);
|
|
span = next;
|
|
}
|
|
#else
|
|
if (span)
|
|
_memory_unmap_span_list(span);
|
|
#endif
|
|
heap->span_cache[iclass] = 0;
|
|
}
|
|
#endif
|
|
|
|
//Orphan the heap
|
|
void* raw_heap;
|
|
uintptr_t orphan_counter;
|
|
heap_t* last_heap;
|
|
do {
|
|
last_heap = (heap_t*)atomic_load_ptr(&_memory_orphan_heaps);
|
|
heap->next_orphan = (heap_t*)((uintptr_t)last_heap & ~(uintptr_t)0x1FF);
|
|
orphan_counter = (uintptr_t)atomic_incr32(&_memory_orphan_counter);
|
|
raw_heap = (void*)((uintptr_t)heap | (orphan_counter & (uintptr_t)0x1FF));
|
|
} while (!atomic_cas_ptr(&_memory_orphan_heaps, raw_heap, last_heap));
|
|
|
|
set_thread_heap(0);
|
|
|
|
#if ENABLE_STATISTICS
|
|
atomic_decr32(&_memory_active_heaps);
|
|
assert(atomic_load32(&_memory_active_heaps) >= 0);
|
|
#endif
|
|
}
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
|
|
#include <fibersapi.h>
|
|
static DWORD fls_key;
|
|
static void NTAPI
|
|
rp_thread_destructor(void* value) {
|
|
if (value)
|
|
rpmalloc_thread_finalize();
|
|
}
|
|
#endif
|
|
|
|
#if PLATFORM_POSIX
|
|
# include <sys/mman.h>
|
|
# include <sched.h>
|
|
# ifdef __FreeBSD__
|
|
# include <sys/sysctl.h>
|
|
# define MAP_HUGETLB MAP_ALIGNED_SUPER
|
|
# endif
|
|
# ifndef MAP_UNINITIALIZED
|
|
# define MAP_UNINITIALIZED 0
|
|
# endif
|
|
#endif
|
|
#include <errno.h>
|
|
|
|
//! Initialize the allocator and setup global data
|
|
extern inline int
|
|
rpmalloc_initialize(void) {
|
|
if (_rpmalloc_initialized) {
|
|
rpmalloc_thread_initialize();
|
|
return 0;
|
|
}
|
|
memset(&_memory_config, 0, sizeof(rpmalloc_config_t));
|
|
return rpmalloc_initialize_config(0);
|
|
}
|
|
|
|
int
|
|
rpmalloc_initialize_config(const rpmalloc_config_t* config) {
|
|
if (_rpmalloc_initialized) {
|
|
rpmalloc_thread_initialize();
|
|
return 0;
|
|
}
|
|
_rpmalloc_initialized = 1;
|
|
|
|
if (config)
|
|
memcpy(&_memory_config, config, sizeof(rpmalloc_config_t));
|
|
|
|
if (!_memory_config.memory_map || !_memory_config.memory_unmap) {
|
|
_memory_config.memory_map = _memory_map_os;
|
|
_memory_config.memory_unmap = _memory_unmap_os;
|
|
}
|
|
|
|
#if RPMALLOC_CONFIGURABLE
|
|
_memory_page_size = _memory_config.page_size;
|
|
#else
|
|
_memory_page_size = 0;
|
|
#endif
|
|
_memory_huge_pages = 0;
|
|
_memory_map_granularity = _memory_page_size;
|
|
if (!_memory_page_size) {
|
|
#if PLATFORM_WINDOWS
|
|
SYSTEM_INFO system_info;
|
|
memset(&system_info, 0, sizeof(system_info));
|
|
GetSystemInfo(&system_info);
|
|
_memory_page_size = system_info.dwPageSize;
|
|
_memory_map_granularity = system_info.dwAllocationGranularity;
|
|
if (config && config->enable_huge_pages) {
|
|
HANDLE token = 0;
|
|
size_t large_page_minimum = GetLargePageMinimum();
|
|
if (large_page_minimum)
|
|
OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
|
|
if (token) {
|
|
LUID luid;
|
|
if (LookupPrivilegeValue(0, SE_LOCK_MEMORY_NAME, &luid)) {
|
|
TOKEN_PRIVILEGES token_privileges;
|
|
memset(&token_privileges, 0, sizeof(token_privileges));
|
|
token_privileges.PrivilegeCount = 1;
|
|
token_privileges.Privileges[0].Luid = luid;
|
|
token_privileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
|
|
if (AdjustTokenPrivileges(token, FALSE, &token_privileges, 0, 0, 0)) {
|
|
DWORD err = GetLastError();
|
|
if (err == ERROR_SUCCESS) {
|
|
_memory_huge_pages = 1;
|
|
_memory_page_size = large_page_minimum;
|
|
_memory_map_granularity = large_page_minimum;
|
|
}
|
|
}
|
|
}
|
|
CloseHandle(token);
|
|
}
|
|
}
|
|
#else
|
|
_memory_page_size = (size_t)sysconf(_SC_PAGESIZE);
|
|
_memory_map_granularity = _memory_page_size;
|
|
if (config && config->enable_huge_pages) {
|
|
#if defined(__linux__)
|
|
size_t huge_page_size = 0;
|
|
FILE* meminfo = fopen("/proc/meminfo", "r");
|
|
if (meminfo) {
|
|
char line[128];
|
|
while (!huge_page_size && fgets(line, sizeof(line) - 1, meminfo)) {
|
|
line[sizeof(line) - 1] = 0;
|
|
if (strstr(line, "Hugepagesize:"))
|
|
huge_page_size = (size_t)strtol(line + 13, 0, 10) * 1024;
|
|
}
|
|
fclose(meminfo);
|
|
}
|
|
if (huge_page_size) {
|
|
_memory_huge_pages = 1;
|
|
_memory_page_size = huge_page_size;
|
|
_memory_map_granularity = huge_page_size;
|
|
}
|
|
#elif defined(__FreeBSD__)
|
|
int rc;
|
|
size_t sz = sizeof(rc);
|
|
|
|
if (sysctlbyname("vm.pmap.pg_ps_enabled", &rc, &sz, NULL, 0) == 0 && rc == 1) {
|
|
_memory_huge_pages = 1;
|
|
_memory_page_size = 2 * 1024 * 1024;
|
|
_memory_map_granularity = _memory_page_size;
|
|
}
|
|
#elif defined(__APPLE__)
|
|
_memory_huge_pages = 1;
|
|
_memory_page_size = 2 * 1024 * 1024;
|
|
_memory_map_granularity = _memory_page_size;
|
|
#endif
|
|
}
|
|
#endif
|
|
} else {
|
|
if (config && config->enable_huge_pages)
|
|
_memory_huge_pages = 1;
|
|
}
|
|
|
|
//The ABA counter in heap orphan list is tied to using 512 (bitmask 0x1FF)
|
|
if (_memory_page_size < 512)
|
|
_memory_page_size = 512;
|
|
if (_memory_page_size > (64 * 1024 * 1024))
|
|
_memory_page_size = (64 * 1024 * 1024);
|
|
_memory_page_size_shift = 0;
|
|
size_t page_size_bit = _memory_page_size;
|
|
while (page_size_bit != 1) {
|
|
++_memory_page_size_shift;
|
|
page_size_bit >>= 1;
|
|
}
|
|
_memory_page_size = ((size_t)1 << _memory_page_size_shift);
|
|
|
|
#if RPMALLOC_CONFIGURABLE
|
|
size_t span_size = _memory_config.span_size;
|
|
if (!span_size)
|
|
span_size = (64 * 1024);
|
|
if (span_size > (256 * 1024))
|
|
span_size = (256 * 1024);
|
|
_memory_span_size = 4096;
|
|
_memory_span_size_shift = 12;
|
|
while (_memory_span_size < span_size) {
|
|
_memory_span_size <<= 1;
|
|
++_memory_span_size_shift;
|
|
}
|
|
_memory_span_mask = ~(uintptr_t)(_memory_span_size - 1);
|
|
#endif
|
|
|
|
_memory_span_map_count = ( _memory_config.span_map_count ? _memory_config.span_map_count : DEFAULT_SPAN_MAP_COUNT);
|
|
if ((_memory_span_size * _memory_span_map_count) < _memory_page_size)
|
|
_memory_span_map_count = (_memory_page_size / _memory_span_size);
|
|
if ((_memory_page_size >= _memory_span_size) && ((_memory_span_map_count * _memory_span_size) % _memory_page_size))
|
|
_memory_span_map_count = (_memory_page_size / _memory_span_size);
|
|
|
|
_memory_config.page_size = _memory_page_size;
|
|
_memory_config.span_size = _memory_span_size;
|
|
_memory_config.span_map_count = _memory_span_map_count;
|
|
_memory_config.enable_huge_pages = _memory_huge_pages;
|
|
|
|
_memory_span_release_count = (_memory_span_map_count > 4 ? ((_memory_span_map_count < 64) ? _memory_span_map_count : 64) : 4);
|
|
_memory_span_release_count_large = (_memory_span_release_count > 8 ? (_memory_span_release_count / 4) : 2);
|
|
|
|
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
|
|
if (pthread_key_create(&_memory_thread_heap, _memory_heap_finalize))
|
|
return -1;
|
|
#endif
|
|
#if defined(_MSC_VER) && !defined(__clang__) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
|
|
fls_key = FlsAlloc(&rp_thread_destructor);
|
|
#endif
|
|
|
|
atomic_store32(&_memory_heap_id, 0);
|
|
atomic_store32(&_memory_orphan_counter, 0);
|
|
#if ENABLE_STATISTICS
|
|
atomic_store32(&_memory_active_heaps, 0);
|
|
atomic_store32(&_reserved_spans, 0);
|
|
atomic_store32(&_mapped_pages, 0);
|
|
_mapped_pages_peak = 0;
|
|
atomic_store32(&_mapped_total, 0);
|
|
atomic_store32(&_unmapped_total, 0);
|
|
atomic_store32(&_mapped_pages_os, 0);
|
|
atomic_store32(&_huge_pages_current, 0);
|
|
_huge_pages_peak = 0;
|
|
#endif
|
|
|
|
//Setup all small and medium size classes
|
|
size_t iclass = 0;
|
|
_memory_size_class[iclass].block_size = SMALL_GRANULARITY;
|
|
_memory_adjust_size_class(iclass);
|
|
for (iclass = 1; iclass < SMALL_CLASS_COUNT; ++iclass) {
|
|
size_t size = iclass * SMALL_GRANULARITY;
|
|
_memory_size_class[iclass].block_size = (uint32_t)size;
|
|
_memory_adjust_size_class(iclass);
|
|
}
|
|
//At least two blocks per span, then fall back to large allocations
|
|
_memory_medium_size_limit = (_memory_span_size - SPAN_HEADER_SIZE) >> 1;
|
|
if (_memory_medium_size_limit > MEDIUM_SIZE_LIMIT)
|
|
_memory_medium_size_limit = MEDIUM_SIZE_LIMIT;
|
|
for (iclass = 0; iclass < MEDIUM_CLASS_COUNT; ++iclass) {
|
|
size_t size = SMALL_SIZE_LIMIT + ((iclass + 1) * MEDIUM_GRANULARITY);
|
|
if (size > _memory_medium_size_limit)
|
|
break;
|
|
_memory_size_class[SMALL_CLASS_COUNT + iclass].block_size = (uint32_t)size;
|
|
_memory_adjust_size_class(SMALL_CLASS_COUNT + iclass);
|
|
}
|
|
|
|
for (size_t list_idx = 0; list_idx < HEAP_ARRAY_SIZE; ++list_idx)
|
|
atomic_store_ptr(&_memory_heaps[list_idx], 0);
|
|
|
|
//Initialize this thread
|
|
rpmalloc_thread_initialize();
|
|
return 0;
|
|
}
|
|
|
|
//! Finalize the allocator
|
|
void
|
|
rpmalloc_finalize(void) {
|
|
atomic_thread_fence_acquire();
|
|
|
|
rpmalloc_thread_finalize();
|
|
//rpmalloc_dump_statistics(stderr);
|
|
|
|
//Free all thread caches
|
|
for (size_t list_idx = 0; list_idx < HEAP_ARRAY_SIZE; ++list_idx) {
|
|
heap_t* heap = (heap_t*)atomic_load_ptr(&_memory_heaps[list_idx]);
|
|
while (heap) {
|
|
if (heap->spans_reserved) {
|
|
span_t* span = _memory_map_spans(heap, heap->spans_reserved);
|
|
_memory_unmap_span(span);
|
|
}
|
|
|
|
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
|
|
heap_class_t* heap_class = heap->span_class + iclass;
|
|
span_t* span = heap_class->partial_span;
|
|
while (span) {
|
|
span_t* next = span->next;
|
|
if (span->state == SPAN_STATE_ACTIVE) {
|
|
uint32_t used_blocks = span->block_count;
|
|
if (span->free_list_limit < span->block_count)
|
|
used_blocks = span->free_list_limit;
|
|
uint32_t free_blocks = 0;
|
|
void* block = heap_class->free_list;
|
|
while (block) {
|
|
++free_blocks;
|
|
block = *((void**)block);
|
|
}
|
|
block = span->free_list;
|
|
while (block) {
|
|
++free_blocks;
|
|
block = *((void**)block);
|
|
}
|
|
if (used_blocks == (free_blocks + span->list_size))
|
|
_memory_heap_cache_insert(heap, span);
|
|
} else {
|
|
if (span->used_count == span->list_size)
|
|
_memory_heap_cache_insert(heap, span);
|
|
}
|
|
span = next;
|
|
}
|
|
}
|
|
|
|
#if ENABLE_THREAD_CACHE
|
|
//Free span caches (other thread might have deferred after the thread using this heap finalized)
|
|
_memory_heap_cache_adopt_deferred(heap);
|
|
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
|
|
if (heap->span_cache[iclass])
|
|
_memory_unmap_span_list(heap->span_cache[iclass]);
|
|
}
|
|
#endif
|
|
heap_t* next_heap = heap->next_heap;
|
|
size_t heap_size = (1 + (sizeof(heap_t) >> _memory_page_size_shift)) * _memory_page_size;
|
|
_memory_unmap(heap, heap_size, heap->align_offset, heap_size);
|
|
heap = next_heap;
|
|
}
|
|
}
|
|
|
|
#if ENABLE_GLOBAL_CACHE
|
|
//Free global caches
|
|
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass)
|
|
_memory_cache_finalize(&_memory_span_cache[iclass]);
|
|
#endif
|
|
|
|
atomic_store_ptr(&_memory_orphan_heaps, 0);
|
|
atomic_thread_fence_release();
|
|
|
|
#if (defined(__APPLE__) || defined(__HAIKU__)) && ENABLE_PRELOAD
|
|
pthread_key_delete(_memory_thread_heap);
|
|
#endif
|
|
#if defined(_MSC_VER) && !defined(__clang__) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
|
|
FlsFree(fls_key);
|
|
#endif
|
|
|
|
#if ENABLE_STATISTICS
|
|
//If you hit these asserts you probably have memory leaks or double frees in your code
|
|
assert(!atomic_load32(&_mapped_pages));
|
|
assert(!atomic_load32(&_reserved_spans));
|
|
assert(!atomic_load32(&_mapped_pages_os));
|
|
#endif
|
|
|
|
_rpmalloc_initialized = 0;
|
|
}
|
|
|
|
//! Initialize thread, assign heap
|
|
extern inline void
|
|
rpmalloc_thread_initialize(void) {
|
|
if (!get_thread_heap_raw()) {
|
|
heap_t* heap = _memory_allocate_heap();
|
|
if (heap) {
|
|
atomic_thread_fence_acquire();
|
|
#if ENABLE_STATISTICS
|
|
atomic_incr32(&_memory_active_heaps);
|
|
#endif
|
|
set_thread_heap(heap);
|
|
#if defined(_MSC_VER) && !defined(__clang__) && (!defined(BUILD_DYNAMIC_LINK) || !BUILD_DYNAMIC_LINK)
|
|
FlsSetValue(fls_key, heap);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
//! Finalize thread, orphan heap
|
|
void
|
|
rpmalloc_thread_finalize(void) {
|
|
heap_t* heap = get_thread_heap_raw();
|
|
if (heap)
|
|
_memory_heap_finalize(heap);
|
|
}
|
|
|
|
int
|
|
rpmalloc_is_thread_initialized(void) {
|
|
return (get_thread_heap_raw() != 0) ? 1 : 0;
|
|
}
|
|
|
|
const rpmalloc_config_t*
|
|
rpmalloc_config(void) {
|
|
return &_memory_config;
|
|
}
|
|
|
|
//! Map new pages to virtual memory
|
|
static void*
|
|
_memory_map_os(size_t size, size_t* offset) {
|
|
//Either size is a heap (a single page) or a (multiple) span - we only need to align spans, and only if larger than map granularity
|
|
size_t padding = ((size >= _memory_span_size) && (_memory_span_size > _memory_map_granularity)) ? _memory_span_size : 0;
|
|
assert(size >= _memory_page_size);
|
|
#if PLATFORM_WINDOWS
|
|
//Ok to MEM_COMMIT - according to MSDN, "actual physical pages are not allocated unless/until the virtual addresses are actually accessed"
|
|
void* ptr = VirtualAlloc(0, size + padding, (_memory_huge_pages ? MEM_LARGE_PAGES : 0) | MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
|
|
if (!ptr) {
|
|
assert(!"Failed to map virtual memory block");
|
|
return 0;
|
|
}
|
|
#else
|
|
int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_UNINITIALIZED;
|
|
# if defined(__APPLE__)
|
|
int fd = (int)VM_MAKE_TAG(240U);
|
|
if (_memory_huge_pages)
|
|
fd |= VM_FLAGS_SUPERPAGE_SIZE_2MB;
|
|
void* ptr = mmap(0, size + padding, PROT_READ | PROT_WRITE, flags, fd, 0);
|
|
# elif defined(MAP_HUGETLB)
|
|
void* ptr = mmap(0, size + padding, PROT_READ | PROT_WRITE, (_memory_huge_pages ? MAP_HUGETLB : 0) | flags, -1, 0);
|
|
# else
|
|
void* ptr = mmap(0, size + padding, PROT_READ | PROT_WRITE, flags, -1, 0);
|
|
# endif
|
|
if ((ptr == MAP_FAILED) || !ptr) {
|
|
assert("Failed to map virtual memory block" == 0);
|
|
return 0;
|
|
}
|
|
#endif
|
|
#if ENABLE_STATISTICS
|
|
atomic_add32(&_mapped_pages_os, (int32_t)((size + padding) >> _memory_page_size_shift));
|
|
#endif
|
|
if (padding) {
|
|
size_t final_padding = padding - ((uintptr_t)ptr & ~_memory_span_mask);
|
|
assert(final_padding <= _memory_span_size);
|
|
assert(final_padding <= padding);
|
|
assert(!(final_padding % 8));
|
|
ptr = pointer_offset(ptr, final_padding);
|
|
*offset = final_padding >> 3;
|
|
}
|
|
assert((size < _memory_span_size) || !((uintptr_t)ptr & ~_memory_span_mask));
|
|
return ptr;
|
|
}
|
|
|
|
//! Unmap pages from virtual memory
|
|
static void
|
|
_memory_unmap_os(void* address, size_t size, size_t offset, size_t release) {
|
|
assert(release || (offset == 0));
|
|
assert(!release || (release >= _memory_page_size));
|
|
assert(size >= _memory_page_size);
|
|
if (release && offset) {
|
|
offset <<= 3;
|
|
address = pointer_offset(address, -(int32_t)offset);
|
|
#if PLATFORM_POSIX
|
|
//Padding is always one span size
|
|
release += _memory_span_size;
|
|
#endif
|
|
}
|
|
#if !DISABLE_UNMAP
|
|
#if PLATFORM_WINDOWS
|
|
if (!VirtualFree(address, release ? 0 : size, release ? MEM_RELEASE : MEM_DECOMMIT)) {
|
|
assert(!"Failed to unmap virtual memory block");
|
|
}
|
|
#else
|
|
if (release) {
|
|
if (munmap(address, release)) {
|
|
assert("Failed to unmap virtual memory block" == 0);
|
|
}
|
|
}
|
|
else {
|
|
#if defined(POSIX_MADV_FREE)
|
|
if (posix_madvise(address, size, POSIX_MADV_FREE))
|
|
#endif
|
|
#if defined(POSIX_MADV_DONTNEED)
|
|
if (posix_madvise(address, size, POSIX_MADV_DONTNEED)) {
|
|
assert("Failed to madvise virtual memory block as free" == 0);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
#endif
|
|
#if ENABLE_STATISTICS
|
|
if (release)
|
|
atomic_add32(&_mapped_pages_os, -(int32_t)(release >> _memory_page_size_shift));
|
|
#endif
|
|
}
|
|
|
|
// Extern interface
|
|
|
|
TRACY_API RPMALLOC_ALLOCATOR void*
|
|
rpmalloc(size_t size) {
|
|
#if ENABLE_VALIDATE_ARGS
|
|
if (size >= MAX_ALLOC_SIZE) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
#endif
|
|
heap_t* heap = get_thread_heap();
|
|
return _memory_allocate(heap, size);
|
|
}
|
|
|
|
TRACY_API void
|
|
rpfree(void* ptr) {
|
|
_memory_deallocate(ptr);
|
|
}
|
|
|
|
extern inline RPMALLOC_ALLOCATOR void*
|
|
rpcalloc(size_t num, size_t size) {
|
|
size_t total;
|
|
#if ENABLE_VALIDATE_ARGS
|
|
#if PLATFORM_WINDOWS
|
|
int err = SizeTMult(num, size, &total);
|
|
if ((err != S_OK) || (total >= MAX_ALLOC_SIZE)) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
#else
|
|
int err = __builtin_umull_overflow(num, size, &total);
|
|
if (err || (total >= MAX_ALLOC_SIZE)) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
#endif
|
|
#else
|
|
total = num * size;
|
|
#endif
|
|
heap_t* heap = get_thread_heap();
|
|
void* block = _memory_allocate(heap, total);
|
|
memset(block, 0, total);
|
|
return block;
|
|
}
|
|
|
|
extern inline RPMALLOC_ALLOCATOR void*
|
|
rprealloc(void* ptr, size_t size) {
|
|
#if ENABLE_VALIDATE_ARGS
|
|
if (size >= MAX_ALLOC_SIZE) {
|
|
errno = EINVAL;
|
|
return ptr;
|
|
}
|
|
#endif
|
|
return _memory_reallocate(ptr, size, 0, 0);
|
|
}
|
|
|
|
extern RPMALLOC_ALLOCATOR void*
|
|
rpaligned_realloc(void* ptr, size_t alignment, size_t size, size_t oldsize,
|
|
unsigned int flags) {
|
|
#if ENABLE_VALIDATE_ARGS
|
|
if ((size + alignment < size) || (alignment > _memory_page_size)) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
#endif
|
|
void* block;
|
|
if (alignment > 32) {
|
|
size_t usablesize = _memory_usable_size(ptr);
|
|
if ((usablesize >= size) && (size >= (usablesize / 2)) && !((uintptr_t)ptr & (alignment - 1)))
|
|
return ptr;
|
|
|
|
block = rpaligned_alloc(alignment, size);
|
|
if (ptr) {
|
|
if (!oldsize)
|
|
oldsize = usablesize;
|
|
if (!(flags & RPMALLOC_NO_PRESERVE))
|
|
memcpy(block, ptr, oldsize < size ? oldsize : size);
|
|
rpfree(ptr);
|
|
}
|
|
//Mark as having aligned blocks
|
|
span_t* span = (span_t*)((uintptr_t)block & _memory_span_mask);
|
|
span->flags |= SPAN_FLAG_ALIGNED_BLOCKS;
|
|
} else {
|
|
block = _memory_reallocate(ptr, size, oldsize, flags);
|
|
}
|
|
return block;
|
|
}
|
|
|
|
extern RPMALLOC_ALLOCATOR void*
|
|
rpaligned_alloc(size_t alignment, size_t size) {
|
|
if (alignment <= 16)
|
|
return rpmalloc(size);
|
|
|
|
#if ENABLE_VALIDATE_ARGS
|
|
if ((size + alignment) < size) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
if (alignment & (alignment - 1)) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void* ptr = 0;
|
|
size_t align_mask = alignment - 1;
|
|
if (alignment < _memory_page_size) {
|
|
ptr = rpmalloc(size + alignment);
|
|
if ((uintptr_t)ptr & align_mask)
|
|
ptr = (void*)(((uintptr_t)ptr & ~(uintptr_t)align_mask) + alignment);
|
|
//Mark as having aligned blocks
|
|
span_t* span = (span_t*)((uintptr_t)ptr & _memory_span_mask);
|
|
span->flags |= SPAN_FLAG_ALIGNED_BLOCKS;
|
|
return ptr;
|
|
}
|
|
|
|
// Fallback to mapping new pages for this request. Since pointers passed
|
|
// to rpfree must be able to reach the start of the span by bitmasking of
|
|
// the address with the span size, the returned aligned pointer from this
|
|
// function must be with a span size of the start of the mapped area.
|
|
// In worst case this requires us to loop and map pages until we get a
|
|
// suitable memory address. It also means we can never align to span size
|
|
// or greater, since the span header will push alignment more than one
|
|
// span size away from span start (thus causing pointer mask to give us
|
|
// an invalid span start on free)
|
|
if (alignment & align_mask) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
if (alignment >= _memory_span_size) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
size_t extra_pages = alignment / _memory_page_size;
|
|
|
|
// Since each span has a header, we will at least need one extra memory page
|
|
size_t num_pages = 1 + (size / _memory_page_size);
|
|
if (size & (_memory_page_size - 1))
|
|
++num_pages;
|
|
|
|
if (extra_pages > num_pages)
|
|
num_pages = 1 + extra_pages;
|
|
|
|
size_t original_pages = num_pages;
|
|
size_t limit_pages = (_memory_span_size / _memory_page_size) * 2;
|
|
if (limit_pages < (original_pages * 2))
|
|
limit_pages = original_pages * 2;
|
|
|
|
size_t mapped_size, align_offset;
|
|
span_t* span;
|
|
|
|
retry:
|
|
align_offset = 0;
|
|
mapped_size = num_pages * _memory_page_size;
|
|
|
|
span = (span_t*)_memory_map(mapped_size, &align_offset);
|
|
if (!span) {
|
|
errno = ENOMEM;
|
|
return 0;
|
|
}
|
|
ptr = pointer_offset(span, SPAN_HEADER_SIZE);
|
|
|
|
if ((uintptr_t)ptr & align_mask)
|
|
ptr = (void*)(((uintptr_t)ptr & ~(uintptr_t)align_mask) + alignment);
|
|
|
|
if (((size_t)pointer_diff(ptr, span) >= _memory_span_size) ||
|
|
(pointer_offset(ptr, size) > pointer_offset(span, mapped_size)) ||
|
|
(((uintptr_t)ptr & _memory_span_mask) != (uintptr_t)span)) {
|
|
_memory_unmap(span, mapped_size, align_offset, mapped_size);
|
|
++num_pages;
|
|
if (num_pages > limit_pages) {
|
|
errno = EINVAL;
|
|
return 0;
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
//Store page count in span_count
|
|
span->size_class = (uint32_t)-1;
|
|
span->span_count = (uint32_t)num_pages;
|
|
span->align_offset = (uint32_t)align_offset;
|
|
_memory_statistics_add_peak(&_huge_pages_current, num_pages, _huge_pages_peak);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
extern inline RPMALLOC_ALLOCATOR void*
|
|
rpmemalign(size_t alignment, size_t size) {
|
|
return rpaligned_alloc(alignment, size);
|
|
}
|
|
|
|
extern inline int
|
|
rpposix_memalign(void **memptr, size_t alignment, size_t size) {
|
|
if (memptr)
|
|
*memptr = rpaligned_alloc(alignment, size);
|
|
else
|
|
return EINVAL;
|
|
return *memptr ? 0 : ENOMEM;
|
|
}
|
|
|
|
extern inline size_t
|
|
rpmalloc_usable_size(void* ptr) {
|
|
return (ptr ? _memory_usable_size(ptr) : 0);
|
|
}
|
|
|
|
extern inline void
|
|
rpmalloc_thread_collect(void) {
|
|
}
|
|
|
|
void
|
|
rpmalloc_thread_statistics(rpmalloc_thread_statistics_t* stats) {
|
|
memset(stats, 0, sizeof(rpmalloc_thread_statistics_t));
|
|
heap_t* heap = get_thread_heap_raw();
|
|
if (!heap)
|
|
return;
|
|
|
|
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
|
|
size_class_t* size_class = _memory_size_class + iclass;
|
|
heap_class_t* heap_class = heap->span_class + iclass;
|
|
span_t* span = heap_class->partial_span;
|
|
while (span) {
|
|
atomic_thread_fence_acquire();
|
|
size_t free_count = span->list_size;
|
|
if (span->state == SPAN_STATE_PARTIAL)
|
|
free_count += (size_class->block_count - span->used_count);
|
|
stats->sizecache = free_count * size_class->block_size;
|
|
span = span->next;
|
|
}
|
|
}
|
|
|
|
#if ENABLE_THREAD_CACHE
|
|
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
|
|
if (heap->span_cache[iclass])
|
|
stats->spancache = (size_t)heap->span_cache[iclass]->list_size * (iclass + 1) * _memory_span_size;
|
|
span_t* deferred_list = !iclass ? (span_t*)atomic_load_ptr(&heap->span_cache_deferred) : 0;
|
|
//TODO: Incorrect, for deferred lists the size is NOT stored in list_size
|
|
if (deferred_list)
|
|
stats->spancache = (size_t)deferred_list->list_size * (iclass + 1) * _memory_span_size;
|
|
}
|
|
#endif
|
|
#if ENABLE_STATISTICS
|
|
stats->thread_to_global = heap->thread_to_global;
|
|
stats->global_to_thread = heap->global_to_thread;
|
|
|
|
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
|
|
stats->span_use[iclass].current = (size_t)atomic_load32(&heap->span_use[iclass].current);
|
|
stats->span_use[iclass].peak = (size_t)heap->span_use[iclass].high;
|
|
stats->span_use[iclass].to_global = (size_t)heap->span_use[iclass].spans_to_global;
|
|
stats->span_use[iclass].from_global = (size_t)heap->span_use[iclass].spans_from_global;
|
|
stats->span_use[iclass].to_cache = (size_t)heap->span_use[iclass].spans_to_cache;
|
|
stats->span_use[iclass].from_cache = (size_t)heap->span_use[iclass].spans_from_cache;
|
|
stats->span_use[iclass].to_reserved = (size_t)heap->span_use[iclass].spans_to_reserved;
|
|
stats->span_use[iclass].from_reserved = (size_t)heap->span_use[iclass].spans_from_reserved;
|
|
stats->span_use[iclass].map_calls = (size_t)heap->span_use[iclass].spans_map_calls;
|
|
}
|
|
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
|
|
stats->size_use[iclass].alloc_current = (size_t)atomic_load32(&heap->size_class_use[iclass].alloc_current);
|
|
stats->size_use[iclass].alloc_peak = (size_t)heap->size_class_use[iclass].alloc_peak;
|
|
stats->size_use[iclass].alloc_total = (size_t)heap->size_class_use[iclass].alloc_total;
|
|
stats->size_use[iclass].free_total = (size_t)atomic_load32(&heap->size_class_use[iclass].free_total);
|
|
stats->size_use[iclass].spans_to_cache = (size_t)heap->size_class_use[iclass].spans_to_cache;
|
|
stats->size_use[iclass].spans_from_cache = (size_t)heap->size_class_use[iclass].spans_from_cache;
|
|
stats->size_use[iclass].spans_from_reserved = (size_t)heap->size_class_use[iclass].spans_from_reserved;
|
|
stats->size_use[iclass].map_calls = (size_t)heap->size_class_use[iclass].spans_map_calls;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
rpmalloc_global_statistics(rpmalloc_global_statistics_t* stats) {
|
|
memset(stats, 0, sizeof(rpmalloc_global_statistics_t));
|
|
#if ENABLE_STATISTICS
|
|
stats->mapped = (size_t)atomic_load32(&_mapped_pages) * _memory_page_size;
|
|
stats->mapped_peak = (size_t)_mapped_pages_peak * _memory_page_size;
|
|
stats->mapped_total = (size_t)atomic_load32(&_mapped_total) * _memory_page_size;
|
|
stats->unmapped_total = (size_t)atomic_load32(&_unmapped_total) * _memory_page_size;
|
|
stats->huge_alloc = (size_t)atomic_load32(&_huge_pages_current) * _memory_page_size;
|
|
stats->huge_alloc_peak = (size_t)_huge_pages_peak * _memory_page_size;
|
|
#endif
|
|
#if ENABLE_GLOBAL_CACHE
|
|
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
|
|
stats->cached += (size_t)atomic_load32(&_memory_span_cache[iclass].size) * (iclass + 1) * _memory_span_size;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
rpmalloc_dump_statistics(void* file) {
|
|
#if ENABLE_STATISTICS
|
|
//If you hit this assert, you still have active threads or forgot to finalize some thread(s)
|
|
assert(atomic_load32(&_memory_active_heaps) == 0);
|
|
|
|
for (size_t list_idx = 0; list_idx < HEAP_ARRAY_SIZE; ++list_idx) {
|
|
heap_t* heap = atomic_load_ptr(&_memory_heaps[list_idx]);
|
|
while (heap) {
|
|
fprintf(file, "Heap %d stats:\n", heap->id);
|
|
fprintf(file, "Class CurAlloc PeakAlloc TotAlloc TotFree BlkSize BlkCount SpansCur SpansPeak PeakAllocMiB ToCacheMiB FromCacheMiB FromReserveMiB MmapCalls\n");
|
|
for (size_t iclass = 0; iclass < SIZE_CLASS_COUNT; ++iclass) {
|
|
if (!heap->size_class_use[iclass].alloc_total) {
|
|
assert(!atomic_load32(&heap->size_class_use[iclass].free_total));
|
|
assert(!heap->size_class_use[iclass].spans_map_calls);
|
|
continue;
|
|
}
|
|
fprintf(file, "%3u: %10u %10u %10u %10u %8u %8u %8d %9d %13zu %11zu %12zu %14zu %9u\n", (uint32_t)iclass,
|
|
atomic_load32(&heap->size_class_use[iclass].alloc_current),
|
|
heap->size_class_use[iclass].alloc_peak,
|
|
heap->size_class_use[iclass].alloc_total,
|
|
atomic_load32(&heap->size_class_use[iclass].free_total),
|
|
_memory_size_class[iclass].block_size,
|
|
_memory_size_class[iclass].block_count,
|
|
heap->size_class_use[iclass].spans_current,
|
|
heap->size_class_use[iclass].spans_peak,
|
|
((size_t)heap->size_class_use[iclass].alloc_peak * (size_t)_memory_size_class[iclass].block_size) / (size_t)(1024 * 1024),
|
|
((size_t)heap->size_class_use[iclass].spans_to_cache * _memory_span_size) / (size_t)(1024 * 1024),
|
|
((size_t)heap->size_class_use[iclass].spans_from_cache * _memory_span_size) / (size_t)(1024 * 1024),
|
|
((size_t)heap->size_class_use[iclass].spans_from_reserved * _memory_span_size) / (size_t)(1024 * 1024),
|
|
heap->size_class_use[iclass].spans_map_calls);
|
|
}
|
|
fprintf(file, "Spans Current Peak PeakMiB Cached ToCacheMiB FromCacheMiB ToReserveMiB FromReserveMiB ToGlobalMiB FromGlobalMiB MmapCalls\n");
|
|
for (size_t iclass = 0; iclass < LARGE_CLASS_COUNT; ++iclass) {
|
|
if (!heap->span_use[iclass].high && !heap->span_use[iclass].spans_map_calls)
|
|
continue;
|
|
fprintf(file, "%4u: %8d %8u %8zu %7u %11zu %12zu %12zu %14zu %11zu %13zu %10u\n", (uint32_t)(iclass + 1),
|
|
atomic_load32(&heap->span_use[iclass].current),
|
|
heap->span_use[iclass].high,
|
|
((size_t)heap->span_use[iclass].high * (size_t)_memory_span_size * (iclass + 1)) / (size_t)(1024 * 1024),
|
|
heap->span_cache[iclass] ? heap->span_cache[iclass]->list_size : 0,
|
|
((size_t)heap->span_use[iclass].spans_to_cache * (iclass + 1) * _memory_span_size) / (size_t)(1024 * 1024),
|
|
((size_t)heap->span_use[iclass].spans_from_cache * (iclass + 1) * _memory_span_size) / (size_t)(1024 * 1024),
|
|
((size_t)heap->span_use[iclass].spans_to_reserved * (iclass + 1) * _memory_span_size) / (size_t)(1024 * 1024),
|
|
((size_t)heap->span_use[iclass].spans_from_reserved * (iclass + 1) * _memory_span_size) / (size_t)(1024 * 1024),
|
|
((size_t)heap->span_use[iclass].spans_to_global * (size_t)_memory_span_size * (iclass + 1)) / (size_t)(1024 * 1024),
|
|
((size_t)heap->span_use[iclass].spans_from_global * (size_t)_memory_span_size * (iclass + 1)) / (size_t)(1024 * 1024),
|
|
heap->span_use[iclass].spans_map_calls);
|
|
}
|
|
fprintf(file, "ThreadToGlobalMiB GlobalToThreadMiB\n");
|
|
fprintf(file, "%17zu %17zu\n", (size_t)heap->thread_to_global / (size_t)(1024 * 1024), (size_t)heap->global_to_thread / (size_t)(1024 * 1024));
|
|
heap = heap->next_heap;
|
|
}
|
|
}
|
|
|
|
fprintf(file, "Global stats:\n");
|
|
size_t huge_current = (size_t)atomic_load32(&_huge_pages_current) * _memory_page_size;
|
|
size_t huge_peak = (size_t)_huge_pages_peak * _memory_page_size;
|
|
fprintf(file, "HugeCurrentMiB HugePeakMiB\n");
|
|
fprintf(file, "%14zu %11zu\n", huge_current / (size_t)(1024 * 1024), huge_peak / (size_t)(1024 * 1024));
|
|
|
|
size_t mapped = (size_t)atomic_load32(&_mapped_pages) * _memory_page_size;
|
|
size_t mapped_os = (size_t)atomic_load32(&_mapped_pages_os) * _memory_page_size;
|
|
size_t mapped_peak = (size_t)_mapped_pages_peak * _memory_page_size;
|
|
size_t mapped_total = (size_t)atomic_load32(&_mapped_total) * _memory_page_size;
|
|
size_t unmapped_total = (size_t)atomic_load32(&_unmapped_total) * _memory_page_size;
|
|
size_t reserved_total = (size_t)atomic_load32(&_reserved_spans) * _memory_span_size;
|
|
fprintf(file, "MappedMiB MappedOSMiB MappedPeakMiB MappedTotalMiB UnmappedTotalMiB ReservedTotalMiB\n");
|
|
fprintf(file, "%9zu %11zu %13zu %14zu %16zu %16zu\n",
|
|
mapped / (size_t)(1024 * 1024),
|
|
mapped_os / (size_t)(1024 * 1024),
|
|
mapped_peak / (size_t)(1024 * 1024),
|
|
mapped_total / (size_t)(1024 * 1024),
|
|
unmapped_total / (size_t)(1024 * 1024),
|
|
reserved_total / (size_t)(1024 * 1024));
|
|
|
|
fprintf(file, "\n");
|
|
#else
|
|
(void)sizeof(file);
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|