mirror of
https://github.com/wolfpld/tracy.git
synced 2024-11-26 16:04:34 +00:00
2211 lines
80 KiB
C++
2211 lines
80 KiB
C++
// ______ _____ ______ _________
|
||
// ______________ ___ /_ ___(_)_______ ___ /_ ______ ______ ______ /
|
||
// __ ___/_ __ \__ __ \__ / __ __ \ __ __ \_ __ \_ __ \_ __ /
|
||
// _ / / /_/ /_ /_/ /_ / _ / / / _ / / // /_/ // /_/ // /_/ /
|
||
// /_/ \____/ /_.___/ /_/ /_/ /_/ ________/_/ /_/ \____/ \____/ \__,_/
|
||
// _/_____/
|
||
//
|
||
// Fast & memory efficient hashtable based on robin hood hashing for C++11/14/17/20
|
||
// version 3.5.0
|
||
// https://github.com/martinus/robin-hood-hashing
|
||
//
|
||
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
|
||
// SPDX-License-Identifier: MIT
|
||
// Copyright (c) 2018-2020 Martin Ankerl <http://martin.ankerl.com>
|
||
//
|
||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
// of this software and associated documentation files (the "Software"), to deal
|
||
// in the Software without restriction, including without limitation the rights
|
||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
// copies of the Software, and to permit persons to whom the Software is
|
||
// furnished to do so, subject to the following conditions:
|
||
//
|
||
// The above copyright notice and this permission notice shall be included in all
|
||
// copies or substantial portions of the Software.
|
||
//
|
||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
// SOFTWARE.
|
||
|
||
#ifndef ROBIN_HOOD_H_INCLUDED
|
||
#define ROBIN_HOOD_H_INCLUDED
|
||
|
||
// see https://semver.org/
|
||
#define ROBIN_HOOD_VERSION_MAJOR 3 // for incompatible API changes
|
||
#define ROBIN_HOOD_VERSION_MINOR 5 // for adding functionality in a backwards-compatible manner
|
||
#define ROBIN_HOOD_VERSION_PATCH 0 // for backwards-compatible bug fixes
|
||
|
||
#include <algorithm>
|
||
#include <cstdlib>
|
||
#include <cstring>
|
||
#include <functional>
|
||
#include <stdexcept>
|
||
#include <string>
|
||
#include <type_traits>
|
||
#include <utility>
|
||
|
||
// #define ROBIN_HOOD_LOG_ENABLED
|
||
#ifdef ROBIN_HOOD_LOG_ENABLED
|
||
# include <iostream>
|
||
# define ROBIN_HOOD_LOG(x) std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << x << std::endl
|
||
#else
|
||
# define ROBIN_HOOD_LOG(x)
|
||
#endif
|
||
|
||
// #define ROBIN_HOOD_TRACE_ENABLED
|
||
#ifdef ROBIN_HOOD_TRACE_ENABLED
|
||
# include <iostream>
|
||
# define ROBIN_HOOD_TRACE(x) \
|
||
std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << x << std::endl
|
||
#else
|
||
# define ROBIN_HOOD_TRACE(x)
|
||
#endif
|
||
|
||
// #define ROBIN_HOOD_COUNT_ENABLED
|
||
#ifdef ROBIN_HOOD_COUNT_ENABLED
|
||
# include <iostream>
|
||
# define ROBIN_HOOD_COUNT(x) ++counts().x;
|
||
namespace tracy {
|
||
struct Counts {
|
||
uint64_t shiftUp{};
|
||
uint64_t shiftDown{};
|
||
};
|
||
inline std::ostream& operator<<(std::ostream& os, Counts const& c) {
|
||
return os << c.shiftUp << " shiftUp" << std::endl << c.shiftDown << " shiftDown" << std::endl;
|
||
}
|
||
|
||
static Counts& counts() {
|
||
static Counts counts{};
|
||
return counts;
|
||
}
|
||
} // namespace robin_hood
|
||
#else
|
||
# define ROBIN_HOOD_COUNT(x)
|
||
#endif
|
||
|
||
// all non-argument macros should use this facility. See
|
||
// https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/
|
||
#define ROBIN_HOOD(x) ROBIN_HOOD_PRIVATE_DEFINITION_##x()
|
||
|
||
// mark unused members with this macro
|
||
#define ROBIN_HOOD_UNUSED(identifier)
|
||
|
||
// bitness
|
||
#if SIZE_MAX == UINT32_MAX
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 32
|
||
#elif SIZE_MAX == UINT64_MAX
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 64
|
||
#else
|
||
# error Unsupported bitness
|
||
#endif
|
||
|
||
// endianess
|
||
#ifdef _MSC_VER
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() 1
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() 0
|
||
#else
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() \
|
||
(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
||
#endif
|
||
|
||
// inline
|
||
#ifdef _MSC_VER
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __declspec(noinline)
|
||
#else
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __attribute__((noinline))
|
||
#endif
|
||
|
||
// exceptions
|
||
#if !defined(__cpp_exceptions) && !defined(__EXCEPTIONS) && !defined(_CPPUNWIND)
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 0
|
||
#else
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 1
|
||
#endif
|
||
|
||
// count leading/trailing bits
|
||
#if ( ( defined __i386 || defined __x86_64__ ) && defined __BMI__ ) || defined _M_IX86 || defined _M_X64
|
||
# ifdef _MSC_VER
|
||
# include <intrin.h>
|
||
# else
|
||
# include <x86intrin.h>
|
||
# endif
|
||
# if ROBIN_HOOD(BITNESS) == 32
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() _tzcnt_u32
|
||
# else
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() _tzcnt_u64
|
||
# endif
|
||
# if defined __AVX2__ || defined __BMI__
|
||
# define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ROBIN_HOOD(CTZ)(x)
|
||
# else
|
||
# define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS))
|
||
# endif
|
||
#elif defined _MSC_VER
|
||
# if ROBIN_HOOD(BITNESS) == 32
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward
|
||
# else
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward64
|
||
# endif
|
||
# include <intrin.h>
|
||
# pragma intrinsic(ROBIN_HOOD(BITSCANFORWARD))
|
||
# define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) \
|
||
[](size_t mask) noexcept -> int { \
|
||
unsigned long index; \
|
||
return ROBIN_HOOD(BITSCANFORWARD)(&index, mask) ? static_cast<int>(index) \
|
||
: ROBIN_HOOD(BITNESS); \
|
||
}(x)
|
||
#else
|
||
# if ROBIN_HOOD(BITNESS) == 32
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzl
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzl
|
||
# else
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzll
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzll
|
||
# endif
|
||
# define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) ((x) ? ROBIN_HOOD(CLZ)(x) : ROBIN_HOOD(BITNESS))
|
||
# define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS))
|
||
#endif
|
||
|
||
// fallthrough
|
||
#ifndef __has_cpp_attribute // For backwards compatibility
|
||
# define __has_cpp_attribute(x) 0
|
||
#endif
|
||
#if __has_cpp_attribute(clang::fallthrough)
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[clang::fallthrough]]
|
||
#elif __has_cpp_attribute(gnu::fallthrough)
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[gnu::fallthrough]]
|
||
#else
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH()
|
||
#endif
|
||
|
||
// likely/unlikely
|
||
#ifdef _MSC_VER
|
||
# define ROBIN_HOOD_LIKELY(condition) condition
|
||
# define ROBIN_HOOD_UNLIKELY(condition) condition
|
||
#else
|
||
# define ROBIN_HOOD_LIKELY(condition) __builtin_expect(condition, 1)
|
||
# define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(condition, 0)
|
||
#endif
|
||
|
||
// workaround missing "is_trivially_copyable" in g++ < 5.0
|
||
// See https://stackoverflow.com/a/31798726/48181
|
||
#if defined(__GNUC__) && __GNUC__ < 5
|
||
# define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
|
||
#else
|
||
# define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
|
||
#endif
|
||
|
||
// helpers for C++ versions, see https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html
|
||
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX() __cplusplus
|
||
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX98() 199711L
|
||
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX11() 201103L
|
||
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX14() 201402L
|
||
#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX17() 201703L
|
||
|
||
#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17)
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() [[nodiscard]]
|
||
#else
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD()
|
||
#endif
|
||
|
||
namespace tracy {
|
||
|
||
#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
|
||
# define ROBIN_HOOD_STD std
|
||
#else
|
||
|
||
// c++11 compatibility layer
|
||
namespace ROBIN_HOOD_STD {
|
||
template <class T>
|
||
struct alignment_of
|
||
: std::integral_constant<std::size_t, alignof(typename std::remove_all_extents<T>::type)> {};
|
||
|
||
template <class T, T... Ints>
|
||
class integer_sequence {
|
||
public:
|
||
using value_type = T;
|
||
static_assert(std::is_integral<value_type>::value, "not integral type");
|
||
static constexpr std::size_t size() noexcept {
|
||
return sizeof...(Ints);
|
||
}
|
||
};
|
||
template <std::size_t... Inds>
|
||
using index_sequence = integer_sequence<std::size_t, Inds...>;
|
||
|
||
namespace detail_ {
|
||
template <class T, T Begin, T End, bool>
|
||
struct IntSeqImpl {
|
||
using TValue = T;
|
||
static_assert(std::is_integral<TValue>::value, "not integral type");
|
||
static_assert(Begin >= 0 && Begin < End, "unexpected argument (Begin<0 || Begin<=End)");
|
||
|
||
template <class, class>
|
||
struct IntSeqCombiner;
|
||
|
||
template <TValue... Inds0, TValue... Inds1>
|
||
struct IntSeqCombiner<integer_sequence<TValue, Inds0...>, integer_sequence<TValue, Inds1...>> {
|
||
using TResult = integer_sequence<TValue, Inds0..., Inds1...>;
|
||
};
|
||
|
||
using TResult =
|
||
typename IntSeqCombiner<typename IntSeqImpl<TValue, Begin, Begin + (End - Begin) / 2,
|
||
(End - Begin) / 2 == 1>::TResult,
|
||
typename IntSeqImpl<TValue, Begin + (End - Begin) / 2, End,
|
||
(End - Begin + 1) / 2 == 1>::TResult>::TResult;
|
||
};
|
||
|
||
template <class T, T Begin>
|
||
struct IntSeqImpl<T, Begin, Begin, false> {
|
||
using TValue = T;
|
||
static_assert(std::is_integral<TValue>::value, "not integral type");
|
||
static_assert(Begin >= 0, "unexpected argument (Begin<0)");
|
||
using TResult = integer_sequence<TValue>;
|
||
};
|
||
|
||
template <class T, T Begin, T End>
|
||
struct IntSeqImpl<T, Begin, End, true> {
|
||
using TValue = T;
|
||
static_assert(std::is_integral<TValue>::value, "not integral type");
|
||
static_assert(Begin >= 0, "unexpected argument (Begin<0)");
|
||
using TResult = integer_sequence<TValue, Begin>;
|
||
};
|
||
} // namespace detail_
|
||
|
||
template <class T, T N>
|
||
using make_integer_sequence = typename detail_::IntSeqImpl<T, 0, N, (N - 0) == 1>::TResult;
|
||
|
||
template <std::size_t N>
|
||
using make_index_sequence = make_integer_sequence<std::size_t, N>;
|
||
|
||
template <class... T>
|
||
using index_sequence_for = make_index_sequence<sizeof...(T)>;
|
||
|
||
} // namespace ROBIN_HOOD_STD
|
||
|
||
#endif
|
||
|
||
namespace detail {
|
||
|
||
// umul
|
||
#if defined(__SIZEOF_INT128__)
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_UMUL128() 1
|
||
# if defined(__GNUC__) || defined(__clang__)
|
||
# pragma GCC diagnostic push
|
||
# pragma GCC diagnostic ignored "-Wpedantic"
|
||
using uint128_t = unsigned __int128;
|
||
# pragma GCC diagnostic pop
|
||
# endif
|
||
inline uint64_t umul128(uint64_t a, uint64_t b, uint64_t* high) noexcept {
|
||
auto result = static_cast<uint128_t>(a) * static_cast<uint128_t>(b);
|
||
*high = static_cast<uint64_t>(result >> 64U);
|
||
return static_cast<uint64_t>(result);
|
||
}
|
||
#elif (defined(_MSC_VER) && ROBIN_HOOD(BITNESS) == 64)
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_UMUL128() 1
|
||
# include <intrin.h> // for __umulh
|
||
# pragma intrinsic(__umulh)
|
||
# ifndef _M_ARM64
|
||
# pragma intrinsic(_umul128)
|
||
# endif
|
||
inline uint64_t umul128(uint64_t a, uint64_t b, uint64_t* high) noexcept {
|
||
# ifdef _M_ARM64
|
||
*high = __umulh(a, b);
|
||
return ((uint64_t)(a)) * (b);
|
||
# else
|
||
return _umul128(a, b, high);
|
||
# endif
|
||
}
|
||
#else
|
||
# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_UMUL128() 0
|
||
#endif
|
||
|
||
// This cast gets rid of warnings like "cast from 'uint8_t*' {aka 'unsigned char*'} to
|
||
// 'uint64_t*' {aka 'long unsigned int*'} increases required alignment of target type". Use with
|
||
// care!
|
||
template <typename T>
|
||
inline T reinterpret_cast_no_cast_align_warning(void* ptr) noexcept {
|
||
return reinterpret_cast<T>(ptr);
|
||
}
|
||
|
||
template <typename T>
|
||
inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept {
|
||
return reinterpret_cast<T>(ptr);
|
||
}
|
||
|
||
// make sure this is not inlined as it is slow and dramatically enlarges code, thus making other
|
||
// inlinings more difficult. Throws are also generally the slow path.
|
||
template <typename E, typename... Args>
|
||
ROBIN_HOOD(NOINLINE)
|
||
#if ROBIN_HOOD(HAS_EXCEPTIONS)
|
||
void doThrow(Args&&... args) {
|
||
// NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-array-to-pointer-decay)
|
||
throw E(std::forward<Args>(args)...);
|
||
}
|
||
#else
|
||
void doThrow(Args&&... ROBIN_HOOD_UNUSED(args) /*unused*/) {
|
||
abort();
|
||
}
|
||
#endif
|
||
|
||
template <typename E, typename T, typename... Args>
|
||
T* assertNotNull(T* t, Args&&... args) {
|
||
if (ROBIN_HOOD_UNLIKELY(nullptr == t)) {
|
||
doThrow<E>(std::forward<Args>(args)...);
|
||
}
|
||
return t;
|
||
}
|
||
|
||
template <typename T>
|
||
inline T unaligned_load(void const* ptr) noexcept {
|
||
// using memcpy so we don't get into unaligned load problems.
|
||
// compiler should optimize this very well anyways.
|
||
T t;
|
||
std::memcpy(&t, ptr, sizeof(T));
|
||
return t;
|
||
}
|
||
|
||
// Allocates bulks of memory for objects of type T. This deallocates the memory in the destructor,
|
||
// and keeps a linked list of the allocated memory around. Overhead per allocation is the size of a
|
||
// pointer.
|
||
template <typename T, size_t MinNumAllocs = 4, size_t MaxNumAllocs = 256>
|
||
class BulkPoolAllocator {
|
||
public:
|
||
BulkPoolAllocator() noexcept = default;
|
||
|
||
// does not copy anything, just creates a new allocator.
|
||
BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept
|
||
: mHead(nullptr)
|
||
, mListForFree(nullptr) {}
|
||
|
||
BulkPoolAllocator(BulkPoolAllocator&& o) noexcept
|
||
: mHead(o.mHead)
|
||
, mListForFree(o.mListForFree) {
|
||
o.mListForFree = nullptr;
|
||
o.mHead = nullptr;
|
||
}
|
||
|
||
BulkPoolAllocator& operator=(BulkPoolAllocator&& o) noexcept {
|
||
reset();
|
||
mHead = o.mHead;
|
||
mListForFree = o.mListForFree;
|
||
o.mListForFree = nullptr;
|
||
o.mHead = nullptr;
|
||
return *this;
|
||
}
|
||
|
||
BulkPoolAllocator&
|
||
// NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp)
|
||
operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept {
|
||
// does not do anything
|
||
return *this;
|
||
}
|
||
|
||
~BulkPoolAllocator() noexcept {
|
||
reset();
|
||
}
|
||
|
||
// Deallocates all allocated memory.
|
||
void reset() noexcept {
|
||
while (mListForFree) {
|
||
T* tmp = *mListForFree;
|
||
free(mListForFree);
|
||
mListForFree = reinterpret_cast_no_cast_align_warning<T**>(tmp);
|
||
}
|
||
mHead = nullptr;
|
||
}
|
||
|
||
// allocates, but does NOT initialize. Use in-place new constructor, e.g.
|
||
// T* obj = pool.allocate();
|
||
// ::new (static_cast<void*>(obj)) T();
|
||
T* allocate() {
|
||
T* tmp = mHead;
|
||
if (!tmp) {
|
||
tmp = performAllocation();
|
||
}
|
||
|
||
mHead = *reinterpret_cast_no_cast_align_warning<T**>(tmp);
|
||
return tmp;
|
||
}
|
||
|
||
// does not actually deallocate but puts it in store.
|
||
// make sure you have already called the destructor! e.g. with
|
||
// obj->~T();
|
||
// pool.deallocate(obj);
|
||
void deallocate(T* obj) noexcept {
|
||
*reinterpret_cast_no_cast_align_warning<T**>(obj) = mHead;
|
||
mHead = obj;
|
||
}
|
||
|
||
// Adds an already allocated block of memory to the allocator. This allocator is from now on
|
||
// responsible for freeing the data (with free()). If the provided data is not large enough to
|
||
// make use of, it is immediately freed. Otherwise it is reused and freed in the destructor.
|
||
void addOrFree(void* ptr, const size_t numBytes) noexcept {
|
||
// calculate number of available elements in ptr
|
||
if (numBytes < ALIGNMENT + ALIGNED_SIZE) {
|
||
// not enough data for at least one element. Free and return.
|
||
free(ptr);
|
||
} else {
|
||
add(ptr, numBytes);
|
||
}
|
||
}
|
||
|
||
void swap(BulkPoolAllocator<T, MinNumAllocs, MaxNumAllocs>& other) noexcept {
|
||
using std::swap;
|
||
swap(mHead, other.mHead);
|
||
swap(mListForFree, other.mListForFree);
|
||
}
|
||
|
||
private:
|
||
// iterates the list of allocated memory to calculate how many to alloc next.
|
||
// Recalculating this each time saves us a size_t member.
|
||
// This ignores the fact that memory blocks might have been added manually with addOrFree. In
|
||
// practice, this should not matter much.
|
||
ROBIN_HOOD(NODISCARD) size_t calcNumElementsToAlloc() const noexcept {
|
||
auto tmp = mListForFree;
|
||
size_t numAllocs = MinNumAllocs;
|
||
|
||
while (numAllocs * 2 <= MaxNumAllocs && tmp) {
|
||
auto x = reinterpret_cast<T***>(tmp);
|
||
tmp = *x;
|
||
numAllocs *= 2;
|
||
}
|
||
|
||
return numAllocs;
|
||
}
|
||
|
||
// WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree().
|
||
void add(void* ptr, const size_t numBytes) noexcept {
|
||
const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE;
|
||
|
||
auto data = reinterpret_cast<T**>(ptr);
|
||
|
||
// link free list
|
||
auto x = reinterpret_cast<T***>(data);
|
||
*x = mListForFree;
|
||
mListForFree = data;
|
||
|
||
// create linked list for newly allocated data
|
||
auto const headT =
|
||
reinterpret_cast_no_cast_align_warning<T*>(reinterpret_cast<char*>(ptr) + ALIGNMENT);
|
||
|
||
auto const head = reinterpret_cast<char*>(headT);
|
||
|
||
// Visual Studio compiler automatically unrolls this loop, which is pretty cool
|
||
for (size_t i = 0; i < numElements; ++i) {
|
||
*reinterpret_cast_no_cast_align_warning<char**>(head + i * ALIGNED_SIZE) =
|
||
head + (i + 1) * ALIGNED_SIZE;
|
||
}
|
||
|
||
// last one points to 0
|
||
*reinterpret_cast_no_cast_align_warning<T**>(head + (numElements - 1) * ALIGNED_SIZE) =
|
||
mHead;
|
||
mHead = headT;
|
||
}
|
||
|
||
// Called when no memory is available (mHead == 0).
|
||
// Don't inline this slow path.
|
||
ROBIN_HOOD(NOINLINE) T* performAllocation() {
|
||
size_t const numElementsToAlloc = calcNumElementsToAlloc();
|
||
|
||
// alloc new memory: [prev |T, T, ... T]
|
||
// std::cout << (sizeof(T*) + ALIGNED_SIZE * numElementsToAlloc) << " bytes" << std::endl;
|
||
size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc;
|
||
add(assertNotNull<std::bad_alloc>(malloc(bytes)), bytes);
|
||
return mHead;
|
||
}
|
||
|
||
// enforce byte alignment of the T's
|
||
#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
|
||
static constexpr size_t ALIGNMENT =
|
||
(std::max)(std::alignment_of<T>::value, std::alignment_of<T*>::value);
|
||
#else
|
||
static const size_t ALIGNMENT =
|
||
(ROBIN_HOOD_STD::alignment_of<T>::value > ROBIN_HOOD_STD::alignment_of<T*>::value)
|
||
? ROBIN_HOOD_STD::alignment_of<T>::value
|
||
: +ROBIN_HOOD_STD::alignment_of<T*>::value; // the + is for walkarround
|
||
#endif
|
||
|
||
static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT;
|
||
|
||
static_assert(MinNumAllocs >= 1, "MinNumAllocs");
|
||
static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs");
|
||
static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE");
|
||
static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod");
|
||
static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT");
|
||
|
||
T* mHead{nullptr};
|
||
T** mListForFree{nullptr};
|
||
};
|
||
|
||
template <typename T, size_t MinSize, size_t MaxSize, bool IsFlatMap>
|
||
struct NodeAllocator;
|
||
|
||
// dummy allocator that does nothing
|
||
template <typename T, size_t MinSize, size_t MaxSize>
|
||
struct NodeAllocator<T, MinSize, MaxSize, true> {
|
||
|
||
// we are not using the data, so just free it.
|
||
void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) noexcept {
|
||
free(ptr);
|
||
}
|
||
};
|
||
|
||
template <typename T, size_t MinSize, size_t MaxSize>
|
||
struct NodeAllocator<T, MinSize, MaxSize, false> : public BulkPoolAllocator<T, MinSize, MaxSize> {};
|
||
|
||
// dummy hash, unsed as mixer when robin_hood::hash is already used
|
||
template <typename T>
|
||
struct identity_hash {
|
||
constexpr size_t operator()(T const& obj) const noexcept {
|
||
return static_cast<size_t>(obj);
|
||
}
|
||
};
|
||
|
||
// c++14 doesn't have is_nothrow_swappable, and clang++ 6.0.1 doesn't like it either, so I'm making
|
||
// my own here.
|
||
namespace swappable {
|
||
using std::swap;
|
||
template <typename T>
|
||
struct nothrow {
|
||
static const bool value = noexcept(swap(std::declval<T&>(), std::declval<T&>()));
|
||
};
|
||
|
||
} // namespace swappable
|
||
|
||
} // namespace detail
|
||
|
||
struct is_transparent_tag {};
|
||
|
||
// A custom pair implementation is used in the map because std::pair is not is_trivially_copyable,
|
||
// which means it would not be allowed to be used in std::memcpy. This struct is copyable, which is
|
||
// also tested.
|
||
template <typename T1, typename T2>
|
||
struct pair {
|
||
using first_type = T1;
|
||
using second_type = T2;
|
||
|
||
template <typename U1 = T1, typename U2 = T2,
|
||
typename = typename std::enable_if<std::is_default_constructible<U1>::value &&
|
||
std::is_default_constructible<U2>::value>::type>
|
||
constexpr pair() noexcept(noexcept(U1()) && noexcept(U2()))
|
||
: first()
|
||
, second() {}
|
||
|
||
// pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
|
||
explicit constexpr pair(std::pair<T1, T2> const& o) noexcept(
|
||
noexcept(T1(std::declval<T1 const&>())) && noexcept(T2(std::declval<T2 const&>())))
|
||
: first(o.first)
|
||
, second(o.second) {}
|
||
|
||
// pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
|
||
explicit constexpr pair(std::pair<T1, T2>&& o) noexcept(
|
||
noexcept(T1(std::move(std::declval<T1&&>()))) &&
|
||
noexcept(T2(std::move(std::declval<T2&&>()))))
|
||
: first(std::move(o.first))
|
||
, second(std::move(o.second)) {}
|
||
|
||
constexpr pair(T1&& a, T2&& b) noexcept(noexcept(T1(std::move(std::declval<T1&&>()))) &&
|
||
noexcept(T2(std::move(std::declval<T2&&>()))))
|
||
: first(std::move(a))
|
||
, second(std::move(b)) {}
|
||
|
||
template <typename U1, typename U2>
|
||
constexpr pair(U1&& a, U2&& b) noexcept(noexcept(T1(std::forward<U1>(std::declval<U1&&>()))) &&
|
||
noexcept(T2(std::forward<U2>(std::declval<U2&&>()))))
|
||
: first(std::forward<U1>(a))
|
||
, second(std::forward<U2>(b)) {}
|
||
|
||
template <typename... U1, typename... U2>
|
||
constexpr pair(
|
||
std::piecewise_construct_t /*unused*/, std::tuple<U1...> a,
|
||
std::tuple<U2...> b) noexcept(noexcept(pair(std::declval<std::tuple<U1...>&>(),
|
||
std::declval<std::tuple<U2...>&>(),
|
||
ROBIN_HOOD_STD::index_sequence_for<U1...>(),
|
||
ROBIN_HOOD_STD::index_sequence_for<U2...>())))
|
||
: pair(a, b, ROBIN_HOOD_STD::index_sequence_for<U1...>(),
|
||
ROBIN_HOOD_STD::index_sequence_for<U2...>()) {}
|
||
|
||
// constructor called from the std::piecewise_construct_t ctor
|
||
template <typename... U1, size_t... I1, typename... U2, size_t... I2>
|
||
pair(std::tuple<U1...>& a, std::tuple<U2...>& b,
|
||
ROBIN_HOOD_STD::index_sequence<I1...> /*unused*/,
|
||
ROBIN_HOOD_STD::index_sequence<
|
||
I2...> /*unused*/) noexcept(noexcept(T1(std::
|
||
forward<U1>(std::get<I1>(
|
||
std::declval<
|
||
std::tuple<U1...>&>()))...)) &&
|
||
noexcept(T2(std::forward<U2>(
|
||
std::get<I2>(std::declval<std::tuple<U2...>&>()))...)))
|
||
: first(std::forward<U1>(std::get<I1>(a))...)
|
||
, second(std::forward<U2>(std::get<I2>(b))...) {
|
||
// make visual studio compiler happy about warning about unused a & b.
|
||
// Visual studio's pair implementation disables warning 4100.
|
||
(void)a;
|
||
(void)b;
|
||
}
|
||
|
||
ROBIN_HOOD(NODISCARD) first_type& getFirst() noexcept {
|
||
return first;
|
||
}
|
||
ROBIN_HOOD(NODISCARD) first_type const& getFirst() const noexcept {
|
||
return first;
|
||
}
|
||
ROBIN_HOOD(NODISCARD) second_type& getSecond() noexcept {
|
||
return second;
|
||
}
|
||
ROBIN_HOOD(NODISCARD) second_type const& getSecond() const noexcept {
|
||
return second;
|
||
}
|
||
|
||
void swap(pair<T1, T2>& o) noexcept((detail::swappable::nothrow<T1>::value) &&
|
||
(detail::swappable::nothrow<T2>::value)) {
|
||
using std::swap;
|
||
swap(first, o.first);
|
||
swap(second, o.second);
|
||
}
|
||
|
||
T1 first; // NOLINT(misc-non-private-member-variables-in-classes)
|
||
T2 second; // NOLINT(misc-non-private-member-variables-in-classes)
|
||
};
|
||
|
||
template <typename A, typename B>
|
||
void swap(pair<A, B>& a, pair<A, B>& b) noexcept(
|
||
noexcept(std::declval<pair<A, B>&>().swap(std::declval<pair<A, B>&>()))) {
|
||
a.swap(b);
|
||
}
|
||
|
||
// Hash an arbitrary amount of bytes. This is basically Murmur2 hash without caring about big
|
||
// endianness. TODO(martinus) add a fallback for very large strings?
|
||
static size_t hash_bytes(void const* ptr, size_t const len) noexcept {
|
||
static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995);
|
||
static constexpr uint64_t seed = UINT64_C(0xe17a1465);
|
||
static constexpr unsigned int r = 47;
|
||
|
||
auto const data64 = static_cast<uint64_t const*>(ptr);
|
||
uint64_t h = seed ^ (len * m);
|
||
|
||
size_t const n_blocks = len / 8;
|
||
for (size_t i = 0; i < n_blocks; ++i) {
|
||
auto k = detail::unaligned_load<uint64_t>(data64 + i);
|
||
|
||
k *= m;
|
||
k ^= k >> r;
|
||
k *= m;
|
||
|
||
h ^= k;
|
||
h *= m;
|
||
}
|
||
|
||
auto const data8 = reinterpret_cast<uint8_t const*>(data64 + n_blocks);
|
||
switch (len & 7U) {
|
||
case 7:
|
||
h ^= static_cast<uint64_t>(data8[6]) << 48U;
|
||
ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
|
||
case 6:
|
||
h ^= static_cast<uint64_t>(data8[5]) << 40U;
|
||
ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
|
||
case 5:
|
||
h ^= static_cast<uint64_t>(data8[4]) << 32U;
|
||
ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
|
||
case 4:
|
||
h ^= static_cast<uint64_t>(data8[3]) << 24U;
|
||
ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
|
||
case 3:
|
||
h ^= static_cast<uint64_t>(data8[2]) << 16U;
|
||
ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
|
||
case 2:
|
||
h ^= static_cast<uint64_t>(data8[1]) << 8U;
|
||
ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
|
||
case 1:
|
||
h ^= static_cast<uint64_t>(data8[0]);
|
||
h *= m;
|
||
ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
|
||
default:
|
||
break;
|
||
}
|
||
|
||
h ^= h >> r;
|
||
h *= m;
|
||
h ^= h >> r;
|
||
return static_cast<size_t>(h);
|
||
}
|
||
|
||
inline size_t hash_int(uint64_t obj) noexcept {
|
||
#if ROBIN_HOOD(HAS_UMUL128)
|
||
// 167079903232 masksum, 120428523 ops best: 0xde5fb9d2630458e9
|
||
static constexpr uint64_t k = UINT64_C(0xde5fb9d2630458e9);
|
||
uint64_t h;
|
||
uint64_t l = detail::umul128(obj, k, &h);
|
||
return h + l;
|
||
#elif ROBIN_HOOD(BITNESS) == 32
|
||
uint64_t const r = obj * UINT64_C(0xca4bcaa75ec3f625);
|
||
auto h = static_cast<uint32_t>(r >> 32U);
|
||
auto l = static_cast<uint32_t>(r);
|
||
return h + l;
|
||
#else
|
||
// murmurhash 3 finalizer
|
||
uint64_t h = obj;
|
||
h ^= h >> 33;
|
||
h *= 0xff51afd7ed558ccd;
|
||
h ^= h >> 33;
|
||
h *= 0xc4ceb9fe1a85ec53;
|
||
h ^= h >> 33;
|
||
return static_cast<size_t>(h);
|
||
#endif
|
||
}
|
||
|
||
// A thin wrapper around std::hash, performing an additional simple mixing step of the result.
|
||
template <typename T>
|
||
struct hash : public std::hash<T> {
|
||
size_t operator()(T const& obj) const
|
||
noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) {
|
||
// call base hash
|
||
auto result = std::hash<T>::operator()(obj);
|
||
// return mixed of that, to be save against identity has
|
||
return hash_int(static_cast<uint64_t>(result));
|
||
}
|
||
};
|
||
|
||
template <>
|
||
struct hash<std::string> {
|
||
size_t operator()(std::string const& str) const noexcept {
|
||
return hash_bytes(str.data(), str.size());
|
||
}
|
||
};
|
||
|
||
template <class T>
|
||
struct hash<T*> {
|
||
size_t operator()(T* ptr) const noexcept {
|
||
return hash_int(reinterpret_cast<size_t>(ptr));
|
||
}
|
||
};
|
||
|
||
#define ROBIN_HOOD_HASH_INT(T) \
|
||
template <> \
|
||
struct hash<T> { \
|
||
size_t operator()(T obj) const noexcept { \
|
||
return hash_int(static_cast<uint64_t>(obj)); \
|
||
} \
|
||
}
|
||
|
||
#if defined(__GNUC__) && !defined(__clang__)
|
||
# pragma GCC diagnostic push
|
||
# pragma GCC diagnostic ignored "-Wuseless-cast"
|
||
#endif
|
||
// see https://en.cppreference.com/w/cpp/utility/hash
|
||
ROBIN_HOOD_HASH_INT(bool);
|
||
ROBIN_HOOD_HASH_INT(char);
|
||
ROBIN_HOOD_HASH_INT(signed char);
|
||
ROBIN_HOOD_HASH_INT(unsigned char);
|
||
ROBIN_HOOD_HASH_INT(char16_t);
|
||
ROBIN_HOOD_HASH_INT(char32_t);
|
||
ROBIN_HOOD_HASH_INT(wchar_t);
|
||
ROBIN_HOOD_HASH_INT(short);
|
||
ROBIN_HOOD_HASH_INT(unsigned short);
|
||
ROBIN_HOOD_HASH_INT(int);
|
||
ROBIN_HOOD_HASH_INT(unsigned int);
|
||
ROBIN_HOOD_HASH_INT(long);
|
||
ROBIN_HOOD_HASH_INT(long long);
|
||
ROBIN_HOOD_HASH_INT(unsigned long);
|
||
ROBIN_HOOD_HASH_INT(unsigned long long);
|
||
#if defined(__GNUC__) && !defined(__clang__)
|
||
# pragma GCC diagnostic pop
|
||
#endif
|
||
namespace detail {
|
||
|
||
// using wrapper classes for hash and key_equal prevents the diamond problem when the same type is
|
||
// used. see https://stackoverflow.com/a/28771920/48181
|
||
template <typename T>
|
||
struct WrapHash : public T {
|
||
WrapHash() = default;
|
||
explicit WrapHash(T const& o) noexcept(noexcept(T(std::declval<T const&>())))
|
||
: T(o) {}
|
||
};
|
||
|
||
template <typename T>
|
||
struct WrapKeyEqual : public T {
|
||
WrapKeyEqual() = default;
|
||
explicit WrapKeyEqual(T const& o) noexcept(noexcept(T(std::declval<T const&>())))
|
||
: T(o) {}
|
||
};
|
||
|
||
// A highly optimized hashmap implementation, using the Robin Hood algorithm.
|
||
//
|
||
// In most cases, this map should be usable as a drop-in replacement for std::unordered_map, but be
|
||
// about 2x faster in most cases and require much less allocations.
|
||
//
|
||
// This implementation uses the following memory layout:
|
||
//
|
||
// [Node, Node, ... Node | info, info, ... infoSentinel ]
|
||
//
|
||
// * Node: either a DataNode that directly has the std::pair<key, val> as member,
|
||
// or a DataNode with a pointer to std::pair<key,val>. Which DataNode representation to use
|
||
// depends on how fast the swap() operation is. Heuristically, this is automatically choosen based
|
||
// on sizeof(). there are always 2^n Nodes.
|
||
//
|
||
// * info: Each Node in the map has a corresponding info byte, so there are 2^n info bytes.
|
||
// Each byte is initialized to 0, meaning the corresponding Node is empty. Set to 1 means the
|
||
// corresponding node contains data. Set to 2 means the corresponding Node is filled, but it
|
||
// actually belongs to the previous position and was pushed out because that place is already
|
||
// taken.
|
||
//
|
||
// * infoSentinel: Sentinel byte set to 1, so that iterator's ++ can stop at end() without the need
|
||
// for a idx
|
||
// variable.
|
||
//
|
||
// According to STL, order of templates has effect on throughput. That's why I've moved the boolean
|
||
// to the front.
|
||
// https://www.reddit.com/r/cpp/comments/ahp6iu/compile_time_binary_size_reductions_and_cs_future/eeguck4/
|
||
template <bool IsFlatMap, size_t MaxLoadFactor100, typename Key, typename T, typename Hash,
|
||
typename KeyEqual>
|
||
class Table : public WrapHash<Hash>,
|
||
public WrapKeyEqual<KeyEqual>,
|
||
detail::NodeAllocator<
|
||
typename std::conditional<
|
||
std::is_void<T>::value, Key,
|
||
tracy::pair<typename std::conditional<IsFlatMap, Key, Key const>::type,
|
||
T>>::type,
|
||
4, 16384, IsFlatMap> {
|
||
public:
|
||
using key_type = Key;
|
||
using mapped_type = T;
|
||
using value_type = typename std::conditional<
|
||
std::is_void<T>::value, Key,
|
||
tracy::pair<typename std::conditional<IsFlatMap, Key, Key const>::type, T>>::type;
|
||
using size_type = size_t;
|
||
using hasher = Hash;
|
||
using key_equal = KeyEqual;
|
||
using Self = Table<IsFlatMap, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
|
||
static constexpr bool is_flat_map = IsFlatMap;
|
||
|
||
private:
|
||
static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100,
|
||
"MaxLoadFactor100 needs to be >10 && < 100");
|
||
|
||
using WHash = WrapHash<Hash>;
|
||
using WKeyEqual = WrapKeyEqual<KeyEqual>;
|
||
|
||
// configuration defaults
|
||
|
||
// make sure we have 8 elements, needed to quickly rehash mInfo
|
||
static constexpr size_t InitialNumElements = sizeof(uint64_t);
|
||
static constexpr uint32_t InitialInfoNumBits = 5;
|
||
static constexpr uint8_t InitialInfoInc = 1U << InitialInfoNumBits;
|
||
static constexpr uint8_t InitialInfoHashShift = sizeof(size_t) * 8 - InitialInfoNumBits;
|
||
using DataPool = detail::NodeAllocator<value_type, 4, 16384, IsFlatMap>;
|
||
|
||
// type needs to be wider than uint8_t.
|
||
using InfoType = uint32_t;
|
||
|
||
// DataNode ////////////////////////////////////////////////////////
|
||
|
||
// Primary template for the data node. We have special implementations for small and big
|
||
// objects. For large objects it is assumed that swap() is fairly slow, so we allocate these on
|
||
// the heap so swap merely swaps a pointer.
|
||
template <typename M, bool>
|
||
class DataNode {};
|
||
|
||
// Small: just allocate on the stack.
|
||
template <typename M>
|
||
class DataNode<M, true> final {
|
||
public:
|
||
template <typename... Args>
|
||
explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, Args&&... args) noexcept(
|
||
noexcept(value_type(std::forward<Args>(args)...)))
|
||
: mData(std::forward<Args>(args)...) {}
|
||
|
||
DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, true>&& n) noexcept(
|
||
std::is_nothrow_move_constructible<value_type>::value)
|
||
: mData(std::move(n.mData)) {}
|
||
|
||
// doesn't do anything
|
||
void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) noexcept {}
|
||
void destroyDoNotDeallocate() noexcept {}
|
||
|
||
value_type const* operator->() const noexcept {
|
||
return &mData;
|
||
}
|
||
value_type* operator->() noexcept {
|
||
return &mData;
|
||
}
|
||
|
||
const value_type& operator*() const noexcept {
|
||
return mData;
|
||
}
|
||
|
||
value_type& operator*() noexcept {
|
||
return mData;
|
||
}
|
||
|
||
template <typename Q = mapped_type, typename V = value_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<!std::is_void<Q>::value, typename V::first_type&>::type
|
||
getFirst() noexcept {
|
||
return mData.first;
|
||
}
|
||
template <typename Q = mapped_type, typename V = value_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<std::is_void<Q>::value, V&>::type getFirst() noexcept {
|
||
return mData;
|
||
}
|
||
|
||
template <typename Q = mapped_type, typename V = value_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<!std::is_void<Q>::value, typename V::first_type const&>::type
|
||
getFirst() const noexcept {
|
||
return mData.first;
|
||
}
|
||
template <typename Q = mapped_type, typename V = value_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<std::is_void<Q>::value, V const&>::type getFirst() const noexcept {
|
||
return mData;
|
||
}
|
||
|
||
template <typename Q = mapped_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<!std::is_void<Q>::value, Q&>::type getSecond() noexcept {
|
||
return mData.second;
|
||
}
|
||
|
||
template <typename Q = mapped_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<!std::is_void<Q>::value, Q const&>::type getSecond() const
|
||
noexcept {
|
||
return mData.second;
|
||
}
|
||
|
||
void swap(DataNode<M, true>& o) noexcept(
|
||
noexcept(std::declval<value_type>().swap(std::declval<value_type>()))) {
|
||
mData.swap(o.mData);
|
||
}
|
||
|
||
private:
|
||
value_type mData;
|
||
};
|
||
|
||
// big object: allocate on heap.
|
||
template <typename M>
|
||
class DataNode<M, false> {
|
||
public:
|
||
template <typename... Args>
|
||
explicit DataNode(M& map, Args&&... args)
|
||
: mData(map.allocate()) {
|
||
::new (static_cast<void*>(mData)) value_type(std::forward<Args>(args)...);
|
||
}
|
||
|
||
DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, false>&& n) noexcept
|
||
: mData(std::move(n.mData)) {}
|
||
|
||
void destroy(M& map) noexcept {
|
||
// don't deallocate, just put it into list of datapool.
|
||
mData->~value_type();
|
||
map.deallocate(mData);
|
||
}
|
||
|
||
void destroyDoNotDeallocate() noexcept {
|
||
mData->~value_type();
|
||
}
|
||
|
||
value_type const* operator->() const noexcept {
|
||
return mData;
|
||
}
|
||
|
||
value_type* operator->() noexcept {
|
||
return mData;
|
||
}
|
||
|
||
const value_type& operator*() const {
|
||
return *mData;
|
||
}
|
||
|
||
value_type& operator*() {
|
||
return *mData;
|
||
}
|
||
|
||
template <typename Q = mapped_type, typename V = value_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<!std::is_void<Q>::value, typename V::first_type&>::type
|
||
getFirst() noexcept {
|
||
return mData->first;
|
||
}
|
||
template <typename Q = mapped_type, typename V = value_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<std::is_void<Q>::value, V&>::type getFirst() noexcept {
|
||
return *mData;
|
||
}
|
||
|
||
template <typename Q = mapped_type, typename V = value_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<!std::is_void<Q>::value, typename V::first_type const&>::type
|
||
getFirst() const noexcept {
|
||
return mData->first;
|
||
}
|
||
template <typename Q = mapped_type, typename V = value_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<std::is_void<Q>::value, V const&>::type getFirst() const noexcept {
|
||
return *mData;
|
||
}
|
||
|
||
template <typename Q = mapped_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<!std::is_void<Q>::value, Q&>::type getSecond() noexcept {
|
||
return mData->second;
|
||
}
|
||
|
||
template <typename Q = mapped_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<!std::is_void<Q>::value, Q const&>::type getSecond() const
|
||
noexcept {
|
||
return mData->second;
|
||
}
|
||
|
||
void swap(DataNode<M, false>& o) noexcept {
|
||
using std::swap;
|
||
swap(mData, o.mData);
|
||
}
|
||
|
||
private:
|
||
value_type* mData;
|
||
};
|
||
|
||
using Node = DataNode<Self, IsFlatMap>;
|
||
|
||
// helpers for doInsert: extract first entry (only const required)
|
||
ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(Node const& n) const noexcept {
|
||
return n.getFirst();
|
||
}
|
||
|
||
// in case we have void mapped_type, we are not using a pair, thus we just route k through.
|
||
// No need to disable this because it's just not used if not applicable.
|
||
ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(key_type const& k) const noexcept {
|
||
return k;
|
||
}
|
||
|
||
// in case we have non-void mapped_type, we have a standard robin_hood::pair
|
||
template <typename Q = mapped_type>
|
||
ROBIN_HOOD(NODISCARD)
|
||
typename std::enable_if<!std::is_void<Q>::value, key_type const&>::type
|
||
getFirstConst(value_type const& vt) const noexcept {
|
||
return vt.first;
|
||
}
|
||
|
||
// Cloner //////////////////////////////////////////////////////////
|
||
|
||
template <typename M, bool UseMemcpy>
|
||
struct Cloner;
|
||
|
||
// fast path: Just copy data, without allocating anything.
|
||
template <typename M>
|
||
struct Cloner<M, true> {
|
||
void operator()(M const& source, M& target) const {
|
||
auto src = reinterpret_cast<char const*>(source.mKeyVals);
|
||
auto tgt = reinterpret_cast<char*>(target.mKeyVals);
|
||
auto const numElementsWithBuffer = target.calcNumElementsWithBuffer(target.mMask + 1);
|
||
std::copy(src, src + target.calcNumBytesTotal(numElementsWithBuffer), tgt);
|
||
}
|
||
};
|
||
|
||
template <typename M>
|
||
struct Cloner<M, false> {
|
||
void operator()(M const& s, M& t) const {
|
||
auto const numElementsWithBuffer = t.calcNumElementsWithBuffer(t.mMask + 1);
|
||
std::copy(s.mInfo, s.mInfo + t.calcNumBytesInfo(numElementsWithBuffer), t.mInfo);
|
||
|
||
for (size_t i = 0; i < numElementsWithBuffer; ++i) {
|
||
if (t.mInfo[i]) {
|
||
::new (static_cast<void*>(t.mKeyVals + i)) Node(t, *s.mKeyVals[i]);
|
||
}
|
||
}
|
||
}
|
||
};
|
||
|
||
// Destroyer ///////////////////////////////////////////////////////
|
||
|
||
template <typename M, bool IsFlatMapAndTrivial>
|
||
struct Destroyer {};
|
||
|
||
template <typename M>
|
||
struct Destroyer<M, true> {
|
||
void nodes(M& m) const noexcept {
|
||
m.mNumElements = 0;
|
||
}
|
||
|
||
void nodesDoNotDeallocate(M& m) const noexcept {
|
||
m.mNumElements = 0;
|
||
}
|
||
};
|
||
|
||
template <typename M>
|
||
struct Destroyer<M, false> {
|
||
void nodes(M& m) const noexcept {
|
||
m.mNumElements = 0;
|
||
// clear also resets mInfo to 0, that's sometimes not necessary.
|
||
auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);
|
||
|
||
for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) {
|
||
if (0 != m.mInfo[idx]) {
|
||
Node& n = m.mKeyVals[idx];
|
||
n.destroy(m);
|
||
n.~Node();
|
||
}
|
||
}
|
||
}
|
||
|
||
void nodesDoNotDeallocate(M& m) const noexcept {
|
||
m.mNumElements = 0;
|
||
// clear also resets mInfo to 0, that's sometimes not necessary.
|
||
auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);
|
||
for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) {
|
||
if (0 != m.mInfo[idx]) {
|
||
Node& n = m.mKeyVals[idx];
|
||
n.destroyDoNotDeallocate();
|
||
n.~Node();
|
||
}
|
||
}
|
||
}
|
||
};
|
||
|
||
// Iter ////////////////////////////////////////////////////////////
|
||
|
||
struct fast_forward_tag {};
|
||
|
||
// generic iterator for both const_iterator and iterator.
|
||
template <bool IsConst>
|
||
// NOLINTNEXTLINE(hicpp-special-member-functions,cppcoreguidelines-special-member-functions)
|
||
class Iter {
|
||
private:
|
||
using NodePtr = typename std::conditional<IsConst, Node const*, Node*>::type;
|
||
|
||
public:
|
||
using difference_type = std::ptrdiff_t;
|
||
using value_type = typename Self::value_type;
|
||
using reference = typename std::conditional<IsConst, value_type const&, value_type&>::type;
|
||
using pointer = typename std::conditional<IsConst, value_type const*, value_type*>::type;
|
||
using iterator_category = std::forward_iterator_tag;
|
||
|
||
// default constructed iterator can be compared to itself, but WON'T return true when
|
||
// compared to end().
|
||
Iter() = default;
|
||
|
||
// Rule of zero: nothing specified. The conversion constructor is only enabled for iterator
|
||
// to const_iterator, so it doesn't accidentally work as a copy ctor.
|
||
|
||
// Conversion constructor from iterator to const_iterator.
|
||
template <bool OtherIsConst,
|
||
typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
|
||
// NOLINTNEXTLINE(hicpp-explicit-conversions)
|
||
Iter(Iter<OtherIsConst> const& other) noexcept
|
||
: mKeyVals(other.mKeyVals)
|
||
, mInfo(other.mInfo) {}
|
||
|
||
Iter(NodePtr valPtr, uint8_t const* infoPtr) noexcept
|
||
: mKeyVals(valPtr)
|
||
, mInfo(infoPtr) {}
|
||
|
||
Iter(NodePtr valPtr, uint8_t const* infoPtr,
|
||
fast_forward_tag ROBIN_HOOD_UNUSED(tag) /*unused*/) noexcept
|
||
: mKeyVals(valPtr)
|
||
, mInfo(infoPtr) {
|
||
fastForward();
|
||
}
|
||
|
||
template <bool OtherIsConst,
|
||
typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
|
||
Iter& operator=(Iter<OtherIsConst> const& other) noexcept {
|
||
mKeyVals = other.mKeyVals;
|
||
mInfo = other.mInfo;
|
||
return *this;
|
||
}
|
||
|
||
// prefix increment. Undefined behavior if we are at end()!
|
||
Iter& operator++() noexcept {
|
||
mInfo++;
|
||
mKeyVals++;
|
||
fastForward();
|
||
return *this;
|
||
}
|
||
|
||
reference operator*() const {
|
||
return **mKeyVals;
|
||
}
|
||
|
||
pointer operator->() const {
|
||
return &**mKeyVals;
|
||
}
|
||
|
||
template <bool O>
|
||
bool operator==(Iter<O> const& o) const noexcept {
|
||
return mKeyVals == o.mKeyVals;
|
||
}
|
||
|
||
template <bool O>
|
||
bool operator!=(Iter<O> const& o) const noexcept {
|
||
return mKeyVals != o.mKeyVals;
|
||
}
|
||
|
||
private:
|
||
// fast forward to the next non-free info byte
|
||
void fastForward() noexcept {
|
||
int inc;
|
||
do {
|
||
auto const n = detail::unaligned_load<size_t>(mInfo);
|
||
#if ROBIN_HOOD(LITTLE_ENDIAN)
|
||
inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8;
|
||
#else
|
||
inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8;
|
||
#endif
|
||
mInfo += inc;
|
||
mKeyVals += inc;
|
||
} while (inc == static_cast<int>(sizeof(size_t)));
|
||
}
|
||
|
||
friend class Table<IsFlatMap, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
|
||
NodePtr mKeyVals{nullptr};
|
||
uint8_t const* mInfo{nullptr};
|
||
};
|
||
|
||
////////////////////////////////////////////////////////////////////
|
||
|
||
// highly performance relevant code.
|
||
// Lower bits are used for indexing into the array (2^n size)
|
||
// The upper 1-5 bits need to be a reasonable good hash, to save comparisons.
|
||
template <typename HashKey>
|
||
void keyToIdx(HashKey&& key, size_t* idx, InfoType* info) const {
|
||
// for a user-specified hash that is *not* robin_hood::hash, apply robin_hood::hash as an
|
||
// additional mixing step. This serves as a bad hash prevention, if the given data is badly
|
||
// mixed.
|
||
using Mix =
|
||
typename std::conditional<std::is_same<::tracy::hash<key_type>, hasher>::value,
|
||
::tracy::detail::identity_hash<size_t>,
|
||
::tracy::hash<size_t>>::type;
|
||
*idx = Mix{}(WHash::operator()(key));
|
||
|
||
*info = mInfoInc + static_cast<InfoType>(*idx >> mInfoHashShift);
|
||
*idx &= mMask;
|
||
}
|
||
|
||
// forwards the index by one, wrapping around at the end
|
||
void next(InfoType* info, size_t* idx) const noexcept {
|
||
*idx = *idx + 1;
|
||
*info += mInfoInc;
|
||
}
|
||
|
||
void nextWhileLess(InfoType* info, size_t* idx) const noexcept {
|
||
// unrolling this by hand did not bring any speedups.
|
||
while (*info < mInfo[*idx]) {
|
||
next(info, idx);
|
||
}
|
||
}
|
||
|
||
// Shift everything up by one element. Tries to move stuff around.
|
||
void
|
||
shiftUp(size_t startIdx,
|
||
size_t const insertion_idx) noexcept(std::is_nothrow_move_assignable<Node>::value) {
|
||
auto idx = startIdx;
|
||
::new (static_cast<void*>(mKeyVals + idx)) Node(std::move(mKeyVals[idx - 1]));
|
||
while (--idx != insertion_idx) {
|
||
mKeyVals[idx] = std::move(mKeyVals[idx - 1]);
|
||
}
|
||
|
||
idx = startIdx;
|
||
while (idx != insertion_idx) {
|
||
ROBIN_HOOD_COUNT(shiftUp);
|
||
mInfo[idx] = static_cast<uint8_t>(mInfo[idx - 1] + mInfoInc);
|
||
if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF)) {
|
||
mMaxNumElementsAllowed = 0;
|
||
}
|
||
--idx;
|
||
}
|
||
}
|
||
|
||
void shiftDown(size_t idx) noexcept(std::is_nothrow_move_assignable<Node>::value) {
|
||
// until we find one that is either empty or has zero offset.
|
||
// TODO(martinus) we don't need to move everything, just the last one for the same bucket.
|
||
mKeyVals[idx].destroy(*this);
|
||
|
||
// until we find one that is either empty or has zero offset.
|
||
while (mInfo[idx + 1] >= 2 * mInfoInc) {
|
||
ROBIN_HOOD_COUNT(shiftDown);
|
||
mInfo[idx] = static_cast<uint8_t>(mInfo[idx + 1] - mInfoInc);
|
||
mKeyVals[idx] = std::move(mKeyVals[idx + 1]);
|
||
++idx;
|
||
}
|
||
|
||
mInfo[idx] = 0;
|
||
// don't destroy, we've moved it
|
||
// mKeyVals[idx].destroy(*this);
|
||
mKeyVals[idx].~Node();
|
||
}
|
||
|
||
// copy of find(), except that it returns iterator instead of const_iterator.
|
||
template <typename Other>
|
||
ROBIN_HOOD(NODISCARD)
|
||
size_t findIdx(Other const& key) const {
|
||
size_t idx;
|
||
InfoType info;
|
||
keyToIdx(key, &idx, &info);
|
||
|
||
do {
|
||
// unrolling this twice gives a bit of a speedup. More unrolling did not help.
|
||
if (info == mInfo[idx] &&
|
||
ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) {
|
||
return idx;
|
||
}
|
||
next(&info, &idx);
|
||
if (info == mInfo[idx] &&
|
||
ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) {
|
||
return idx;
|
||
}
|
||
next(&info, &idx);
|
||
} while (info <= mInfo[idx]);
|
||
|
||
// nothing found!
|
||
return mMask == 0 ? 0
|
||
: static_cast<size_t>(std::distance(
|
||
mKeyVals, reinterpret_cast_no_cast_align_warning<Node*>(mInfo)));
|
||
}
|
||
|
||
void cloneData(const Table& o) {
|
||
Cloner<Table, IsFlatMap && ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(Node)>()(o, *this);
|
||
}
|
||
|
||
// inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized.
|
||
// @return index where the element was created
|
||
size_t insert_move(Node&& keyval) {
|
||
// we don't retry, fail if overflowing
|
||
// don't need to check max num elements
|
||
if (0 == mMaxNumElementsAllowed && !try_increase_info()) {
|
||
throwOverflowError(); // impossible to reach LCOV_EXCL_LINE
|
||
}
|
||
|
||
size_t idx;
|
||
InfoType info;
|
||
keyToIdx(keyval.getFirst(), &idx, &info);
|
||
|
||
// skip forward. Use <= because we are certain that the element is not there.
|
||
while (info <= mInfo[idx]) {
|
||
idx = idx + 1;
|
||
info += mInfoInc;
|
||
}
|
||
|
||
// key not found, so we are now exactly where we want to insert it.
|
||
auto const insertion_idx = idx;
|
||
auto const insertion_info = static_cast<uint8_t>(info);
|
||
if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
|
||
mMaxNumElementsAllowed = 0;
|
||
}
|
||
|
||
// find an empty spot
|
||
while (0 != mInfo[idx]) {
|
||
next(&info, &idx);
|
||
}
|
||
|
||
auto& l = mKeyVals[insertion_idx];
|
||
if (idx == insertion_idx) {
|
||
::new (static_cast<void*>(&l)) Node(std::move(keyval));
|
||
} else {
|
||
shiftUp(idx, insertion_idx);
|
||
l = std::move(keyval);
|
||
}
|
||
|
||
// put at empty spot
|
||
mInfo[insertion_idx] = insertion_info;
|
||
|
||
++mNumElements;
|
||
return insertion_idx;
|
||
}
|
||
|
||
public:
|
||
using iterator = Iter<false>;
|
||
using const_iterator = Iter<true>;
|
||
|
||
// Creates an empty hash map. Nothing is allocated yet, this happens at the first insert. This
|
||
// tremendously speeds up ctor & dtor of a map that never receives an element. The penalty is
|
||
// payed at the first insert, and not before. Lookup of this empty map works because everybody
|
||
// points to DummyInfoByte::b. parameter bucket_count is dictated by the standard, but we can
|
||
// ignore it.
|
||
explicit Table(size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{},
|
||
const KeyEqual& equal = KeyEqual{}) noexcept(noexcept(Hash(h)) &&
|
||
noexcept(KeyEqual(equal)))
|
||
: WHash(h)
|
||
, WKeyEqual(equal) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
}
|
||
|
||
template <typename Iter>
|
||
Table(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0,
|
||
const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{})
|
||
: WHash(h)
|
||
, WKeyEqual(equal) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
insert(first, last);
|
||
}
|
||
|
||
Table(std::initializer_list<value_type> initlist,
|
||
size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{},
|
||
const KeyEqual& equal = KeyEqual{})
|
||
: WHash(h)
|
||
, WKeyEqual(equal) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
insert(initlist.begin(), initlist.end());
|
||
}
|
||
|
||
Table(Table&& o) noexcept
|
||
: WHash(std::move(static_cast<WHash&>(o)))
|
||
, WKeyEqual(std::move(static_cast<WKeyEqual&>(o)))
|
||
, DataPool(std::move(static_cast<DataPool&>(o))) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
if (o.mMask) {
|
||
mKeyVals = std::move(o.mKeyVals);
|
||
mInfo = std::move(o.mInfo);
|
||
mNumElements = std::move(o.mNumElements);
|
||
mMask = std::move(o.mMask);
|
||
mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
|
||
mInfoInc = std::move(o.mInfoInc);
|
||
mInfoHashShift = std::move(o.mInfoHashShift);
|
||
// set other's mask to 0 so its destructor won't do anything
|
||
o.init();
|
||
}
|
||
}
|
||
|
||
Table& operator=(Table&& o) noexcept {
|
||
ROBIN_HOOD_TRACE(this);
|
||
if (&o != this) {
|
||
if (o.mMask) {
|
||
// only move stuff if the other map actually has some data
|
||
destroy();
|
||
mKeyVals = std::move(o.mKeyVals);
|
||
mInfo = std::move(o.mInfo);
|
||
mNumElements = std::move(o.mNumElements);
|
||
mMask = std::move(o.mMask);
|
||
mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
|
||
mInfoInc = std::move(o.mInfoInc);
|
||
mInfoHashShift = std::move(o.mInfoHashShift);
|
||
WHash::operator=(std::move(static_cast<WHash&>(o)));
|
||
WKeyEqual::operator=(std::move(static_cast<WKeyEqual&>(o)));
|
||
DataPool::operator=(std::move(static_cast<DataPool&>(o)));
|
||
|
||
o.init();
|
||
|
||
} else {
|
||
// nothing in the other map => just clear us.
|
||
clear();
|
||
}
|
||
}
|
||
return *this;
|
||
}
|
||
|
||
Table(const Table& o)
|
||
: WHash(static_cast<const WHash&>(o))
|
||
, WKeyEqual(static_cast<const WKeyEqual&>(o))
|
||
, DataPool(static_cast<const DataPool&>(o)) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
if (!o.empty()) {
|
||
// not empty: create an exact copy. it is also possible to just iterate through all
|
||
// elements and insert them, but copying is probably faster.
|
||
|
||
auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
|
||
mKeyVals = static_cast<Node*>(detail::assertNotNull<std::bad_alloc>(
|
||
malloc(calcNumBytesTotal(numElementsWithBuffer))));
|
||
// no need for calloc because clonData does memcpy
|
||
mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
|
||
mNumElements = o.mNumElements;
|
||
mMask = o.mMask;
|
||
mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
|
||
mInfoInc = o.mInfoInc;
|
||
mInfoHashShift = o.mInfoHashShift;
|
||
cloneData(o);
|
||
}
|
||
}
|
||
|
||
// Creates a copy of the given map. Copy constructor of each entry is used.
|
||
Table& operator=(Table const& o) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
if (&o == this) {
|
||
// prevent assigning of itself
|
||
return *this;
|
||
}
|
||
|
||
// we keep using the old allocator and not assign the new one, because we want to keep the
|
||
// memory available. when it is the same size.
|
||
if (o.empty()) {
|
||
if (0 == mMask) {
|
||
// nothing to do, we are empty too
|
||
return *this;
|
||
}
|
||
|
||
// not empty: destroy what we have there
|
||
// clear also resets mInfo to 0, that's sometimes not necessary.
|
||
destroy();
|
||
init();
|
||
WHash::operator=(static_cast<const WHash&>(o));
|
||
WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
|
||
DataPool::operator=(static_cast<DataPool const&>(o));
|
||
|
||
return *this;
|
||
}
|
||
|
||
// clean up old stuff
|
||
Destroyer<Self, IsFlatMap && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
|
||
|
||
if (mMask != o.mMask) {
|
||
// no luck: we don't have the same array size allocated, so we need to realloc.
|
||
if (0 != mMask) {
|
||
// only deallocate if we actually have data!
|
||
free(mKeyVals);
|
||
}
|
||
|
||
auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
|
||
mKeyVals = static_cast<Node*>(detail::assertNotNull<std::bad_alloc>(
|
||
malloc(calcNumBytesTotal(numElementsWithBuffer))));
|
||
|
||
// no need for calloc here because cloneData performs a memcpy.
|
||
mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
|
||
// sentinel is set in cloneData
|
||
}
|
||
WHash::operator=(static_cast<const WHash&>(o));
|
||
WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
|
||
DataPool::operator=(static_cast<DataPool const&>(o));
|
||
mNumElements = o.mNumElements;
|
||
mMask = o.mMask;
|
||
mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
|
||
mInfoInc = o.mInfoInc;
|
||
mInfoHashShift = o.mInfoHashShift;
|
||
cloneData(o);
|
||
|
||
return *this;
|
||
}
|
||
|
||
// Swaps everything between the two maps.
|
||
void swap(Table& o) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
using std::swap;
|
||
swap(o, *this);
|
||
}
|
||
|
||
// Clears all data, without resizing.
|
||
void clear() {
|
||
ROBIN_HOOD_TRACE(this);
|
||
if (empty()) {
|
||
// don't do anything! also important because we don't want to write to DummyInfoByte::b,
|
||
// even though we would just write 0 to it.
|
||
return;
|
||
}
|
||
|
||
Destroyer<Self, IsFlatMap && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
|
||
|
||
auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
|
||
// clear everything, then set the sentinel again
|
||
uint8_t const z = 0;
|
||
std::fill(mInfo, mInfo + calcNumBytesInfo(numElementsWithBuffer), z);
|
||
mInfo[numElementsWithBuffer] = 1;
|
||
|
||
mInfoInc = InitialInfoInc;
|
||
mInfoHashShift = InitialInfoHashShift;
|
||
}
|
||
|
||
// Destroys the map and all it's contents.
|
||
~Table() {
|
||
ROBIN_HOOD_TRACE(this);
|
||
destroy();
|
||
}
|
||
|
||
// Checks if both maps contain the same entries. Order is irrelevant.
|
||
bool operator==(const Table& other) const {
|
||
ROBIN_HOOD_TRACE(this);
|
||
if (other.size() != size()) {
|
||
return false;
|
||
}
|
||
for (auto const& otherEntry : other) {
|
||
auto const myIt = find(otherEntry.first);
|
||
if (myIt == end() || !(myIt->second == otherEntry.second)) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool operator!=(const Table& other) const {
|
||
ROBIN_HOOD_TRACE(this);
|
||
return !operator==(other);
|
||
}
|
||
|
||
template <typename Q = mapped_type>
|
||
typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](const key_type& key) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
return doCreateByKey(key);
|
||
}
|
||
|
||
template <typename Q = mapped_type>
|
||
typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](key_type&& key) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
return doCreateByKey(std::move(key));
|
||
}
|
||
|
||
template <typename Iter>
|
||
void insert(Iter first, Iter last) {
|
||
for (; first != last; ++first) {
|
||
// value_type ctor needed because this might be called with std::pair's
|
||
insert(value_type(*first));
|
||
}
|
||
}
|
||
|
||
template <typename... Args>
|
||
std::pair<iterator, bool> emplace(Args&&... args) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
Node n{*this, std::forward<Args>(args)...};
|
||
auto r = doInsert(std::move(n));
|
||
if (!r.second) {
|
||
// insertion not possible: destroy node
|
||
// NOLINTNEXTLINE(bugprone-use-after-move)
|
||
n.destroy(*this);
|
||
}
|
||
return r;
|
||
}
|
||
|
||
std::pair<iterator, bool> insert(const value_type& keyval) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
return doInsert(keyval);
|
||
}
|
||
|
||
std::pair<iterator, bool> insert(value_type&& keyval) {
|
||
return doInsert(std::move(keyval));
|
||
}
|
||
|
||
// Returns 1 if key is found, 0 otherwise.
|
||
size_t count(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
auto kv = mKeyVals + findIdx(key);
|
||
if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
// Returns a reference to the value found for key.
|
||
// Throws std::out_of_range if element cannot be found
|
||
template <typename Q = mapped_type>
|
||
// NOLINTNEXTLINE(modernize-use-nodiscard)
|
||
typename std::enable_if<!std::is_void<Q>::value, Q&>::type at(key_type const& key) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
auto kv = mKeyVals + findIdx(key);
|
||
if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
|
||
doThrow<std::out_of_range>("key not found");
|
||
}
|
||
return kv->getSecond();
|
||
}
|
||
|
||
// Returns a reference to the value found for key.
|
||
// Throws std::out_of_range if element cannot be found
|
||
template <typename Q = mapped_type>
|
||
// NOLINTNEXTLINE(modernize-use-nodiscard)
|
||
typename std::enable_if<!std::is_void<Q>::value, Q const&>::type at(key_type const& key) const {
|
||
ROBIN_HOOD_TRACE(this);
|
||
auto kv = mKeyVals + findIdx(key);
|
||
if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
|
||
doThrow<std::out_of_range>("key not found");
|
||
}
|
||
return kv->getSecond();
|
||
}
|
||
|
||
const_iterator find(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
const size_t idx = findIdx(key);
|
||
return const_iterator{mKeyVals + idx, mInfo + idx};
|
||
}
|
||
|
||
template <typename OtherKey>
|
||
const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const {
|
||
ROBIN_HOOD_TRACE(this);
|
||
const size_t idx = findIdx(key);
|
||
return const_iterator{mKeyVals + idx, mInfo + idx};
|
||
}
|
||
|
||
iterator find(const key_type& key) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
const size_t idx = findIdx(key);
|
||
return iterator{mKeyVals + idx, mInfo + idx};
|
||
}
|
||
|
||
template <typename OtherKey>
|
||
iterator find(const OtherKey& key, is_transparent_tag /*unused*/) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
const size_t idx = findIdx(key);
|
||
return iterator{mKeyVals + idx, mInfo + idx};
|
||
}
|
||
|
||
iterator begin() {
|
||
ROBIN_HOOD_TRACE(this);
|
||
if (empty()) {
|
||
return end();
|
||
}
|
||
return iterator(mKeyVals, mInfo, fast_forward_tag{});
|
||
}
|
||
const_iterator begin() const { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
return cbegin();
|
||
}
|
||
const_iterator cbegin() const { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
if (empty()) {
|
||
return cend();
|
||
}
|
||
return const_iterator(mKeyVals, mInfo, fast_forward_tag{});
|
||
}
|
||
|
||
iterator end() {
|
||
ROBIN_HOOD_TRACE(this);
|
||
// no need to supply valid info pointer: end() must not be dereferenced, and only node
|
||
// pointer is compared.
|
||
return iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
|
||
}
|
||
const_iterator end() const { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
return cend();
|
||
}
|
||
const_iterator cend() const { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
return const_iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
|
||
}
|
||
|
||
iterator erase(const_iterator pos) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
// its safe to perform const cast here
|
||
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
||
return erase(iterator{const_cast<Node*>(pos.mKeyVals), const_cast<uint8_t*>(pos.mInfo)});
|
||
}
|
||
|
||
// Erases element at pos, returns iterator to the next element.
|
||
iterator erase(iterator pos) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
// we assume that pos always points to a valid entry, and not end().
|
||
auto const idx = static_cast<size_t>(pos.mKeyVals - mKeyVals);
|
||
|
||
shiftDown(idx);
|
||
--mNumElements;
|
||
|
||
if (*pos.mInfo) {
|
||
// we've backward shifted, return this again
|
||
return pos;
|
||
}
|
||
|
||
// no backward shift, return next element
|
||
return ++pos;
|
||
}
|
||
|
||
size_t erase(const key_type& key) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
size_t idx;
|
||
InfoType info;
|
||
keyToIdx(key, &idx, &info);
|
||
|
||
// check while info matches with the source idx
|
||
do {
|
||
if (info == mInfo[idx] && WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
|
||
shiftDown(idx);
|
||
--mNumElements;
|
||
return 1;
|
||
}
|
||
next(&info, &idx);
|
||
} while (info <= mInfo[idx]);
|
||
|
||
// nothing found to delete
|
||
return 0;
|
||
}
|
||
|
||
// reserves space for the specified number of elements. Makes sure the old data fits.
|
||
// exactly the same as reserve(c).
|
||
void rehash(size_t c) {
|
||
reserve(c);
|
||
}
|
||
|
||
// reserves space for the specified number of elements. Makes sure the old data fits.
|
||
// Exactly the same as resize(c). Use resize(0) to shrink to fit.
|
||
void reserve(size_t c) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
auto const minElementsAllowed = (std::max)(c, mNumElements);
|
||
auto newSize = InitialNumElements;
|
||
while (calcMaxNumElementsAllowed(newSize) < minElementsAllowed && newSize != 0) {
|
||
newSize *= 2;
|
||
}
|
||
if (ROBIN_HOOD_UNLIKELY(newSize == 0)) {
|
||
throwOverflowError();
|
||
}
|
||
|
||
rehashPowerOfTwo(newSize);
|
||
}
|
||
|
||
size_type size() const noexcept { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
return mNumElements;
|
||
}
|
||
|
||
size_type max_size() const noexcept { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
return static_cast<size_type>(-1);
|
||
}
|
||
|
||
ROBIN_HOOD(NODISCARD) bool empty() const noexcept {
|
||
ROBIN_HOOD_TRACE(this);
|
||
return 0 == mNumElements;
|
||
}
|
||
|
||
float max_load_factor() const noexcept { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
return MaxLoadFactor100 / 100.0F;
|
||
}
|
||
|
||
// Average number of elements per bucket. Since we allow only 1 per bucket
|
||
float load_factor() const noexcept { // NOLINT(modernize-use-nodiscard)
|
||
ROBIN_HOOD_TRACE(this);
|
||
return static_cast<float>(size()) / static_cast<float>(mMask + 1);
|
||
}
|
||
|
||
ROBIN_HOOD(NODISCARD) size_t mask() const noexcept {
|
||
ROBIN_HOOD_TRACE(this);
|
||
return mMask;
|
||
}
|
||
|
||
ROBIN_HOOD(NODISCARD) size_t calcMaxNumElementsAllowed(size_t maxElements) const noexcept {
|
||
if (ROBIN_HOOD_LIKELY(maxElements <= (std::numeric_limits<size_t>::max)() / 100)) {
|
||
return maxElements * MaxLoadFactor100 / 100;
|
||
}
|
||
|
||
// we might be a bit inprecise, but since maxElements is quite large that doesn't matter
|
||
return (maxElements / 100) * MaxLoadFactor100;
|
||
}
|
||
|
||
ROBIN_HOOD(NODISCARD) size_t calcNumBytesInfo(size_t numElements) const noexcept {
|
||
// we add a uint64_t, which houses the sentinel (first byte) and padding so we can load
|
||
// 64bit types.
|
||
return numElements + sizeof(uint64_t);
|
||
}
|
||
|
||
ROBIN_HOOD(NODISCARD)
|
||
size_t calcNumElementsWithBuffer(size_t numElements) const noexcept {
|
||
auto maxNumElementsAllowed = calcMaxNumElementsAllowed(numElements);
|
||
return numElements + (std::min)(maxNumElementsAllowed, (static_cast<size_t>(0xFF)));
|
||
}
|
||
|
||
// calculation only allowed for 2^n values
|
||
ROBIN_HOOD(NODISCARD) size_t calcNumBytesTotal(size_t numElements) const {
|
||
#if ROBIN_HOOD(BITNESS) == 64
|
||
return numElements * sizeof(Node) + calcNumBytesInfo(numElements);
|
||
#else
|
||
// make sure we're doing 64bit operations, so we are at least safe against 32bit overflows.
|
||
auto const ne = static_cast<uint64_t>(numElements);
|
||
auto const s = static_cast<uint64_t>(sizeof(Node));
|
||
auto const infos = static_cast<uint64_t>(calcNumBytesInfo(numElements));
|
||
|
||
auto const total64 = ne * s + infos;
|
||
auto const total = static_cast<size_t>(total64);
|
||
|
||
if (ROBIN_HOOD_UNLIKELY(static_cast<uint64_t>(total) != total64)) {
|
||
throwOverflowError();
|
||
}
|
||
return total;
|
||
#endif
|
||
}
|
||
|
||
private:
|
||
// reserves space for at least the specified number of elements.
|
||
// only works if numBuckets if power of two
|
||
void rehashPowerOfTwo(size_t numBuckets) {
|
||
ROBIN_HOOD_TRACE(this);
|
||
|
||
Node* const oldKeyVals = mKeyVals;
|
||
uint8_t const* const oldInfo = mInfo;
|
||
|
||
const size_t oldMaxElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
|
||
|
||
// resize operation: move stuff
|
||
init_data(numBuckets);
|
||
if (oldMaxElementsWithBuffer > 1) {
|
||
for (size_t i = 0; i < oldMaxElementsWithBuffer; ++i) {
|
||
if (oldInfo[i] != 0) {
|
||
insert_move(std::move(oldKeyVals[i]));
|
||
// destroy the node but DON'T destroy the data.
|
||
oldKeyVals[i].~Node();
|
||
}
|
||
}
|
||
|
||
// don't destroy old data: put it into the pool instead
|
||
DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElementsWithBuffer));
|
||
}
|
||
}
|
||
|
||
ROBIN_HOOD(NOINLINE) void throwOverflowError() const {
|
||
#if ROBIN_HOOD(HAS_EXCEPTIONS)
|
||
throw std::overflow_error("robin_hood::map overflow");
|
||
#else
|
||
abort();
|
||
#endif
|
||
}
|
||
|
||
void init_data(size_t max_elements) {
|
||
mNumElements = 0;
|
||
mMask = max_elements - 1;
|
||
mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements);
|
||
|
||
auto const numElementsWithBuffer = calcNumElementsWithBuffer(max_elements);
|
||
|
||
// calloc also zeroes everything
|
||
mKeyVals = reinterpret_cast<Node*>(detail::assertNotNull<std::bad_alloc>(
|
||
calloc(1, calcNumBytesTotal(numElementsWithBuffer))));
|
||
mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
|
||
|
||
// set sentinel
|
||
mInfo[numElementsWithBuffer] = 1;
|
||
|
||
mInfoInc = InitialInfoInc;
|
||
mInfoHashShift = InitialInfoHashShift;
|
||
}
|
||
|
||
template <typename Arg, typename Q = mapped_type>
|
||
typename std::enable_if<!std::is_void<Q>::value, Q&>::type doCreateByKey(Arg&& key) {
|
||
while (true) {
|
||
size_t idx;
|
||
InfoType info;
|
||
keyToIdx(key, &idx, &info);
|
||
nextWhileLess(&info, &idx);
|
||
|
||
// while we potentially have a match. Can't do a do-while here because when mInfo is 0
|
||
// we don't want to skip forward
|
||
while (info == mInfo[idx]) {
|
||
if (WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
|
||
// key already exists, do not insert.
|
||
return mKeyVals[idx].getSecond();
|
||
}
|
||
next(&info, &idx);
|
||
}
|
||
|
||
// unlikely that this evaluates to true
|
||
if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) {
|
||
increase_size();
|
||
continue;
|
||
}
|
||
|
||
// key not found, so we are now exactly where we want to insert it.
|
||
auto const insertion_idx = idx;
|
||
auto const insertion_info = info;
|
||
if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
|
||
mMaxNumElementsAllowed = 0;
|
||
}
|
||
|
||
// find an empty spot
|
||
while (0 != mInfo[idx]) {
|
||
next(&info, &idx);
|
||
}
|
||
|
||
auto& l = mKeyVals[insertion_idx];
|
||
if (idx == insertion_idx) {
|
||
// put at empty spot. This forwards all arguments into the node where the object is
|
||
// constructed exactly where it is needed.
|
||
::new (static_cast<void*>(&l))
|
||
Node(*this, std::piecewise_construct,
|
||
std::forward_as_tuple(std::forward<Arg>(key)), std::forward_as_tuple());
|
||
} else {
|
||
shiftUp(idx, insertion_idx);
|
||
l = Node(*this, std::piecewise_construct,
|
||
std::forward_as_tuple(std::forward<Arg>(key)), std::forward_as_tuple());
|
||
}
|
||
|
||
// mKeyVals[idx].getFirst() = std::move(key);
|
||
mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
|
||
|
||
++mNumElements;
|
||
return mKeyVals[insertion_idx].getSecond();
|
||
}
|
||
}
|
||
|
||
// This is exactly the same code as operator[], except for the return values
|
||
template <typename Arg>
|
||
std::pair<iterator, bool> doInsert(Arg&& keyval) {
|
||
while (true) {
|
||
size_t idx;
|
||
InfoType info;
|
||
keyToIdx(getFirstConst(keyval), &idx, &info);
|
||
nextWhileLess(&info, &idx);
|
||
|
||
// while we potentially have a match
|
||
while (info == mInfo[idx]) {
|
||
if (WKeyEqual::operator()(getFirstConst(keyval), mKeyVals[idx].getFirst())) {
|
||
// key already exists, do NOT insert.
|
||
// see http://en.cppreference.com/w/cpp/container/unordered_map/insert
|
||
return std::make_pair<iterator, bool>(iterator(mKeyVals + idx, mInfo + idx),
|
||
false);
|
||
}
|
||
next(&info, &idx);
|
||
}
|
||
|
||
// unlikely that this evaluates to true
|
||
if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) {
|
||
increase_size();
|
||
continue;
|
||
}
|
||
|
||
// key not found, so we are now exactly where we want to insert it.
|
||
auto const insertion_idx = idx;
|
||
auto const insertion_info = info;
|
||
if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
|
||
mMaxNumElementsAllowed = 0;
|
||
}
|
||
|
||
// find an empty spot
|
||
while (0 != mInfo[idx]) {
|
||
next(&info, &idx);
|
||
}
|
||
|
||
auto& l = mKeyVals[insertion_idx];
|
||
if (idx == insertion_idx) {
|
||
::new (static_cast<void*>(&l)) Node(*this, std::forward<Arg>(keyval));
|
||
} else {
|
||
shiftUp(idx, insertion_idx);
|
||
l = Node(*this, std::forward<Arg>(keyval));
|
||
}
|
||
|
||
// put at empty spot
|
||
mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
|
||
|
||
++mNumElements;
|
||
return std::make_pair(iterator(mKeyVals + insertion_idx, mInfo + insertion_idx), true);
|
||
}
|
||
}
|
||
|
||
bool try_increase_info() {
|
||
ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements
|
||
<< ", maxNumElementsAllowed="
|
||
<< calcMaxNumElementsAllowed(mMask + 1));
|
||
if (mInfoInc <= 2) {
|
||
// need to be > 2 so that shift works (otherwise undefined behavior!)
|
||
return false;
|
||
}
|
||
// we got space left, try to make info smaller
|
||
mInfoInc = static_cast<uint8_t>(mInfoInc >> 1U);
|
||
|
||
// remove one bit of the hash, leaving more space for the distance info.
|
||
// This is extremely fast because we can operate on 8 bytes at once.
|
||
++mInfoHashShift;
|
||
auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
|
||
|
||
for (size_t i = 0; i < numElementsWithBuffer; i += 8) {
|
||
auto val = unaligned_load<uint64_t>(mInfo + i);
|
||
val = (val >> 1U) & UINT64_C(0x7f7f7f7f7f7f7f7f);
|
||
std::memcpy(mInfo + i, &val, sizeof(val));
|
||
}
|
||
// update sentinel, which might have been cleared out!
|
||
mInfo[numElementsWithBuffer] = 1;
|
||
|
||
mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
|
||
return true;
|
||
}
|
||
|
||
void increase_size() {
|
||
// nothing allocated yet? just allocate InitialNumElements
|
||
if (0 == mMask) {
|
||
init_data(InitialNumElements);
|
||
return;
|
||
}
|
||
|
||
auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
|
||
if (mNumElements < maxNumElementsAllowed && try_increase_info()) {
|
||
return;
|
||
}
|
||
|
||
ROBIN_HOOD_LOG("mNumElements=" << mNumElements << ", maxNumElementsAllowed="
|
||
<< maxNumElementsAllowed << ", load="
|
||
<< (static_cast<double>(mNumElements) * 100.0 /
|
||
(static_cast<double>(mMask) + 1)));
|
||
// it seems we have a really bad hash function! don't try to resize again
|
||
if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1)) {
|
||
throwOverflowError();
|
||
}
|
||
|
||
rehashPowerOfTwo((mMask + 1) * 2);
|
||
}
|
||
|
||
void destroy() {
|
||
if (0 == mMask) {
|
||
// don't deallocate!
|
||
return;
|
||
}
|
||
|
||
Destroyer<Self, IsFlatMap && std::is_trivially_destructible<Node>::value>{}
|
||
.nodesDoNotDeallocate(*this);
|
||
|
||
// This protection against not deleting mMask shouldn't be needed as it's sufficiently
|
||
// protected with the 0==mMask check, but I have this anyways because g++ 7 otherwise
|
||
// reports a compile error: attempt to free a non-heap object ‘fm’
|
||
// [-Werror=free-nonheap-object]
|
||
if (mKeyVals != reinterpret_cast<Node*>(&mMask)) {
|
||
free(mKeyVals);
|
||
}
|
||
}
|
||
|
||
void init() noexcept {
|
||
mKeyVals = reinterpret_cast<Node*>(&mMask);
|
||
mInfo = reinterpret_cast<uint8_t*>(&mMask);
|
||
mNumElements = 0;
|
||
mMask = 0;
|
||
mMaxNumElementsAllowed = 0;
|
||
mInfoInc = InitialInfoInc;
|
||
mInfoHashShift = InitialInfoHashShift;
|
||
}
|
||
|
||
// members are sorted so no padding occurs
|
||
Node* mKeyVals = reinterpret_cast<Node*>(&mMask); // 8 byte 8
|
||
uint8_t* mInfo = reinterpret_cast<uint8_t*>(&mMask); // 8 byte 16
|
||
size_t mNumElements = 0; // 8 byte 24
|
||
size_t mMask = 0; // 8 byte 32
|
||
size_t mMaxNumElementsAllowed = 0; // 8 byte 40
|
||
InfoType mInfoInc = InitialInfoInc; // 4 byte 44
|
||
InfoType mInfoHashShift = InitialInfoHashShift; // 4 byte 48
|
||
// 16 byte 56 if NodeAllocator
|
||
};
|
||
|
||
} // namespace detail
|
||
|
||
// map
|
||
|
||
template <typename Key, typename T, typename Hash = hash<Key>,
|
||
typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
|
||
using unordered_flat_map = detail::Table<true, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
|
||
|
||
template <typename Key, typename T, typename Hash = hash<Key>,
|
||
typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
|
||
using unordered_node_map = detail::Table<false, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
|
||
|
||
template <typename Key, typename T, typename Hash = hash<Key>,
|
||
typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
|
||
using unordered_map =
|
||
detail::Table<sizeof(tracy::pair<Key, T>) <= sizeof(size_t) * 6 &&
|
||
std::is_nothrow_move_constructible<tracy::pair<Key, T>>::value &&
|
||
std::is_nothrow_move_assignable<tracy::pair<Key, T>>::value,
|
||
MaxLoadFactor100, Key, T, Hash, KeyEqual>;
|
||
|
||
// set
|
||
|
||
template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
|
||
size_t MaxLoadFactor100 = 80>
|
||
using unordered_flat_set = detail::Table<true, MaxLoadFactor100, Key, void, Hash, KeyEqual>;
|
||
|
||
template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
|
||
size_t MaxLoadFactor100 = 80>
|
||
using unordered_node_set = detail::Table<false, MaxLoadFactor100, Key, void, Hash, KeyEqual>;
|
||
|
||
template <typename Key, typename T, typename Hash = hash<Key>,
|
||
typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
|
||
using unordered_set = detail::Table<sizeof(Key) <= sizeof(size_t) * 6 &&
|
||
std::is_nothrow_move_constructible<Key>::value &&
|
||
std::is_nothrow_move_assignable<Key>::value,
|
||
MaxLoadFactor100, Key, void, Hash, KeyEqual>;
|
||
|
||
} // namespace robin_hood
|
||
|
||
#endif
|