tracy/import-chrome/src/import-chrome.cpp

330 lines
9.7 KiB
C++

#ifdef _WIN32
# include <windows.h>
#endif
#include <fstream>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unordered_map>
#include <sys/stat.h>
#ifdef _MSC_VER
# define stat64 _stat64
#endif
#if defined __CYGWIN__ || defined __APPLE__
# define stat64 stat
#endif
#include "json.hpp"
#include "../../server/TracyFileWrite.hpp"
#include "../../server/TracyMmap.hpp"
#include "../../server/TracyWorker.hpp"
#include "../../zstd/zstd.h"
using json = nlohmann::json;
void Usage()
{
printf( "Usage: import-chrome input.json output.tracy\n\n" );
exit( 1 );
}
int main( int argc, char** argv )
{
#ifdef _WIN32
if( !AttachConsole( ATTACH_PARENT_PROCESS ) )
{
AllocConsole();
SetConsoleMode( GetStdHandle( STD_OUTPUT_HANDLE ), 0x07 );
}
#endif
tracy::FileWrite::Compression clev = tracy::FileWrite::Compression::Fast;
if( argc != 3 ) Usage();
const char* input = argv[1];
const char* output = argv[2];
printf( "Loading...\r" );
fflush( stdout );
json j;
const auto fnsz = strlen( input );
if( fnsz > 4 && memcmp( input+fnsz-4, ".zst", 4 ) == 0 )
{
FILE* f = fopen( input, "rb" );
if( !f )
{
fprintf( stderr, "Cannot open input file!\n" );
exit( 1 );
}
struct stat64 sb;
if( stat64( input, &sb ) != 0 )
{
fprintf( stderr, "Cannot open input file!\n" );
fclose( f );
exit( 1 );
}
const auto zsz = sb.st_size;
auto zbuf = (char*)mmap( nullptr, zsz, PROT_READ, MAP_SHARED, fileno( f ), 0 );
fclose( f );
if( !zbuf )
{
fprintf( stderr, "Cannot mmap input file!\n" );
exit( 1 );
}
auto zctx = ZSTD_createDStream();
ZSTD_initDStream( zctx );
enum { tmpSize = 64*1024 };
auto tmp = new char[tmpSize];
ZSTD_inBuffer_s zin = { zbuf, (size_t)zsz };
ZSTD_outBuffer_s zout = { tmp, (size_t)tmpSize };
std::vector<uint8_t> buf;
buf.reserve( 1024*1024 );
while( zin.pos < zin.size )
{
const auto res = ZSTD_decompressStream( zctx, &zout, &zin );
if( ZSTD_isError( res ) )
{
ZSTD_freeDStream( zctx );
delete[] tmp;
fprintf( stderr, "Couldn't decompress input file (%s)!\n", ZSTD_getErrorName( res ) );
exit( 1 );
}
if( zout.pos > 0 )
{
const auto bsz = buf.size();
buf.resize( bsz + zout.pos );
memcpy( buf.data() + bsz, tmp, zout.pos );
zout.pos = 0;
}
}
ZSTD_freeDStream( zctx );
delete[] tmp;
munmap( zbuf, zsz );
j = json::parse( buf.begin(), buf.end() );
}
else
{
std::ifstream is( input );
if( !is.is_open() )
{
fprintf( stderr, "Cannot open input file!\n" );
exit( 1 );
}
is >> j;
is.close();
}
printf( "\33[2KParsing...\r" );
fflush( stdout );
struct PidTid {
uint64_t tid;
uint64_t pid;
uint64_t both; // fake thread id, unique within Tracy
};
std::vector<PidTid> tids;
std::vector<tracy::Worker::ImportEventTimeline> timeline;
std::vector<tracy::Worker::ImportEventMessages> messages;
std::vector<tracy::Worker::ImportEventPlots> plots;
std::unordered_map<uint64_t, std::string> threadNames;
const auto getTid = [&](uint64_t pid, uint64_t tid) -> uint64_t {
for ( auto &pair : tids ) {
if ( pair.pid == pid && pair.tid == tid ) {
return pair.both;
}
}
const auto result = tids.size();
tids.emplace_back(PidTid {.tid=tid, .pid=pid, .both=result});
return result;
};
if( j.is_object() && j.contains( "traceEvents" ) )
{
j = j["traceEvents"];
}
if( !j.is_array() )
{
fprintf( stderr, "Input must be either an array of events or an object containing an array of events under \"traceEvents\" key.\n" );
exit( 1 );
}
for( auto& v : j )
{
const auto type = v["ph"].get<std::string>();
std::string zoneText = "";
if ( v.contains( "args" ) )
{
for ( auto& kv : v["args"].items() )
{
const auto val = kv.value();
const std::string s =
val.is_string() ?
val.get<std::string>() : val.dump();
zoneText += kv.key() + ": " + s + "\n";
}
}
uint64_t pid = 0;
if ( v.contains( "pid" ) ) {
pid = v["pid"].get<uint64_t>();
}
if( type == "B" )
{
timeline.emplace_back( tracy::Worker::ImportEventTimeline {
getTid(pid, v["tid"].get<uint64_t>()),
uint64_t( v["ts"].get<double>() * 1000. ),
v["name"].get<std::string>(),
std::move(zoneText),
false
} );
}
else if( type == "E" )
{
timeline.emplace_back( tracy::Worker::ImportEventTimeline {
getTid(pid, v["tid"].get<uint64_t>()),
uint64_t( v["ts"].get<double>() * 1000. ),
"",
std::move(zoneText),
true
} );
}
else if( type == "X" )
{
const auto tid = getTid(pid, v["tid"].get<uint64_t>());
const auto ts0 = uint64_t( v["ts"].get<double>() * 1000. );
const auto ts1 = ts0 + uint64_t( v["dur"].get<double>() * 1000. );
const auto name = v["name"].get<std::string>();
timeline.emplace_back( tracy::Worker::ImportEventTimeline { tid, ts0, name, std::move(zoneText), false } );
timeline.emplace_back( tracy::Worker::ImportEventTimeline { tid, ts1, "", "", true } );
}
else if( type == "i" || type == "I" )
{
messages.emplace_back( tracy::Worker::ImportEventMessages {
getTid(pid, v["tid"].get<uint64_t>()),
uint64_t( v["ts"].get<double>() * 1000. ),
v["name"].get<std::string>()
} );
}
else if( type == "C" )
{
auto timestamp = int64_t( v["ts"].get<double>() * 1000 );
for( auto& kv : v["args"].items() )
{
bool plotFound = false;
auto& metricName = kv.key();
auto dataPoint = std::make_pair( timestamp, kv.value().get<double>() );
// The input file is assumed to have only very few metrics,
// so iterating through plots is not a problem.
for( auto& plot : plots )
{
if( plot.name == metricName )
{
plot.data.emplace_back( dataPoint );
plotFound = true;
break;
}
}
if( !plotFound )
{
auto formatting = tracy::PlotValueFormatting::Number;
// NOTE: With C++20 one could say metricName.ends_with( "_bytes" ) instead of rfind
auto metricNameLen = metricName.size();
if ( metricNameLen >= 6 && metricName.rfind( "_bytes" ) == metricNameLen - 6 ) {
formatting = tracy::PlotValueFormatting::Memory;
}
plots.emplace_back( tracy::Worker::ImportEventPlots {
std::move( metricName ),
formatting,
{ dataPoint }
} );
}
}
}
else if (type == "M")
{
if (v.contains("name") && v["name"] == "thread_name" && v.contains("args") && v["args"].is_object() && v["args"].contains("name"))
{
const auto tid = getTid(pid, v["tid"].get<uint64_t>());
threadNames[tid] = v["args"]["name"].get<std::string>();
}
}
}
std::stable_sort( timeline.begin(), timeline.end(), [] ( const auto& l, const auto& r ) { return l.timestamp < r.timestamp; } );
std::stable_sort( messages.begin(), messages.end(), [] ( const auto& l, const auto& r ) { return l.timestamp < r.timestamp; } );
for( auto& v : plots ) std::stable_sort( v.data.begin(), v.data.end(), [] ( const auto& l, const auto& r ) { return l.first < r.first; } );
uint64_t mts = 0;
if( !timeline.empty() )
{
mts = timeline[0].timestamp;
}
if( !messages.empty() )
{
if( mts > messages[0].timestamp ) mts = messages[0].timestamp;
}
for( auto& plot : plots )
{
if( mts > plot.data[0].first ) mts = plot.data[0].first;
}
for( auto& v : timeline ) v.timestamp -= mts;
for( auto& v : messages ) v.timestamp -= mts;
for( auto& plot : plots )
{
for( auto& v : plot.data ) v.first -= mts;
}
printf( "\33[2KProcessing...\r" );
fflush( stdout );
auto&& getFilename = [](const char* in) {
auto out = in;
while (*out) ++out;
--out;
while (out > in && (*out != '/' || *out != '\\')) out--;
return out;
};
tracy::Worker worker( getFilename(output), getFilename(input), timeline, messages, plots, threadNames );
auto w = std::unique_ptr<tracy::FileWrite>( tracy::FileWrite::Open( output, clev ) );
if( !w )
{
fprintf( stderr, "Cannot open output file!\n" );
exit( 1 );
}
printf( "\33[2KSaving...\r" );
fflush( stdout );
worker.Write( *w );
printf( "\33[2KCleanup...\n" );
fflush( stdout );
return 0;
}