tracy/client/TracyProfiler.cpp
Bartosz Taudul a5bff2f7e5 Sleep to force rescheduling main thread during init.
This fixes problems with first context switch data region possibly not being
available for the main thread, if no rescheduling was performed after sys
tracing has started.
2020-04-14 22:45:32 +02:00

3029 lines
94 KiB
C++

#ifdef TRACY_ENABLE
#ifdef _WIN32
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <winsock2.h>
# include <windows.h>
# include <tlhelp32.h>
# include <inttypes.h>
# include <intrin.h>
#else
# include <sys/time.h>
# include <sys/param.h>
#endif
#ifdef __CYGWIN__
# include <windows.h>
# include <unistd.h>
# include <tlhelp32.h>
#endif
#ifdef _GNU_SOURCE
# include <errno.h>
#endif
#ifdef __linux__
# include <dirent.h>
# include <signal.h>
# include <pthread.h>
# include <sys/types.h>
# include <sys/syscall.h>
#endif
#if defined __APPLE__ || defined BSD
# include <sys/types.h>
# include <sys/sysctl.h>
#endif
#include <algorithm>
#include <assert.h>
#include <atomic>
#include <chrono>
#include <limits>
#include <new>
#include <stdlib.h>
#include <string.h>
#include <thread>
#include "../common/TracyAlign.hpp"
#include "../common/TracySocket.hpp"
#include "../common/TracySystem.hpp"
#include "../common/tracy_lz4.hpp"
#include "tracy_rpmalloc.hpp"
#include "TracyCallstack.hpp"
#include "TracyDxt1.hpp"
#include "TracyScoped.hpp"
#include "TracyProfiler.hpp"
#include "TracyThread.hpp"
#include "TracyArmCpuTable.hpp"
#include "TracySysTrace.hpp"
#include "../TracyC.h"
#ifdef TRACY_PORT
# ifndef TRACY_DATA_PORT
# define TRACY_DATA_PORT TRACY_PORT
# endif
# ifndef TRACY_BROADCAST_PORT
# define TRACY_BROADCAST_PORT TRACY_PORT
# endif
#endif
#ifdef __APPLE__
# define TRACY_DELAYED_INIT
#else
# ifdef __GNUC__
# define init_order( val ) __attribute__ ((init_priority(val)))
# else
# define init_order(x)
# endif
#endif
#if defined TRACY_HW_TIMER && __ARM_ARCH >= 6 && !defined TARGET_OS_IOS
# include <signal.h>
# include <setjmp.h>
#endif
#if defined _WIN32 || defined __CYGWIN__
# include <lmcons.h>
extern "C" typedef LONG (WINAPI *t_RtlGetVersion)( PRTL_OSVERSIONINFOW );
extern "C" typedef BOOL (WINAPI *t_GetLogicalProcessorInformationEx)( LOGICAL_PROCESSOR_RELATIONSHIP, PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX, PDWORD );
#else
# include <unistd.h>
# include <limits.h>
#endif
#if defined __APPLE__
# include "TargetConditionals.h"
#endif
#if defined __linux__
# include <sys/sysinfo.h>
# include <sys/utsname.h>
#endif
#if !defined _WIN32 && !defined __CYGWIN__ && ( defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 )
# include <cpuid.h>
#endif
#if !( ( ( defined _WIN32 || defined __CYGWIN__ ) && _WIN32_WINNT >= _WIN32_WINNT_VISTA ) || defined __linux__ )
# include <mutex>
#endif
namespace tracy
{
namespace
{
# if ( defined _WIN32 || defined __CYGWIN__ ) && _WIN32_WINNT >= _WIN32_WINNT_VISTA
BOOL CALLBACK InitOnceCallback( PINIT_ONCE /*initOnce*/, PVOID /*Parameter*/, PVOID* /*Context*/)
{
rpmalloc_initialize();
return TRUE;
}
INIT_ONCE InitOnce = INIT_ONCE_STATIC_INIT;
# elif defined __linux__
void InitOnceCallback()
{
rpmalloc_initialize();
}
pthread_once_t once_control = PTHREAD_ONCE_INIT;
# else
void InitOnceCallback()
{
rpmalloc_initialize();
}
std::once_flag once_flag;
# endif
}
struct RPMallocInit
{
RPMallocInit()
{
# if ( defined _WIN32 || defined __CYGWIN__ ) && _WIN32_WINNT >= _WIN32_WINNT_VISTA
InitOnceExecuteOnce( &InitOnce, InitOnceCallback, nullptr, nullptr );
# elif defined __linux__
pthread_once( &once_control, InitOnceCallback );
# else
std::call_once( once_flag, InitOnceCallback );
# endif
rpmalloc_thread_initialize();
}
};
#ifndef TRACY_DELAYED_INIT
struct InitTimeWrapper
{
int64_t val;
};
struct ProducerWrapper
{
tracy::moodycamel::ConcurrentQueue<QueueItem>::ExplicitProducer* ptr;
};
struct ThreadHandleWrapper
{
uint64_t val;
};
#endif
#if defined TRACY_HW_TIMER && ( defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 )
static inline void CpuId( uint32_t* regs, uint32_t leaf )
{
#if defined _WIN32 || defined __CYGWIN__
__cpuidex( (int*)regs, leaf, 0 );
#else
__get_cpuid( leaf, regs, regs+1, regs+2, regs+3 );
#endif
}
static void InitFailure( const char* msg )
{
#if defined _WIN32 || defined __CYGWIN__
bool hasConsole = false;
bool reopen = false;
const auto attached = AttachConsole( ATTACH_PARENT_PROCESS );
if( attached )
{
hasConsole = true;
reopen = true;
}
else
{
const auto err = GetLastError();
if( err == ERROR_ACCESS_DENIED )
{
hasConsole = true;
}
}
if( hasConsole )
{
fprintf( stderr, "Tracy Profiler initialization failure: %s\n", msg );
if( reopen )
{
freopen( "CONOUT$", "w", stderr );
fprintf( stderr, "Tracy Profiler initialization failure: %s\n", msg );
}
}
else
{
MessageBoxA( nullptr, msg, "Tracy Profiler initialization failure", MB_ICONSTOP );
}
#else
fprintf( stderr, "Tracy Profiler initialization failure: %s\n", msg );
#endif
exit( 0 );
}
static int64_t SetupHwTimer()
{
#ifndef TRACY_TIMER_QPC
uint32_t regs[4];
CpuId( regs, 0x80000001 );
if( !( regs[3] & ( 1 << 27 ) ) ) InitFailure( "CPU doesn't support RDTSCP instruction." );
CpuId( regs, 0x80000007 );
if( !( regs[3] & ( 1 << 8 ) ) )
{
const char* noCheck = getenv( "TRACY_NO_INVARIANT_CHECK" );
if( !noCheck || noCheck[0] != '1' )
{
InitFailure( "CPU doesn't support invariant TSC.\nDefine TRACY_NO_INVARIANT_CHECK=1 to ignore this error, *if you know what you are doing*.\nAlternatively you may rebuild the application with the TRACY_TIMER_QPC define to use lower resolution timer." );
}
}
#endif
return Profiler::GetTime();
}
#else
static int64_t SetupHwTimer()
{
return Profiler::GetTime();
}
#endif
static const char* GetProcessName()
{
const char* processName = "unknown";
#ifdef _WIN32
static char buf[_MAX_PATH];
GetModuleFileNameA( nullptr, buf, _MAX_PATH );
const char* ptr = buf;
while( *ptr != '\0' ) ptr++;
while( ptr > buf && *ptr != '\\' && *ptr != '/' ) ptr--;
if( ptr > buf ) ptr++;
processName = ptr;
#elif defined __ANDROID__
# if __ANDROID_API__ >= 21
auto buf = getprogname();
if( buf ) processName = buf;
# endif
#elif defined _GNU_SOURCE || defined __CYGWIN__
processName = program_invocation_short_name;
#elif defined __APPLE__ || defined BSD
auto buf = getprogname();
if( buf ) processName = buf;
#endif
return processName;
}
static uint32_t GetHex( char*& ptr, int skip )
{
uint32_t ret;
ptr += skip;
char* end;
if( ptr[0] == '0' && ptr[1] == 'x' )
{
ptr += 2;
ret = strtol( ptr, &end, 16 );
}
else
{
ret = strtol( ptr, &end, 10 );
}
ptr = end;
return ret;
}
static const char* GetHostInfo()
{
static char buf[1024];
auto ptr = buf;
#if defined _WIN32 || defined __CYGWIN__
t_RtlGetVersion RtlGetVersion = (t_RtlGetVersion)GetProcAddress( GetModuleHandleA( "ntdll.dll" ), "RtlGetVersion" );
if( !RtlGetVersion )
{
# ifdef __CYGWIN__
ptr += sprintf( ptr, "OS: Windows (Cygwin)\n" );
# elif defined __MINGW32__
ptr += sprintf( ptr, "OS: Windows (MingW)\n" );
# else
ptr += sprintf( ptr, "OS: Windows\n" );
# endif
}
else
{
RTL_OSVERSIONINFOW ver = { sizeof( RTL_OSVERSIONINFOW ) };
RtlGetVersion( &ver );
# ifdef __CYGWIN__
ptr += sprintf( ptr, "OS: Windows %i.%i.%i (Cygwin)\n", ver.dwMajorVersion, ver.dwMinorVersion, ver.dwBuildNumber );
# elif defined __MINGW32__
ptr += sprintf( ptr, "OS: Windows %i.%i.%i (MingW)\n", (int)ver.dwMajorVersion, (int)ver.dwMinorVersion, (int)ver.dwBuildNumber );
# else
ptr += sprintf( ptr, "OS: Windows %i.%i.%i\n", ver.dwMajorVersion, ver.dwMinorVersion, ver.dwBuildNumber );
# endif
}
#elif defined __linux__
struct utsname utsName;
uname( &utsName );
# if defined __ANDROID__
ptr += sprintf( ptr, "OS: Linux %s (Android)\n", utsName.release );
# else
ptr += sprintf( ptr, "OS: Linux %s\n", utsName.release );
# endif
#elif defined __APPLE__
# if TARGET_OS_IPHONE == 1
ptr += sprintf( ptr, "OS: Darwin (iOS)\n" );
# elif TARGET_OS_MAC == 1
ptr += sprintf( ptr, "OS: Darwin (OSX)\n" );
# else
ptr += sprintf( ptr, "OS: Darwin (unknown)\n" );
# endif
#elif defined __DragonFly__
ptr += sprintf( ptr, "OS: BSD (DragonFly)\n" );
#elif defined __FreeBSD__
ptr += sprintf( ptr, "OS: BSD (FreeBSD)\n" );
#elif defined __NetBSD__
ptr += sprintf( ptr, "OS: BSD (NetBSD)\n" );
#elif defined __OpenBSD__
ptr += sprintf( ptr, "OS: BSD (OpenBSD)\n" );
#else
ptr += sprintf( ptr, "OS: unknown\n" );
#endif
#if defined _MSC_VER
# if defined __clang__
ptr += sprintf( ptr, "Compiler: MSVC clang-cl %i.%i.%i\n", __clang_major__, __clang_minor__, __clang_patchlevel__ );
# else
ptr += sprintf( ptr, "Compiler: MSVC %i\n", _MSC_VER );
# endif
#elif defined __clang__
ptr += sprintf( ptr, "Compiler: clang %i.%i.%i\n", __clang_major__, __clang_minor__, __clang_patchlevel__ );
#elif defined __GNUC__
ptr += sprintf( ptr, "Compiler: gcc %i.%i\n", __GNUC__, __GNUC_MINOR__ );
#else
ptr += sprintf( ptr, "Compiler: unknown\n" );
#endif
#if defined _WIN32 || defined __CYGWIN__
# ifndef __CYGWIN__
InitWinSock();
# endif
char hostname[512];
gethostname( hostname, 512 );
DWORD userSz = UNLEN+1;
char user[UNLEN+1];
GetUserNameA( user, &userSz );
ptr += sprintf( ptr, "User: %s@%s\n", user, hostname );
#else
char hostname[_POSIX_HOST_NAME_MAX]{};
char user[_POSIX_LOGIN_NAME_MAX]{};
gethostname( hostname, _POSIX_HOST_NAME_MAX );
# if defined __ANDROID__
const auto login = getlogin();
if( login )
{
strcpy( user, login );
}
else
{
memcpy( user, "(?)", 4 );
}
# else
getlogin_r( user, _POSIX_LOGIN_NAME_MAX );
# endif
ptr += sprintf( ptr, "User: %s@%s\n", user, hostname );
#endif
#if defined __i386 || defined _M_IX86
ptr += sprintf( ptr, "Arch: x86\n" );
#elif defined __x86_64__ || defined _M_X64
ptr += sprintf( ptr, "Arch: x64\n" );
#elif defined __aarch64__
ptr += sprintf( ptr, "Arch: ARM64\n" );
#elif defined __ARM_ARCH
ptr += sprintf( ptr, "Arch: ARM\n" );
#else
ptr += sprintf( ptr, "Arch: unknown\n" );
#endif
#if defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64
uint32_t regs[4];
char cpuModel[4*4*3];
auto modelPtr = cpuModel;
for( uint32_t i=0x80000002; i<0x80000005; ++i )
{
# if defined _WIN32 || defined __CYGWIN__
__cpuidex( (int*)regs, i, 0 );
# else
int zero = 0;
asm volatile ( "cpuid" : "=a" (regs[0]), "=b" (regs[1]), "=c" (regs[2]), "=d" (regs[3]) : "a" (i), "c" (zero) );
# endif
memcpy( modelPtr, regs, sizeof( regs ) ); modelPtr += sizeof( regs );
}
ptr += sprintf( ptr, "CPU: %s\n", cpuModel );
#elif defined __linux__ && defined __ARM_ARCH
bool cpuFound = false;
FILE* fcpuinfo = fopen( "/proc/cpuinfo", "rb" );
if( fcpuinfo )
{
enum { BufSize = 4*1024 };
char buf[BufSize];
const auto sz = fread( buf, 1, BufSize, fcpuinfo );
fclose( fcpuinfo );
const auto end = buf + sz;
auto cptr = buf;
uint32_t impl = 0;
uint32_t var = 0;
uint32_t part = 0;
uint32_t rev = 0;
while( end - cptr > 20 )
{
while( end - cptr > 20 && memcmp( cptr, "CPU ", 4 ) != 0 )
{
cptr += 4;
while( end - cptr > 20 && *cptr != '\n' ) cptr++;
cptr++;
}
if( end - cptr <= 20 ) break;
cptr += 4;
if( memcmp( cptr, "implementer\t: ", 14 ) == 0 )
{
if( impl != 0 ) break;
impl = GetHex( cptr, 14 );
}
else if( memcmp( cptr, "variant\t: ", 10 ) == 0 ) var = GetHex( cptr, 10 );
else if( memcmp( cptr, "part\t: ", 7 ) == 0 ) part = GetHex( cptr, 7 );
else if( memcmp( cptr, "revision\t: ", 11 ) == 0 ) rev = GetHex( cptr, 11 );
while( *cptr != '\n' && *cptr != '\0' ) cptr++;
cptr++;
}
if( impl != 0 || var != 0 || part != 0 || rev != 0 )
{
cpuFound = true;
ptr += sprintf( ptr, "CPU: %s%s r%ip%i\n", DecodeArmImplementer( impl ), DecodeArmPart( impl, part ), var, rev );
}
}
if( !cpuFound )
{
ptr += sprintf( ptr, "CPU: unknown\n" );
}
#elif defined __APPLE__ && TARGET_OS_IPHONE == 1
{
size_t sz;
sysctlbyname( "hw.machine", nullptr, &sz, nullptr, 0 );
auto str = (char*)tracy_malloc( sz );
sysctlbyname( "hw.machine", str, &sz, nullptr, 0 );
ptr += sprintf( ptr, "Device: %s\n", DecodeIosDevice( str ) );
tracy_free( str );
}
#else
ptr += sprintf( ptr, "CPU: unknown\n" );
#endif
ptr += sprintf( ptr, "CPU cores: %i\n", std::thread::hardware_concurrency() );
#if defined _WIN32 || defined __CYGWIN__
MEMORYSTATUSEX statex;
statex.dwLength = sizeof( statex );
GlobalMemoryStatusEx( &statex );
# ifdef _MSC_VER
ptr += sprintf( ptr, "RAM: %I64u MB\n", statex.ullTotalPhys / 1024 / 1024 );
# else
ptr += sprintf( ptr, "RAM: %llu MB\n", statex.ullTotalPhys / 1024 / 1024 );
# endif
#elif defined __linux__
struct sysinfo sysInfo;
sysinfo( &sysInfo );
ptr += sprintf( ptr, "RAM: %lu MB\n", sysInfo.totalram / 1024 / 1024 );
#elif defined __APPLE__
size_t memSize;
size_t sz = sizeof( memSize );
sysctlbyname( "hw.memsize", &memSize, &sz, nullptr, 0 );
ptr += sprintf( ptr, "RAM: %zu MB\n", memSize / 1024 / 1024 );
#elif defined BSD
size_t memSize;
size_t sz = sizeof( memSize );
sysctlbyname( "hw.physmem", &memSize, &sz, nullptr, 0 );
ptr += sprintf( ptr, "RAM: %zu MB\n", memSize / 1024 / 1024 );
#else
ptr += sprintf( ptr, "RAM: unknown\n" );
#endif
return buf;
}
static uint64_t GetPid()
{
#if defined _WIN32 || defined __CYGWIN__
return uint64_t( GetCurrentProcessId() );
#else
return uint64_t( getpid() );
#endif
}
static BroadcastMessage& GetBroadcastMessage( const char* procname, size_t pnsz, int& len, int port )
{
static BroadcastMessage msg;
msg.broadcastVersion = BroadcastVersion;
msg.protocolVersion = ProtocolVersion;
msg.listenPort = port;
memcpy( msg.programName, procname, pnsz );
memset( msg.programName + pnsz, 0, WelcomeMessageProgramNameSize - pnsz );
len = int( offsetof( BroadcastMessage, programName ) + pnsz + 1 );
return msg;
}
#if defined _WIN32 || defined __CYGWIN__
static DWORD s_profilerThreadId = 0;
static char s_crashText[1024];
LONG WINAPI CrashFilter( PEXCEPTION_POINTERS pExp )
{
const unsigned ec = pExp->ExceptionRecord->ExceptionCode;
auto msgPtr = s_crashText;
switch( ec )
{
case EXCEPTION_ACCESS_VIOLATION:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_ACCESS_VIOLATION (0x%x). ", ec );
switch( pExp->ExceptionRecord->ExceptionInformation[0] )
{
case 0:
msgPtr += sprintf( msgPtr, "Read violation at address 0x%" PRIxPTR ".", pExp->ExceptionRecord->ExceptionInformation[1] );
break;
case 1:
msgPtr += sprintf( msgPtr, "Write violation at address 0x%" PRIxPTR ".", pExp->ExceptionRecord->ExceptionInformation[1] );
break;
case 8:
msgPtr += sprintf( msgPtr, "DEP violation at address 0x%" PRIxPTR ".", pExp->ExceptionRecord->ExceptionInformation[1] );
break;
default:
break;
}
break;
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_ARRAY_BOUNDS_EXCEEDED (0x%x). ", ec );
break;
case EXCEPTION_DATATYPE_MISALIGNMENT:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_DATATYPE_MISALIGNMENT (0x%x). ", ec );
break;
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_FLT_DIVIDE_BY_ZERO (0x%x). ", ec );
break;
case EXCEPTION_ILLEGAL_INSTRUCTION:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_ILLEGAL_INSTRUCTION (0x%x). ", ec );
break;
case EXCEPTION_IN_PAGE_ERROR:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_IN_PAGE_ERROR (0x%x). ", ec );
break;
case EXCEPTION_INT_DIVIDE_BY_ZERO:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_INT_DIVIDE_BY_ZERO (0x%x). ", ec );
break;
case EXCEPTION_PRIV_INSTRUCTION:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_PRIV_INSTRUCTION (0x%x). ", ec );
break;
case EXCEPTION_STACK_OVERFLOW:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_STACK_OVERFLOW (0x%x). ", ec );
break;
default:
return EXCEPTION_CONTINUE_SEARCH;
}
{
TracyLfqPrepare( QueueType::CrashReport );
item->crashReport.time = Profiler::GetTime();
item->crashReport.text = (uint64_t)s_crashText;
TracyLfqCommit;
GetProfiler().SendCallstack( 60, "KiUserExceptionDispatcher" );
}
HANDLE h = CreateToolhelp32Snapshot( TH32CS_SNAPTHREAD, 0 );
if( h == INVALID_HANDLE_VALUE ) return EXCEPTION_CONTINUE_SEARCH;
THREADENTRY32 te = { sizeof( te ) };
if( !Thread32First( h, &te ) )
{
CloseHandle( h );
return EXCEPTION_CONTINUE_SEARCH;
}
const auto pid = GetCurrentProcessId();
const auto tid = GetCurrentThreadId();
do
{
if( te.th32OwnerProcessID == pid && te.th32ThreadID != tid && te.th32ThreadID != s_profilerThreadId )
{
HANDLE th = OpenThread( THREAD_SUSPEND_RESUME, FALSE, te.th32ThreadID );
if( th != INVALID_HANDLE_VALUE )
{
SuspendThread( th );
CloseHandle( th );
}
}
}
while( Thread32Next( h, &te ) );
CloseHandle( h );
{
TracyLfqPrepare( QueueType::Crash );
TracyLfqCommit;
}
std::this_thread::sleep_for( std::chrono::milliseconds( 500 ) );
GetProfiler().RequestShutdown();
while( !GetProfiler().HasShutdownFinished() ) { std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); };
TerminateProcess( GetCurrentProcess(), 1 );
return EXCEPTION_CONTINUE_SEARCH;
}
#endif
#ifdef __linux__
static long s_profilerTid = 0;
static char s_crashText[1024];
static std::atomic<bool> s_alreadyCrashed( false );
static void ThreadFreezer( int /*signal*/ )
{
for(;;) sleep( 1000 );
}
static inline void HexPrint( char*& ptr, uint64_t val )
{
if( val == 0 )
{
*ptr++ = '0';
return;
}
static const char HexTable[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
char buf[16];
auto bptr = buf;
do
{
*bptr++ = HexTable[val%16];
val /= 16;
}
while( val > 0 );
do
{
*ptr++ = *--bptr;
}
while( bptr != buf );
}
static void CrashHandler( int signal, siginfo_t* info, void* /*ucontext*/ )
{
bool expected = false;
if( !s_alreadyCrashed.compare_exchange_strong( expected, true ) ) ThreadFreezer( signal );
auto msgPtr = s_crashText;
switch( signal )
{
case SIGILL:
strcpy( msgPtr, "Illegal Instruction.\n" );
while( *msgPtr ) msgPtr++;
switch( info->si_code )
{
case ILL_ILLOPC:
strcpy( msgPtr, "Illegal opcode.\n" );
break;
case ILL_ILLOPN:
strcpy( msgPtr, "Illegal operand.\n" );
break;
case ILL_ILLADR:
strcpy( msgPtr, "Illegal addressing mode.\n" );
break;
case ILL_ILLTRP:
strcpy( msgPtr, "Illegal trap.\n" );
break;
case ILL_PRVOPC:
strcpy( msgPtr, "Privileged opcode.\n" );
break;
case ILL_PRVREG:
strcpy( msgPtr, "Privileged register.\n" );
break;
case ILL_COPROC:
strcpy( msgPtr, "Coprocessor error.\n" );
break;
case ILL_BADSTK:
strcpy( msgPtr, "Internal stack error.\n" );
break;
default:
break;
}
break;
case SIGFPE:
strcpy( msgPtr, "Floating-point exception.\n" );
while( *msgPtr ) msgPtr++;
switch( info->si_code )
{
case FPE_INTDIV:
strcpy( msgPtr, "Integer divide by zero.\n" );
break;
case FPE_INTOVF:
strcpy( msgPtr, "Integer overflow.\n" );
break;
case FPE_FLTDIV:
strcpy( msgPtr, "Floating-point divide by zero.\n" );
break;
case FPE_FLTOVF:
strcpy( msgPtr, "Floating-point overflow.\n" );
break;
case FPE_FLTUND:
strcpy( msgPtr, "Floating-point underflow.\n" );
break;
case FPE_FLTRES:
strcpy( msgPtr, "Floating-point inexact result.\n" );
break;
case FPE_FLTINV:
strcpy( msgPtr, "Floating-point invalid operation.\n" );
break;
case FPE_FLTSUB:
strcpy( msgPtr, "Subscript out of range.\n" );
break;
default:
break;
}
break;
case SIGSEGV:
strcpy( msgPtr, "Invalid memory reference.\n" );
while( *msgPtr ) msgPtr++;
switch( info->si_code )
{
case SEGV_MAPERR:
strcpy( msgPtr, "Address not mapped to object.\n" );
break;
case SEGV_ACCERR:
strcpy( msgPtr, "Invalid permissions for mapped object.\n" );
break;
# ifdef SEGV_BNDERR
case SEGV_BNDERR:
strcpy( msgPtr, "Failed address bound checks.\n" );
break;
# endif
# ifdef SEGV_PKUERR
case SEGV_PKUERR:
strcpy( msgPtr, "Access was denied by memory protection keys.\n" );
break;
# endif
default:
break;
}
break;
case SIGPIPE:
strcpy( msgPtr, "Broken pipe.\n" );
while( *msgPtr ) msgPtr++;
break;
case SIGBUS:
strcpy( msgPtr, "Bus error.\n" );
while( *msgPtr ) msgPtr++;
switch( info->si_code )
{
case BUS_ADRALN:
strcpy( msgPtr, "Invalid address alignment.\n" );
break;
case BUS_ADRERR:
strcpy( msgPtr, "Nonexistent physical address.\n" );
break;
case BUS_OBJERR:
strcpy( msgPtr, "Object-specific hardware error.\n" );
break;
# ifdef BUS_MCEERR_AR
case BUS_MCEERR_AR:
strcpy( msgPtr, "Hardware memory error consumed on a machine check; action required.\n" );
break;
# endif
# ifdef BUS_MCEERR_AO
case BUS_MCEERR_AO:
strcpy( msgPtr, "Hardware memory error detected in process but not consumed; action optional.\n" );
break;
# endif
default:
break;
}
break;
default:
abort();
}
while( *msgPtr ) msgPtr++;
if( signal != SIGPIPE )
{
strcpy( msgPtr, "Fault address: 0x" );
while( *msgPtr ) msgPtr++;
HexPrint( msgPtr, uint64_t( info->si_addr ) );
*msgPtr++ = '\n';
}
{
TracyLfqPrepare( QueueType::CrashReport );
item->crashReport.time = Profiler::GetTime();
item->crashReport.text = (uint64_t)s_crashText;
TracyLfqCommit;
GetProfiler().SendCallstack( 60, "__kernel_rt_sigreturn" );
}
DIR* dp = opendir( "/proc/self/task" );
if( !dp ) abort();
const auto selfTid = syscall( SYS_gettid );
struct dirent* ep;
while( ( ep = readdir( dp ) ) != nullptr )
{
if( ep->d_name[0] == '.' ) continue;
int tid = atoi( ep->d_name );
if( tid != selfTid && tid != s_profilerTid )
{
syscall( SYS_tkill, tid, SIGPWR );
}
}
closedir( dp );
{
TracyLfqPrepare( QueueType::Crash );
TracyLfqCommit;
}
std::this_thread::sleep_for( std::chrono::milliseconds( 500 ) );
GetProfiler().RequestShutdown();
while( !GetProfiler().HasShutdownFinished() ) { std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); };
abort();
}
#endif
enum { QueuePrealloc = 256 * 1024 };
static Profiler* s_instance;
static Thread* s_thread;
static Thread* s_compressThread;
#ifdef TRACY_HAS_SYSTEM_TRACING
static Thread* s_sysTraceThread = nullptr;
#endif
#ifdef TRACY_DELAYED_INIT
struct ThreadNameData;
TRACY_API moodycamel::ConcurrentQueue<QueueItem>& GetQueue();
TRACY_API void InitRPMallocThread();
void InitRPMallocThread()
{
RPMallocInit rpinit;
rpmalloc_thread_initialize();
}
struct ProfilerData
{
int64_t initTime = SetupHwTimer();
RPMallocInit rpmalloc_init;
moodycamel::ConcurrentQueue<QueueItem> queue;
Profiler profiler;
std::atomic<uint32_t> lockCounter { 0 };
std::atomic<uint8_t> gpuCtxCounter { 0 };
std::atomic<ThreadNameData*> threadNameData { nullptr };
};
struct ProducerWrapper
{
ProducerWrapper( ProfilerData& data ) : detail( data.queue ), ptr( data.queue.get_explicit_producer( detail ) ) {}
moodycamel::ProducerToken detail;
tracy::moodycamel::ConcurrentQueue<QueueItem>::ExplicitProducer* ptr;
};
struct ProfilerThreadData
{
ProfilerThreadData( ProfilerData& data ) : token( data ), gpuCtx( { nullptr } ) {}
RPMallocInit rpmalloc_init;
ProducerWrapper token;
GpuCtxWrapper gpuCtx;
# ifdef TRACY_ON_DEMAND
LuaZoneState luaZoneState;
# endif
};
static std::atomic<int> profilerDataLock { 0 };
static std::atomic<ProfilerData*> profilerData { nullptr };
static ProfilerData& GetProfilerData()
{
auto ptr = profilerData.load( std::memory_order_acquire );
if( !ptr )
{
int expected = 0;
while( !profilerDataLock.compare_exchange_strong( expected, 1, std::memory_order_release, std::memory_order_relaxed ) ) { expected = 0; }
ptr = profilerData.load( std::memory_order_acquire );
if( !ptr )
{
ptr = (ProfilerData*)malloc( sizeof( ProfilerData ) );
new (ptr) ProfilerData();
profilerData.store( ptr, std::memory_order_release );
}
profilerDataLock.store( 0, std::memory_order_release );
}
return *ptr;
}
static ProfilerThreadData& GetProfilerThreadData()
{
thread_local ProfilerThreadData data( GetProfilerData() );
return data;
}
TRACY_API moodycamel::ConcurrentQueue<QueueItem>::ExplicitProducer* GetToken() { return GetProfilerThreadData().token.ptr; }
TRACY_API Profiler& GetProfiler() { return GetProfilerData().profiler; }
TRACY_API moodycamel::ConcurrentQueue<QueueItem>& GetQueue() { return GetProfilerData().queue; }
TRACY_API int64_t GetInitTime() { return GetProfilerData().initTime; }
TRACY_API std::atomic<uint32_t>& GetLockCounter() { return GetProfilerData().lockCounter; }
TRACY_API std::atomic<uint8_t>& GetGpuCtxCounter() { return GetProfilerData().gpuCtxCounter; }
TRACY_API GpuCtxWrapper& GetGpuCtx() { return GetProfilerThreadData().gpuCtx; }
TRACY_API uint64_t GetThreadHandle() { return detail::GetThreadHandleImpl(); }
std::atomic<ThreadNameData*>& GetThreadNameData() { return GetProfilerData().threadNameData; }
# ifdef TRACY_ON_DEMAND
TRACY_API LuaZoneState& GetLuaZoneState() { return GetProfilerThreadData().luaZoneState; }
# endif
#else
TRACY_API void InitRPMallocThread()
{
rpmalloc_thread_initialize();
}
// MSVC static initialization order solution. gcc/clang uses init_order() to avoid all this.
// 1a. But s_queue is needed for initialization of variables in point 2.
extern moodycamel::ConcurrentQueue<QueueItem> s_queue;
thread_local RPMallocInit init_order(106) s_rpmalloc_thread_init;
// 2. If these variables would be in the .CRT$XCB section, they would be initialized only in main thread.
thread_local moodycamel::ProducerToken init_order(107) s_token_detail( s_queue );
thread_local ProducerWrapper init_order(108) s_token { s_queue.get_explicit_producer( s_token_detail ) };
thread_local ThreadHandleWrapper init_order(104) s_threadHandle { detail::GetThreadHandleImpl() };
# ifdef _MSC_VER
// 1. Initialize these static variables before all other variables.
# pragma warning( disable : 4075 )
# pragma init_seg( ".CRT$XCB" )
# endif
static InitTimeWrapper init_order(101) s_initTime { SetupHwTimer() };
static RPMallocInit init_order(102) s_rpmalloc_init;
moodycamel::ConcurrentQueue<QueueItem> init_order(103) s_queue( QueuePrealloc );
std::atomic<uint32_t> init_order(104) s_lockCounter( 0 );
std::atomic<uint8_t> init_order(104) s_gpuCtxCounter( 0 );
thread_local GpuCtxWrapper init_order(104) s_gpuCtx { nullptr };
struct ThreadNameData;
static std::atomic<ThreadNameData*> init_order(104) s_threadNameDataInstance( nullptr );
std::atomic<ThreadNameData*>& s_threadNameData = s_threadNameDataInstance;
# ifdef TRACY_ON_DEMAND
thread_local LuaZoneState init_order(104) s_luaZoneState { 0, false };
# endif
static Profiler init_order(105) s_profiler;
TRACY_API moodycamel::ConcurrentQueue<QueueItem>::ExplicitProducer* GetToken() { return s_token.ptr; }
TRACY_API Profiler& GetProfiler() { return s_profiler; }
TRACY_API moodycamel::ConcurrentQueue<QueueItem>& GetQueue() { return s_queue; }
TRACY_API int64_t GetInitTime() { return s_initTime.val; }
TRACY_API std::atomic<uint32_t>& GetLockCounter() { return s_lockCounter; }
TRACY_API std::atomic<uint8_t>& GetGpuCtxCounter() { return s_gpuCtxCounter; }
TRACY_API GpuCtxWrapper& GetGpuCtx() { return s_gpuCtx; }
# ifdef __CYGWIN__
// Hackfix for cygwin reporting memory frees without matching allocations. WTF?
TRACY_API uint64_t GetThreadHandle() { return detail::GetThreadHandleImpl(); }
# else
TRACY_API uint64_t GetThreadHandle() { return s_threadHandle.val; }
# endif
std::atomic<ThreadNameData*>& GetThreadNameData() { return s_threadNameData; }
# ifdef TRACY_ON_DEMAND
TRACY_API LuaZoneState& GetLuaZoneState() { return s_luaZoneState; }
# endif
#endif
Profiler::Profiler()
: m_timeBegin( 0 )
, m_mainThread( detail::GetThreadHandleImpl() )
, m_epoch( std::chrono::duration_cast<std::chrono::seconds>( std::chrono::system_clock::now().time_since_epoch() ).count() )
, m_shutdown( false )
, m_shutdownManual( false )
, m_shutdownFinished( false )
, m_sock( nullptr )
, m_broadcast( nullptr )
, m_noExit( false )
, m_userPort( 0 )
, m_zoneId( 1 )
, m_samplingPeriod( 0 )
, m_stream( LZ4_createStream() )
, m_buffer( (char*)tracy_malloc( TargetFrameSize*3 ) )
, m_bufferOffset( 0 )
, m_bufferStart( 0 )
, m_lz4Buf( (char*)tracy_malloc( LZ4Size + sizeof( lz4sz_t ) ) )
, m_serialQueue( 1024*1024 )
, m_serialDequeue( 1024*1024 )
, m_fiQueue( 16 )
, m_fiDequeue( 16 )
, m_frameCount( 0 )
#ifdef TRACY_ON_DEMAND
, m_isConnected( false )
, m_connectionId( 0 )
, m_deferredQueue( 64*1024 )
#endif
, m_paramCallback( nullptr )
{
assert( !s_instance );
s_instance = this;
#ifndef TRACY_DELAYED_INIT
# ifdef _MSC_VER
// 3. But these variables need to be initialized in main thread within the .CRT$XCB section. Do it here.
s_token_detail = moodycamel::ProducerToken( s_queue );
s_token = ProducerWrapper { s_queue.get_explicit_producer( s_token_detail ) };
s_threadHandle = ThreadHandleWrapper { m_mainThread };
# endif
#endif
CalibrateTimer();
CalibrateDelay();
ReportTopology();
#ifndef TRACY_NO_EXIT
const char* noExitEnv = getenv( "TRACY_NO_EXIT" );
if( noExitEnv && noExitEnv[0] == '1' )
{
m_noExit = true;
}
#endif
const char* userPort = getenv( "TRACY_PORT" );
if( userPort )
{
m_userPort = atoi( userPort );
}
s_thread = (Thread*)tracy_malloc( sizeof( Thread ) );
new(s_thread) Thread( LaunchWorker, this );
s_compressThread = (Thread*)tracy_malloc( sizeof( Thread ) );
new(s_compressThread) Thread( LaunchCompressWorker, this );
#ifdef TRACY_HAS_SYSTEM_TRACING
if( SysTraceStart( m_samplingPeriod ) )
{
s_sysTraceThread = (Thread*)tracy_malloc( sizeof( Thread ) );
new(s_sysTraceThread) Thread( SysTraceWorker, nullptr );
std::this_thread::sleep_for( std::chrono::milliseconds( 1 ) );
}
#endif
#if defined _WIN32 || defined __CYGWIN__
s_profilerThreadId = GetThreadId( s_thread->Handle() );
AddVectoredExceptionHandler( 1, CrashFilter );
#endif
#ifdef __linux__
struct sigaction threadFreezer = {};
threadFreezer.sa_handler = ThreadFreezer;
sigaction( SIGPWR, &threadFreezer, nullptr );
struct sigaction crashHandler = {};
crashHandler.sa_sigaction = CrashHandler;
crashHandler.sa_flags = SA_SIGINFO;
sigaction( SIGILL, &crashHandler, nullptr );
sigaction( SIGFPE, &crashHandler, nullptr );
sigaction( SIGSEGV, &crashHandler, nullptr );
sigaction( SIGPIPE, &crashHandler, nullptr );
sigaction( SIGBUS, &crashHandler, nullptr );
#endif
#ifdef TRACY_HAS_CALLSTACK
InitCallstack();
#endif
m_timeBegin.store( GetTime(), std::memory_order_relaxed );
}
Profiler::~Profiler()
{
m_shutdown.store( true, std::memory_order_relaxed );
#ifdef TRACY_HAS_SYSTEM_TRACING
if( s_sysTraceThread )
{
SysTraceStop();
s_sysTraceThread->~Thread();
tracy_free( s_sysTraceThread );
}
#endif
s_compressThread->~Thread();
tracy_free( s_compressThread );
s_thread->~Thread();
tracy_free( s_thread );
tracy_free( m_lz4Buf );
tracy_free( m_buffer );
LZ4_freeStream( (LZ4_stream_t*)m_stream );
if( m_sock )
{
m_sock->~Socket();
tracy_free( m_sock );
}
if( m_broadcast )
{
m_broadcast->~UdpBroadcast();
tracy_free( m_broadcast );
}
assert( s_instance );
s_instance = nullptr;
}
bool Profiler::ShouldExit()
{
return s_instance->m_shutdown.load( std::memory_order_relaxed );
}
void Profiler::Worker()
{
#ifdef __linux__
s_profilerTid = syscall( SYS_gettid );
#endif
SetThreadName( "Tracy Profiler" );
#ifdef TRACY_DATA_PORT
const bool dataPortSearch = false;
auto dataPort = m_userPort != 0 ? m_userPort : TRACY_DATA_PORT;
#else
const bool dataPortSearch = m_userPort == 0;
auto dataPort = m_userPort != 0 ? m_userPort : 8086;
#endif
#ifdef TRACY_BROADCAST_PORT
const auto broadcastPort = TRACY_BROADCAST_PORT;
#else
const auto broadcastPort = 8086;
#endif
while( m_timeBegin.load( std::memory_order_relaxed ) == 0 ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
rpmalloc_thread_initialize();
const auto procname = GetProcessName();
const auto pnsz = std::min<size_t>( strlen( procname ), WelcomeMessageProgramNameSize - 1 );
const auto hostinfo = GetHostInfo();
const auto hisz = std::min<size_t>( strlen( hostinfo ), WelcomeMessageHostInfoSize - 1 );
const uint64_t pid = GetPid();
#ifdef TRACY_ON_DEMAND
uint8_t onDemand = 1;
#else
uint8_t onDemand = 0;
#endif
#ifdef __APPLE__
uint8_t isApple = 1;
#else
uint8_t isApple = 0;
#endif
#if defined __i386 || defined _M_IX86
uint8_t cpuArch = CpuArchX86;
#elif defined __x86_64__ || defined _M_X64
uint8_t cpuArch = CpuArchX64;
#elif defined __aarch64__
uint8_t cpuArch = CpuArchArm64;
#elif defined __ARM_ARCH
uint8_t cpuArch = CpuArchArm32;
#else
uint8_t cpuArch = CpuArchUnknown;
#endif
WelcomeMessage welcome;
MemWrite( &welcome.timerMul, m_timerMul );
MemWrite( &welcome.initBegin, GetInitTime() );
MemWrite( &welcome.initEnd, m_timeBegin.load( std::memory_order_relaxed ) );
MemWrite( &welcome.delay, m_delay );
MemWrite( &welcome.resolution, m_resolution );
MemWrite( &welcome.epoch, m_epoch );
MemWrite( &welcome.pid, pid );
MemWrite( &welcome.samplingPeriod, m_samplingPeriod );
MemWrite( &welcome.onDemand, onDemand );
MemWrite( &welcome.isApple, isApple );
MemWrite( &welcome.cpuArch, cpuArch );
memcpy( welcome.programName, procname, pnsz );
memset( welcome.programName + pnsz, 0, WelcomeMessageProgramNameSize - pnsz );
memcpy( welcome.hostInfo, hostinfo, hisz );
memset( welcome.hostInfo + hisz, 0, WelcomeMessageHostInfoSize - hisz );
moodycamel::ConsumerToken token( GetQueue() );
ListenSocket listen;
bool isListening = false;
if( !dataPortSearch )
{
isListening = listen.Listen( dataPort, 4 );
}
else
{
for( uint32_t i=0; i<20; i++ )
{
if( listen.Listen( dataPort+i, 4 ) )
{
dataPort += i;
isListening = true;
break;
}
}
}
if( !isListening )
{
for(;;)
{
if( ShouldExit() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
ClearQueues( token );
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
}
#ifndef TRACY_NO_BROADCAST
m_broadcast = (UdpBroadcast*)tracy_malloc( sizeof( UdpBroadcast ) );
new(m_broadcast) UdpBroadcast();
if( !m_broadcast->Open( "255.255.255.255", broadcastPort ) )
{
m_broadcast->~UdpBroadcast();
tracy_free( m_broadcast );
m_broadcast = nullptr;
}
#endif
int broadcastLen = 0;
auto& broadcastMsg = GetBroadcastMessage( procname, pnsz, broadcastLen, dataPort );
uint64_t lastBroadcast = 0;
// Connections loop.
// Each iteration of the loop handles whole connection. Multiple iterations will only
// happen in the on-demand mode or when handshake fails.
for(;;)
{
// Wait for incoming connection
for(;;)
{
#ifndef TRACY_NO_EXIT
if( !m_noExit && ShouldExit() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
#endif
m_sock = listen.Accept();
if( m_sock ) break;
#ifndef TRACY_ON_DEMAND
ProcessSysTime();
#endif
if( m_broadcast )
{
const auto t = std::chrono::high_resolution_clock::now().time_since_epoch().count();
if( t - lastBroadcast > 3000000000 ) // 3s
{
lastBroadcast = t;
const auto ts = std::chrono::duration_cast<std::chrono::seconds>( std::chrono::system_clock::now().time_since_epoch() ).count();
broadcastMsg.activeTime = uint32_t( ts - m_epoch );
m_broadcast->Send( broadcastPort, &broadcastMsg, broadcastLen );
}
}
}
// Handshake
{
char shibboleth[HandshakeShibbolethSize];
auto res = m_sock->ReadRaw( shibboleth, HandshakeShibbolethSize, 2000 );
if( !res || memcmp( shibboleth, HandshakeShibboleth, HandshakeShibbolethSize ) != 0 )
{
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
uint32_t protocolVersion;
res = m_sock->ReadRaw( &protocolVersion, sizeof( protocolVersion ), 2000 );
if( !res )
{
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
if( protocolVersion != ProtocolVersion )
{
HandshakeStatus status = HandshakeProtocolMismatch;
m_sock->Send( &status, sizeof( status ) );
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
}
#ifdef TRACY_ON_DEMAND
const auto currentTime = GetTime();
ClearQueues( token );
m_connectionId.fetch_add( 1, std::memory_order_release );
m_isConnected.store( true, std::memory_order_release );
#endif
HandshakeStatus handshake = HandshakeWelcome;
m_sock->Send( &handshake, sizeof( handshake ) );
LZ4_resetStream( (LZ4_stream_t*)m_stream );
m_sock->Send( &welcome, sizeof( welcome ) );
m_threadCtx = 0;
m_refTimeSerial = 0;
m_refTimeCtx = 0;
m_refTimeGpu = 0;
#ifdef TRACY_ON_DEMAND
OnDemandPayloadMessage onDemand;
onDemand.frames = m_frameCount.load( std::memory_order_relaxed );
onDemand.currentTime = currentTime;
m_sock->Send( &onDemand, sizeof( onDemand ) );
m_deferredLock.lock();
for( auto& item : m_deferredQueue )
{
uint64_t ptr;
const auto idx = MemRead<uint8_t>( &item.hdr.idx );
switch( (QueueType)idx )
{
case QueueType::MessageAppInfo:
ptr = MemRead<uint64_t>( &item.message.text );
SendString( ptr, (const char*)ptr, QueueType::CustomStringData );
break;
case QueueType::LockName:
ptr = MemRead<uint64_t>( &item.lockName.name );
SendString( ptr, (const char*)ptr, QueueType::CustomStringData );
break;
default:
break;
}
AppendData( &item, QueueDataSize[idx] );
}
m_deferredLock.unlock();
#endif
// Main communications loop
int keepAlive = 0;
for(;;)
{
ProcessSysTime();
const auto status = Dequeue( token );
const auto serialStatus = DequeueSerial();
if( status == DequeueStatus::ConnectionLost || serialStatus == DequeueStatus::ConnectionLost )
{
break;
}
else if( status == DequeueStatus::QueueEmpty && serialStatus == DequeueStatus::QueueEmpty )
{
if( ShouldExit() ) break;
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) break;
}
if( keepAlive == 500 )
{
QueueItem ka;
ka.hdr.type = QueueType::KeepAlive;
AppendData( &ka, QueueDataSize[ka.hdr.idx] );
if( !CommitData() ) break;
keepAlive = 0;
}
else
{
keepAlive++;
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
}
else
{
keepAlive = 0;
}
bool connActive = true;
while( m_sock->HasData() && connActive )
{
connActive = HandleServerQuery();
}
if( !connActive ) break;
}
if( ShouldExit() ) break;
#ifdef TRACY_ON_DEMAND
m_isConnected.store( false, std::memory_order_release );
m_bufferOffset = 0;
m_bufferStart = 0;
#endif
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
#ifndef TRACY_ON_DEMAND
// Client is no longer available here. Accept incoming connections, but reject handshake.
for(;;)
{
if( ShouldExit() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
ClearQueues( token );
m_sock = listen.Accept();
if( m_sock )
{
char shibboleth[HandshakeShibbolethSize];
auto res = m_sock->ReadRaw( shibboleth, HandshakeShibbolethSize, 1000 );
if( !res || memcmp( shibboleth, HandshakeShibboleth, HandshakeShibbolethSize ) != 0 )
{
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
uint32_t protocolVersion;
res = m_sock->ReadRaw( &protocolVersion, sizeof( protocolVersion ), 1000 );
if( !res )
{
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
HandshakeStatus status = HandshakeNotAvailable;
m_sock->Send( &status, sizeof( status ) );
m_sock->~Socket();
tracy_free( m_sock );
}
}
#endif
}
// End of connections loop
// Client is exiting. Send items remaining in queues.
for(;;)
{
const auto status = Dequeue( token );
const auto serialStatus = DequeueSerial();
if( status == DequeueStatus::ConnectionLost || serialStatus == DequeueStatus::ConnectionLost )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
else if( status == DequeueStatus::QueueEmpty && serialStatus == DequeueStatus::QueueEmpty )
{
if( m_bufferOffset != m_bufferStart ) CommitData();
break;
}
while( m_sock->HasData() )
{
if( !HandleServerQuery() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
}
}
// Send client termination notice to the server
QueueItem terminate;
MemWrite( &terminate.hdr.type, QueueType::Terminate );
if( !SendData( (const char*)&terminate, 1 ) )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
// Handle remaining server queries
for(;;)
{
if( m_sock->HasData() )
{
while( m_sock->HasData() )
{
if( !HandleServerQuery() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
}
while( Dequeue( token ) == DequeueStatus::DataDequeued ) {}
while( DequeueSerial() == DequeueStatus::DataDequeued ) {}
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
}
}
else
{
if( m_bufferOffset != m_bufferStart ) CommitData();
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
}
}
void Profiler::CompressWorker()
{
SetThreadName( "Tracy DXT1" );
while( m_timeBegin.load( std::memory_order_relaxed ) == 0 ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
rpmalloc_thread_initialize();
for(;;)
{
const auto shouldExit = ShouldExit();
{
bool lockHeld = true;
while( !m_fiLock.try_lock() )
{
if( m_shutdownManual.load( std::memory_order_relaxed ) )
{
lockHeld = false;
break;
}
}
if( !m_fiQueue.empty() ) m_fiQueue.swap( m_fiDequeue );
if( lockHeld )
{
m_fiLock.unlock();
}
}
const auto sz = m_fiDequeue.size();
if( sz > 0 )
{
auto fi = m_fiDequeue.data();
auto end = fi + sz;
while( fi != end )
{
const auto w = fi->w;
const auto h = fi->h;
const auto csz = size_t( w * h / 2 );
auto etc1buf = (char*)tracy_malloc( csz );
CompressImageDxt1( (const char*)fi->image, etc1buf, w, h );
tracy_free( fi->image );
TracyLfqPrepare( QueueType::FrameImage );
MemWrite( &item->frameImage.image, (uint64_t)etc1buf );
MemWrite( &item->frameImage.frame, fi->frame );
MemWrite( &item->frameImage.w, w );
MemWrite( &item->frameImage.h, h );
uint8_t flip = fi->flip;
MemWrite( &item->frameImage.flip, flip );
TracyLfqCommit;
fi++;
}
m_fiDequeue.clear();
}
else
{
std::this_thread::sleep_for( std::chrono::milliseconds( 20 ) );
}
if( shouldExit )
{
return;
}
}
}
static void FreeAssociatedMemory( const QueueItem& item )
{
if( item.hdr.idx >= (int)QueueType::Terminate ) return;
uint64_t ptr;
switch( item.hdr.type )
{
case QueueType::ZoneText:
case QueueType::ZoneName:
ptr = MemRead<uint64_t>( &item.zoneText.text );
tracy_free( (void*)ptr );
break;
case QueueType::Message:
case QueueType::MessageColor:
case QueueType::MessageCallstack:
case QueueType::MessageColorCallstack:
#ifndef TRACY_ON_DEMAND
case QueueType::MessageAppInfo:
#endif
ptr = MemRead<uint64_t>( &item.message.text );
tracy_free( (void*)ptr );
break;
case QueueType::ZoneBeginAllocSrcLoc:
case QueueType::ZoneBeginAllocSrcLocCallstack:
ptr = MemRead<uint64_t>( &item.zoneBegin.srcloc );
tracy_free( (void*)ptr );
break;
case QueueType::CallstackMemory:
ptr = MemRead<uint64_t>( &item.callstackMemory.ptr );
tracy_free( (void*)ptr );
break;
case QueueType::Callstack:
ptr = MemRead<uint64_t>( &item.callstack.ptr );
tracy_free( (void*)ptr );
break;
case QueueType::CallstackAlloc:
ptr = MemRead<uint64_t>( &item.callstackAlloc.nativePtr );
tracy_free( (void*)ptr );
ptr = MemRead<uint64_t>( &item.callstackAlloc.ptr );
tracy_free( (void*)ptr );
break;
case QueueType::CallstackSample:
ptr = MemRead<uint64_t>( &item.callstackSample.ptr );
tracy_free( (void*)ptr );
break;
case QueueType::FrameImage:
ptr = MemRead<uint64_t>( &item.frameImage.image );
tracy_free( (void*)ptr );
break;
#ifndef TRACY_ON_DEMAND
case QueueType::LockName:
ptr = MemRead<uint64_t>( &item.lockName.name );
tracy_free( (void*)ptr );
break;
#endif
#ifdef TRACY_ON_DEMAND
case QueueType::MessageAppInfo:
// Don't free memory associated with deferred messages.
break;
#endif
default:
break;
}
}
void Profiler::ClearQueues( moodycamel::ConsumerToken& token )
{
for(;;)
{
const auto sz = GetQueue().try_dequeue_bulk_single( token, [](auto){}, []( QueueItem* item, size_t sz ) { assert( sz > 0 ); while( sz-- > 0 ) FreeAssociatedMemory( *item++ ); } );
if( sz == 0 ) break;
}
ClearSerial();
}
void Profiler::ClearSerial()
{
bool lockHeld = true;
while( !m_serialLock.try_lock() )
{
if( m_shutdownManual.load( std::memory_order_relaxed ) )
{
lockHeld = false;
break;
}
}
for( auto& v : m_serialQueue ) FreeAssociatedMemory( v );
m_serialQueue.clear();
if( lockHeld )
{
m_serialLock.unlock();
}
for( auto& v : m_serialDequeue ) FreeAssociatedMemory( v );
m_serialDequeue.clear();
}
Profiler::DequeueStatus Profiler::Dequeue( moodycamel::ConsumerToken& token )
{
bool connectionLost = false;
const auto sz = GetQueue().try_dequeue_bulk_single( token,
[this, &connectionLost] ( const uint64_t& threadId )
{
if( threadId != m_threadCtx )
{
QueueItem item;
MemWrite( &item.hdr.type, QueueType::ThreadContext );
MemWrite( &item.threadCtx.thread, threadId );
if( !AppendData( &item, QueueDataSize[(int)QueueType::ThreadContext] ) ) connectionLost = true;
m_threadCtx = threadId;
m_refTimeThread = 0;
}
},
[this, &connectionLost] ( QueueItem* item, size_t sz )
{
if( connectionLost ) return;
assert( sz > 0 );
int64_t refThread = m_refTimeThread;
int64_t refCtx = m_refTimeCtx;
int64_t refGpu = m_refTimeGpu;
while( sz-- > 0 )
{
uint64_t ptr;
const auto idx = MemRead<uint8_t>( &item->hdr.idx );
if( idx < (int)QueueType::Terminate )
{
switch( (QueueType)idx )
{
case QueueType::ZoneText:
case QueueType::ZoneName:
ptr = MemRead<uint64_t>( &item->zoneText.text );
SendString( ptr, (const char*)ptr, QueueType::CustomStringData );
tracy_free( (void*)ptr );
break;
case QueueType::Message:
case QueueType::MessageColor:
case QueueType::MessageCallstack:
case QueueType::MessageColorCallstack:
ptr = MemRead<uint64_t>( &item->message.text );
SendString( ptr, (const char*)ptr, QueueType::CustomStringData );
tracy_free( (void*)ptr );
break;
case QueueType::MessageAppInfo:
ptr = MemRead<uint64_t>( &item->message.text );
SendString( ptr, (const char*)ptr, QueueType::CustomStringData );
#ifndef TRACY_ON_DEMAND
tracy_free( (void*)ptr );
#endif
break;
case QueueType::ZoneBeginAllocSrcLoc:
case QueueType::ZoneBeginAllocSrcLocCallstack:
{
int64_t t = MemRead<int64_t>( &item->zoneBegin.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->zoneBegin.time, dt );
ptr = MemRead<uint64_t>( &item->zoneBegin.srcloc );
SendSourceLocationPayload( ptr );
tracy_free( (void*)ptr );
break;
}
case QueueType::Callstack:
ptr = MemRead<uint64_t>( &item->callstack.ptr );
SendCallstackPayload( ptr );
tracy_free( (void*)ptr );
break;
case QueueType::CallstackAlloc:
ptr = MemRead<uint64_t>( &item->callstackAlloc.nativePtr );
if( ptr != 0 )
{
CutCallstack( (void*)ptr, "lua_pcall" );
SendCallstackPayload( ptr );
tracy_free( (void*)ptr );
}
ptr = MemRead<uint64_t>( &item->callstackAlloc.ptr );
SendCallstackAlloc( ptr );
tracy_free( (void*)ptr );
break;
case QueueType::CallstackSample:
{
ptr = MemRead<uint64_t>( &item->callstackSample.ptr );
SendCallstackPayload64( ptr );
tracy_free( (void*)ptr );
int64_t t = MemRead<int64_t>( &item->callstackSample.time );
int64_t dt = t - refCtx;
refCtx = t;
MemWrite( &item->callstackSample.time, dt );
break;
}
case QueueType::FrameImage:
{
ptr = MemRead<uint64_t>( &item->frameImage.image );
const auto w = MemRead<uint16_t>( &item->frameImage.w );
const auto h = MemRead<uint16_t>( &item->frameImage.h );
const auto csz = size_t( w * h / 2 );
SendLongString( ptr, (const char*)ptr, csz, QueueType::FrameImageData );
tracy_free( (void*)ptr );
break;
}
case QueueType::ZoneBegin:
case QueueType::ZoneBeginCallstack:
{
int64_t t = MemRead<int64_t>( &item->zoneBegin.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->zoneBegin.time, dt );
break;
}
case QueueType::ZoneEnd:
{
int64_t t = MemRead<int64_t>( &item->zoneEnd.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->zoneEnd.time, dt );
break;
}
case QueueType::LockName:
ptr = MemRead<uint64_t>( &item->lockName.name );
SendString( ptr, (const char*)ptr, QueueType::CustomStringData );
#ifndef TRACY_ON_DEMAND
tracy_free( (void*)ptr );
#endif
break;
case QueueType::GpuZoneBegin:
case QueueType::GpuZoneBeginCallstack:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneBegin.cpuTime );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->gpuZoneBegin.cpuTime, dt );
break;
}
case QueueType::GpuZoneEnd:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneEnd.cpuTime );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->gpuZoneEnd.cpuTime, dt );
break;
}
case QueueType::PlotData:
{
int64_t t = MemRead<int64_t>( &item->plotData.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->plotData.time, dt );
break;
}
case QueueType::ContextSwitch:
{
int64_t t = MemRead<int64_t>( &item->contextSwitch.time );
int64_t dt = t - refCtx;
refCtx = t;
MemWrite( &item->contextSwitch.time, dt );
break;
}
case QueueType::ThreadWakeup:
{
int64_t t = MemRead<int64_t>( &item->threadWakeup.time );
int64_t dt = t - refCtx;
refCtx = t;
MemWrite( &item->threadWakeup.time, dt );
break;
}
case QueueType::GpuTime:
{
int64_t t = MemRead<int64_t>( &item->gpuTime.gpuTime );
int64_t dt = t - refGpu;
refGpu = t;
MemWrite( &item->gpuTime.gpuTime, dt );
break;
}
default:
assert( false );
break;
}
}
if( !AppendData( item++, QueueDataSize[idx] ) )
{
connectionLost = true;
m_refTimeThread = refThread;
m_refTimeCtx = refCtx;
m_refTimeGpu = refGpu;
return;
}
}
m_refTimeThread = refThread;
m_refTimeCtx = refCtx;
m_refTimeGpu = refGpu;
}
);
if( connectionLost ) return DequeueStatus::ConnectionLost;
return sz > 0 ? DequeueStatus::DataDequeued : DequeueStatus::QueueEmpty;
}
Profiler::DequeueStatus Profiler::DequeueContextSwitches( tracy::moodycamel::ConsumerToken& token, int64_t& timeStop )
{
const auto sz = GetQueue().try_dequeue_bulk_single( token, [] ( const uint64_t& ) {},
[this, &timeStop] ( QueueItem* item, size_t sz )
{
assert( sz > 0 );
int64_t refCtx = m_refTimeCtx;
while( sz-- > 0 )
{
FreeAssociatedMemory( *item );
if( timeStop < 0 ) return;
const auto idx = MemRead<uint8_t>( &item->hdr.idx );
if( idx == (uint8_t)QueueType::ContextSwitch )
{
const auto csTime = MemRead<int64_t>( &item->contextSwitch.time );
if( csTime > timeStop )
{
timeStop = -1;
m_refTimeCtx = refCtx;
return;
}
int64_t dt = csTime - refCtx;
refCtx = csTime;
MemWrite( &item->contextSwitch.time, dt );
if( !AppendData( item, QueueDataSize[(int)QueueType::ContextSwitch] ) )
{
timeStop = -2;
m_refTimeCtx = refCtx;
return;
}
}
else if( idx == (uint8_t)QueueType::ThreadWakeup )
{
const auto csTime = MemRead<int64_t>( &item->threadWakeup.time );
if( csTime > timeStop )
{
timeStop = -1;
m_refTimeCtx = refCtx;
return;
}
int64_t dt = csTime - refCtx;
refCtx = csTime;
MemWrite( &item->threadWakeup.time, dt );
if( !AppendData( item, QueueDataSize[(int)QueueType::ThreadWakeup] ) )
{
timeStop = -2;
m_refTimeCtx = refCtx;
return;
}
}
item++;
}
m_refTimeCtx = refCtx;
}
);
if( timeStop == -2 ) return DequeueStatus::ConnectionLost;
return ( timeStop == -1 || sz > 0 ) ? DequeueStatus::DataDequeued : DequeueStatus::QueueEmpty;
}
Profiler::DequeueStatus Profiler::DequeueSerial()
{
{
bool lockHeld = true;
while( !m_serialLock.try_lock() )
{
if( m_shutdownManual.load( std::memory_order_relaxed ) )
{
lockHeld = false;
break;
}
}
if( !m_serialQueue.empty() ) m_serialQueue.swap( m_serialDequeue );
if( lockHeld )
{
m_serialLock.unlock();
}
}
const auto sz = m_serialDequeue.size();
if( sz > 0 )
{
int64_t refSerial = m_refTimeSerial;
int64_t refGpu = m_refTimeGpu;
auto item = m_serialDequeue.data();
auto end = item + sz;
while( item != end )
{
uint64_t ptr;
const auto idx = MemRead<uint8_t>( &item->hdr.idx );
if( idx < (int)QueueType::Terminate )
{
switch( (QueueType)idx )
{
case QueueType::CallstackMemory:
ptr = MemRead<uint64_t>( &item->callstackMemory.ptr );
SendCallstackPayload( ptr );
tracy_free( (void*)ptr );
break;
case QueueType::LockWait:
case QueueType::LockSharedWait:
{
int64_t t = MemRead<int64_t>( &item->lockWait.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->lockWait.time, dt );
break;
}
case QueueType::LockObtain:
case QueueType::LockSharedObtain:
{
int64_t t = MemRead<int64_t>( &item->lockObtain.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->lockObtain.time, dt );
break;
}
case QueueType::LockRelease:
case QueueType::LockSharedRelease:
{
int64_t t = MemRead<int64_t>( &item->lockRelease.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->lockRelease.time, dt );
break;
}
case QueueType::MemAlloc:
case QueueType::MemAllocCallstack:
{
int64_t t = MemRead<int64_t>( &item->memAlloc.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->memAlloc.time, dt );
break;
}
case QueueType::MemFree:
case QueueType::MemFreeCallstack:
{
int64_t t = MemRead<int64_t>( &item->memFree.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->memFree.time, dt );
break;
}
case QueueType::GpuZoneBeginSerial:
case QueueType::GpuZoneBeginCallstackSerial:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneBegin.cpuTime );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->gpuZoneBegin.cpuTime, dt );
break;
}
case QueueType::GpuZoneEndSerial:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneEnd.cpuTime );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->gpuZoneEnd.cpuTime, dt );
break;
}
case QueueType::GpuTime:
{
int64_t t = MemRead<int64_t>( &item->gpuTime.gpuTime );
int64_t dt = t - refGpu;
refGpu = t;
MemWrite( &item->gpuTime.gpuTime, dt );
break;
}
default:
assert( false );
break;
}
}
if( !AppendData( item, QueueDataSize[idx] ) ) return DequeueStatus::ConnectionLost;
item++;
}
m_refTimeSerial = refSerial;
m_refTimeGpu = refGpu;
m_serialDequeue.clear();
}
else
{
return DequeueStatus::QueueEmpty;
}
return DequeueStatus::DataDequeued;
}
bool Profiler::CommitData()
{
bool ret = SendData( m_buffer + m_bufferStart, m_bufferOffset - m_bufferStart );
if( m_bufferOffset > TargetFrameSize * 2 ) m_bufferOffset = 0;
m_bufferStart = m_bufferOffset;
return ret;
}
bool Profiler::SendData( const char* data, size_t len )
{
const lz4sz_t lz4sz = LZ4_compress_fast_continue( (LZ4_stream_t*)m_stream, data, m_lz4Buf + sizeof( lz4sz_t ), (int)len, LZ4Size, 1 );
memcpy( m_lz4Buf, &lz4sz, sizeof( lz4sz ) );
return m_sock->Send( m_lz4Buf, lz4sz + sizeof( lz4sz_t ) ) != -1;
}
void Profiler::SendString( uint64_t str, const char* ptr, QueueType type )
{
assert( type == QueueType::StringData ||
type == QueueType::ThreadName ||
type == QueueType::CustomStringData ||
type == QueueType::PlotName ||
type == QueueType::FrameName ||
type == QueueType::ExternalName ||
type == QueueType::ExternalThreadName );
QueueItem item;
MemWrite( &item.hdr.type, type );
MemWrite( &item.stringTransfer.ptr, str );
auto len = strlen( ptr );
assert( len <= std::numeric_limits<uint16_t>::max() );
auto l16 = uint16_t( len );
NeedDataSize( QueueDataSize[(int)type] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)type] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
AppendDataUnsafe( ptr, l16 );
}
void Profiler::SendLongString( uint64_t str, const char* ptr, size_t len, QueueType type )
{
assert( type == QueueType::FrameImageData ||
type == QueueType::SymbolCode );
QueueItem item;
MemWrite( &item.hdr.type, type );
MemWrite( &item.stringTransfer.ptr, str );
assert( len <= std::numeric_limits<uint32_t>::max() );
assert( QueueDataSize[(int)type] + sizeof( uint32_t ) + len <= TargetFrameSize );
auto l32 = uint32_t( len );
NeedDataSize( QueueDataSize[(int)type] + sizeof( l32 ) + l32 );
AppendDataUnsafe( &item, QueueDataSize[(int)type] );
AppendDataUnsafe( &l32, sizeof( l32 ) );
AppendDataUnsafe( ptr, l32 );
}
void Profiler::SendSourceLocation( uint64_t ptr )
{
auto srcloc = (const SourceLocationData*)ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::SourceLocation );
MemWrite( &item.srcloc.name, (uint64_t)srcloc->name );
MemWrite( &item.srcloc.file, (uint64_t)srcloc->file );
MemWrite( &item.srcloc.function, (uint64_t)srcloc->function );
MemWrite( &item.srcloc.line, srcloc->line );
MemWrite( &item.srcloc.r, uint8_t( ( srcloc->color ) & 0xFF ) );
MemWrite( &item.srcloc.g, uint8_t( ( srcloc->color >> 8 ) & 0xFF ) );
MemWrite( &item.srcloc.b, uint8_t( ( srcloc->color >> 16 ) & 0xFF ) );
AppendData( &item, QueueDataSize[(int)QueueType::SourceLocation] );
}
void Profiler::SendSourceLocationPayload( uint64_t _ptr )
{
auto ptr = (const char*)_ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::SourceLocationPayload );
MemWrite( &item.stringTransfer.ptr, _ptr );
const auto len = *((uint32_t*)ptr);
assert( len <= std::numeric_limits<uint16_t>::max() );
assert( len > 4 );
const auto l16 = uint16_t( len - 4 );
NeedDataSize( QueueDataSize[(int)QueueType::SourceLocationPayload] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::SourceLocationPayload] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
AppendDataUnsafe( ptr + 4, l16 );
}
void Profiler::SendCallstackPayload( uint64_t _ptr )
{
auto ptr = (uintptr_t*)_ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CallstackPayload );
MemWrite( &item.stringTransfer.ptr, _ptr );
const auto sz = *ptr++;
const auto len = sz * sizeof( uint64_t );
const auto l16 = uint16_t( len );
NeedDataSize( QueueDataSize[(int)QueueType::CallstackPayload] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::CallstackPayload] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
if( compile_time_condition<sizeof( uintptr_t ) == sizeof( uint64_t )>::value )
{
AppendDataUnsafe( ptr, sizeof( uint64_t ) * sz );
}
else
{
for( uintptr_t i=0; i<sz; i++ )
{
const auto val = uint64_t( *ptr++ );
AppendDataUnsafe( &val, sizeof( uint64_t ) );
}
}
}
void Profiler::SendCallstackPayload64( uint64_t _ptr )
{
auto ptr = (uint64_t*)_ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CallstackPayload );
MemWrite( &item.stringTransfer.ptr, _ptr );
const auto sz = *ptr++;
const auto len = sz * sizeof( uint64_t );
const auto l16 = uint16_t( len );
NeedDataSize( QueueDataSize[(int)QueueType::CallstackPayload] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::CallstackPayload] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
AppendDataUnsafe( ptr, sizeof( uint64_t ) * sz );
}
void Profiler::SendCallstackAlloc( uint64_t _ptr )
{
auto ptr = (const char*)_ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CallstackAllocPayload );
MemWrite( &item.stringTransfer.ptr, _ptr );
const auto len = *((uint32_t*)ptr);
assert( len <= std::numeric_limits<uint16_t>::max() );
const auto l16 = uint16_t( len );
NeedDataSize( QueueDataSize[(int)QueueType::CallstackAllocPayload] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::CallstackAllocPayload] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
AppendDataUnsafe( ptr + 4, l16 );
}
void Profiler::SendCallstackFrame( uint64_t ptr )
{
#ifdef TRACY_HAS_CALLSTACK
const auto frameData = DecodeCallstackPtr( ptr );
{
SendString( uint64_t( frameData.imageName ), frameData.imageName, QueueType::CustomStringData );
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CallstackFrameSize );
MemWrite( &item.callstackFrameSize.ptr, ptr );
MemWrite( &item.callstackFrameSize.size, frameData.size );
MemWrite( &item.callstackFrameSize.imageName, (uint64_t)frameData.imageName );
AppendData( &item, QueueDataSize[(int)QueueType::CallstackFrameSize] );
}
for( uint8_t i=0; i<frameData.size; i++ )
{
const auto& frame = frameData.data[i];
SendString( uint64_t( frame.name ), frame.name, QueueType::CustomStringData );
SendString( uint64_t( frame.file ), frame.file, QueueType::CustomStringData );
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CallstackFrame );
MemWrite( &item.callstackFrame.name, (uint64_t)frame.name );
MemWrite( &item.callstackFrame.file, (uint64_t)frame.file );
MemWrite( &item.callstackFrame.line, frame.line );
MemWrite( &item.callstackFrame.symAddr, frame.symAddr );
if( frame.symLen > ( 1 << 24 ) )
{
memset( item.callstackFrame.symLen, 0, 3 );
}
else
{
memcpy( item.callstackFrame.symLen, &frame.symLen, 3 );
}
AppendData( &item, QueueDataSize[(int)QueueType::CallstackFrame] );
tracy_free( (void*)frame.name );
tracy_free( (void*)frame.file );
}
#endif
}
bool Profiler::HandleServerQuery()
{
ServerQueryPacket payload;
if( !m_sock->Read( &payload, sizeof( payload ), 10 ) ) return false;
uint8_t type;
uint64_t ptr;
uint32_t extra;
memcpy( &type, &payload.type, sizeof( payload.type ) );
memcpy( &ptr, &payload.ptr, sizeof( payload.ptr ) );
memcpy( &extra, &payload.extra, sizeof( payload.extra ) );
switch( type )
{
case ServerQueryString:
SendString( ptr, (const char*)ptr, QueueType::StringData );
break;
case ServerQueryThreadString:
if( ptr == m_mainThread )
{
SendString( ptr, "Main thread", QueueType::ThreadName );
}
else
{
SendString( ptr, GetThreadName( ptr ), QueueType::ThreadName );
}
break;
case ServerQuerySourceLocation:
SendSourceLocation( ptr );
break;
case ServerQueryPlotName:
SendString( ptr, (const char*)ptr, QueueType::PlotName );
break;
case ServerQueryTerminate:
return false;
case ServerQueryCallstackFrame:
SendCallstackFrame( ptr );
break;
case ServerQueryFrameName:
SendString( ptr, (const char*)ptr, QueueType::FrameName );
break;
case ServerQueryDisconnect:
HandleDisconnect();
return false;
#ifdef TRACY_HAS_SYSTEM_TRACING
case ServerQueryExternalName:
SysTraceSendExternalName( ptr );
break;
#endif
case ServerQueryParameter:
HandleParameter( ptr );
break;
case ServerQuerySymbol:
HandleSymbolQuery( ptr );
break;
case ServerQuerySymbolCode:
HandleSymbolCodeQuery( ptr, extra );
break;
case ServerQueryCodeLocation:
SendCodeLocation( ptr );
break;
default:
assert( false );
break;
}
return true;
}
void Profiler::HandleDisconnect()
{
moodycamel::ConsumerToken token( GetQueue() );
#ifdef TRACY_HAS_SYSTEM_TRACING
if( s_sysTraceThread )
{
auto timestamp = GetTime();
for(;;)
{
const auto status = DequeueContextSwitches( token, timestamp );
if( status == DequeueStatus::ConnectionLost )
{
return;
}
else if( status == DequeueStatus::QueueEmpty )
{
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
}
if( timestamp < 0 )
{
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
break;
}
ClearSerial();
if( m_sock->HasData() )
{
while( m_sock->HasData() )
{
if( !HandleServerQuery() ) return;
}
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
}
else
{
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
}
}
#endif
QueueItem terminate;
MemWrite( &terminate.hdr.type, QueueType::Terminate );
if( !SendData( (const char*)&terminate, 1 ) ) return;
for(;;)
{
ClearQueues( token );
if( m_sock->HasData() )
{
while( m_sock->HasData() )
{
if( !HandleServerQuery() ) return;
}
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
}
else
{
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
}
}
void Profiler::CalibrateTimer()
{
#ifdef TRACY_HW_TIMER
# if !defined TARGET_OS_IOS && __ARM_ARCH >= 6
m_timerMul = 1.;
# else
std::atomic_signal_fence( std::memory_order_acq_rel );
const auto t0 = std::chrono::high_resolution_clock::now();
const auto r0 = GetTime();
std::atomic_signal_fence( std::memory_order_acq_rel );
std::this_thread::sleep_for( std::chrono::milliseconds( 200 ) );
std::atomic_signal_fence( std::memory_order_acq_rel );
const auto t1 = std::chrono::high_resolution_clock::now();
const auto r1 = GetTime();
std::atomic_signal_fence( std::memory_order_acq_rel );
const auto dt = std::chrono::duration_cast<std::chrono::nanoseconds>( t1 - t0 ).count();
const auto dr = r1 - r0;
m_timerMul = double( dt ) / double( dr );
# endif
#else
m_timerMul = 1.;
#endif
}
void Profiler::CalibrateDelay()
{
enum { Iterations = 50000 };
auto mindiff = std::numeric_limits<int64_t>::max();
for( int i=0; i<Iterations * 10; i++ )
{
const auto t0i = GetTime();
const auto t1i = GetTime();
const auto dti = t1i - t0i;
if( dti > 0 && dti < mindiff ) mindiff = dti;
}
m_resolution = mindiff;
#ifdef TRACY_DELAYED_INIT
m_delay = m_resolution;
#else
enum { Events = Iterations * 2 }; // start + end
static_assert( Events < QueuePrealloc, "Delay calibration loop will allocate memory in queue" );
static const tracy::SourceLocationData __tracy_source_location { nullptr, __FUNCTION__, __FILE__, (uint32_t)__LINE__, 0 };
const auto t0 = GetTime();
for( int i=0; i<Iterations; i++ )
{
{
TracyLfqPrepare( QueueType::ZoneBegin );
MemWrite( &item->zoneBegin.time, Profiler::GetTime() );
MemWrite( &item->zoneBegin.srcloc, (uint64_t)&__tracy_source_location );
TracyLfqCommit;
}
{
TracyLfqPrepare( QueueType::ZoneEnd );
MemWrite( &item->zoneEnd.time, GetTime() );
TracyLfqCommit;
}
}
const auto t1 = GetTime();
const auto dt = t1 - t0;
m_delay = dt / Events;
moodycamel::ConsumerToken token( GetQueue() );
int left = Events;
while( left != 0 )
{
const auto sz = GetQueue().try_dequeue_bulk_single( token, [](auto){}, [](auto, auto){} );
assert( sz > 0 );
left -= (int)sz;
}
assert( GetQueue().size_approx() == 0 );
#endif
}
void Profiler::ReportTopology()
{
#ifndef TRACY_DELAYED_INIT
struct CpuData
{
uint32_t package;
uint32_t core;
uint32_t thread;
};
#if defined _WIN32 || defined __CYGWIN__
t_GetLogicalProcessorInformationEx _GetLogicalProcessorInformationEx = (t_GetLogicalProcessorInformationEx)GetProcAddress( GetModuleHandleA( "kernel32" ), "GetLogicalProcessorInformationEx" );
if( !_GetLogicalProcessorInformationEx ) return;
DWORD psz = 0;
_GetLogicalProcessorInformationEx( RelationProcessorPackage, nullptr, &psz );
auto packageInfo = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)tracy_malloc( psz );
auto res = _GetLogicalProcessorInformationEx( RelationProcessorPackage, packageInfo, &psz );
assert( res );
DWORD csz = 0;
_GetLogicalProcessorInformationEx( RelationProcessorCore, nullptr, &csz );
auto coreInfo = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)tracy_malloc( csz );
res = _GetLogicalProcessorInformationEx( RelationProcessorCore, coreInfo, &csz );
assert( res );
SYSTEM_INFO sysinfo;
GetSystemInfo( &sysinfo );
const uint32_t numcpus = sysinfo.dwNumberOfProcessors;
auto cpuData = (CpuData*)tracy_malloc( sizeof( CpuData ) * numcpus );
for( uint32_t i=0; i<numcpus; i++ ) cpuData[i].thread = i;
int idx = 0;
auto ptr = packageInfo;
while( (char*)ptr < ((char*)packageInfo) + psz )
{
assert( ptr->Relationship == RelationProcessorPackage );
// FIXME account for GroupCount
auto mask = ptr->Processor.GroupMask[0].Mask;
int core = 0;
while( mask != 0 )
{
if( mask & 1 ) cpuData[core].package = idx;
core++;
mask >>= 1;
}
ptr = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)(((char*)ptr) + ptr->Size);
idx++;
}
idx = 0;
ptr = coreInfo;
while( (char*)ptr < ((char*)coreInfo) + csz )
{
assert( ptr->Relationship == RelationProcessorCore );
// FIXME account for GroupCount
auto mask = ptr->Processor.GroupMask[0].Mask;
int core = 0;
while( mask != 0 )
{
if( mask & 1 ) cpuData[core].core = idx;
core++;
mask >>= 1;
}
ptr = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)(((char*)ptr) + ptr->Size);
idx++;
}
for( uint32_t i=0; i<numcpus; i++ )
{
auto& data = cpuData[i];
TracyLfqPrepare( QueueType::CpuTopology );
MemWrite( &item->cpuTopology.package, data.package );
MemWrite( &item->cpuTopology.core, data.core );
MemWrite( &item->cpuTopology.thread, data.thread );
#ifdef TRACY_ON_DEMAND
DeferItem( *item );
#endif
TracyLfqCommit;
}
tracy_free( cpuData );
tracy_free( coreInfo );
tracy_free( packageInfo );
#elif defined __linux__
const int numcpus = std::thread::hardware_concurrency();
auto cpuData = (CpuData*)tracy_malloc( sizeof( CpuData ) * numcpus );
memset( cpuData, 0, sizeof( CpuData ) * numcpus );
const char* basePath = "/sys/devices/system/cpu/cpu";
for( int i=0; i<numcpus; i++ )
{
char path[1024];
sprintf( path, "%s%i/topology/physical_package_id", basePath, i );
char buf[1024];
FILE* f = fopen( path, "rb" );
auto read = fread( buf, 1, 1024, f );
buf[read] = '\0';
fclose( f );
cpuData[i].package = uint32_t( atoi( buf ) );
cpuData[i].thread = i;
sprintf( path, "%s%i/topology/core_id", basePath, i );
f = fopen( path, "rb" );
read = fread( buf, 1, 1024, f );
buf[read] = '\0';
fclose( f );
cpuData[i].core = uint32_t( atoi( buf ) );
}
for( int i=0; i<numcpus; i++ )
{
auto& data = cpuData[i];
TracyLfqPrepare( QueueType::CpuTopology );
MemWrite( &item->cpuTopology.package, data.package );
MemWrite( &item->cpuTopology.core, data.core );
MemWrite( &item->cpuTopology.thread, data.thread );
#ifdef TRACY_ON_DEMAND
DeferItem( *item );
#endif
TracyLfqCommit;
}
tracy_free( cpuData );
#endif
#endif
}
void Profiler::SendCallstack( int depth, const char* skipBefore )
{
#ifdef TRACY_HAS_CALLSTACK
auto ptr = Callstack( depth );
CutCallstack( ptr, skipBefore );
TracyLfqPrepare( QueueType::Callstack );
MemWrite( &item->callstack.ptr, (uint64_t)ptr );
TracyLfqCommit;
#endif
}
void Profiler::CutCallstack( void* callstack, const char* skipBefore )
{
#ifdef TRACY_HAS_CALLSTACK
auto data = (uintptr_t*)callstack;
const auto sz = *data++;
uintptr_t i;
for( i=0; i<sz; i++ )
{
auto name = DecodeCallstackPtrFast( uint64_t( data[i] ) );
const bool found = strcmp( name, skipBefore ) == 0;
if( found )
{
i++;
break;
}
}
if( i != sz )
{
memmove( data, data + i, ( sz - i ) * sizeof( uintptr_t* ) );
*--data = sz - i;
}
#endif
}
#ifdef TRACY_HAS_SYSTIME
void Profiler::ProcessSysTime()
{
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
auto t = std::chrono::high_resolution_clock::now().time_since_epoch().count();
if( t - m_sysTimeLast > 100000000 ) // 100 ms
{
auto sysTime = m_sysTime.Get();
if( sysTime >= 0 )
{
m_sysTimeLast = t;
TracyLfqPrepare( QueueType::SysTimeReport );
MemWrite( &item->sysTime.time, GetTime() );
MemWrite( &item->sysTime.sysTime, sysTime );
TracyLfqCommit;
}
}
}
#endif
void Profiler::HandleParameter( uint64_t payload )
{
assert( m_paramCallback );
const auto idx = uint32_t( payload >> 32 );
const auto val = int32_t( payload & 0xFFFFFFFF );
m_paramCallback( idx, val );
TracyLfqPrepare( QueueType::ParamPingback );
TracyLfqCommit;
}
void Profiler::HandleSymbolQuery( uint64_t symbol )
{
#ifdef TRACY_HAS_CALLSTACK
const auto sym = DecodeSymbolAddress( symbol );
SendString( uint64_t( sym.file ), sym.file, QueueType::CustomStringData );
QueueItem item;
MemWrite( &item.hdr.type, QueueType::SymbolInformation );
MemWrite( &item.symbolInformation.file, uint64_t( sym.file ) );
MemWrite( &item.symbolInformation.line, sym.line );
MemWrite( &item.symbolInformation.symAddr, symbol );
AppendData( &item, QueueDataSize[(int)QueueType::SymbolInformation] );
if( sym.needFree ) tracy_free( (void*)sym.file );
#endif
}
void Profiler::HandleSymbolCodeQuery( uint64_t symbol, uint32_t size )
{
SendLongString( symbol, (const char*)symbol, size, QueueType::SymbolCode );
}
void Profiler::SendCodeLocation( uint64_t ptr )
{
#ifdef TRACY_HAS_CALLSTACK
const auto sym = DecodeCodeAddress( ptr );
SendString( uint64_t( sym.file ), sym.file, QueueType::CustomStringData );
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CodeInformation );
MemWrite( &item.codeInformation.ptr, ptr );
MemWrite( &item.codeInformation.file, uint64_t( sym.file ) );
MemWrite( &item.codeInformation.line, sym.line );
AppendData( &item, QueueDataSize[(int)QueueType::CodeInformation] );
if( sym.needFree ) tracy_free( (void*)sym.file );
#endif
}
#if ( defined _WIN32 || defined __CYGWIN__ ) && defined TRACY_TIMER_QPC
int64_t Profiler::GetTimeQpc()
{
LARGE_INTEGER t;
QueryPerformanceCounter( &t );
return t.QuadPart;
}
#endif
}
#ifdef __cplusplus
extern "C" {
#endif
TRACY_API TracyCZoneCtx ___tracy_emit_zone_begin( const struct ___tracy_source_location_data* srcloc, int active )
{
___tracy_c_zone_context ctx;
#ifdef TRACY_ON_DEMAND
ctx.active = active && tracy::GetProfiler().IsConnected();
#else
ctx.active = active;
#endif
if( !ctx.active ) return ctx;
const auto id = tracy::GetProfiler().GetNextZoneId();
ctx.id = id;
#ifndef TRACY_NO_VERIFY
{
TracyLfqPrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, id );
TracyLfqCommitC;
}
#endif
{
TracyLfqPrepareC( tracy::QueueType::ZoneBegin );
tracy::MemWrite( &item->zoneBegin.time, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->zoneBegin.srcloc, (uint64_t)srcloc );
TracyLfqCommitC;
}
return ctx;
}
TRACY_API TracyCZoneCtx ___tracy_emit_zone_begin_callstack( const struct ___tracy_source_location_data* srcloc, int depth, int active )
{
___tracy_c_zone_context ctx;
#ifdef TRACY_ON_DEMAND
ctx.active = active && tracy::GetProfiler().IsConnected();
#else
ctx.active = active;
#endif
if( !ctx.active ) return ctx;
const auto id = tracy::GetProfiler().GetNextZoneId();
ctx.id = id;
#ifndef TRACY_NO_VERIFY
{
TracyLfqPrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, id );
TracyLfqCommitC;
}
#endif
{
TracyLfqPrepareC( tracy::QueueType::ZoneBeginCallstack );
tracy::MemWrite( &item->zoneBegin.time, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->zoneBegin.srcloc, (uint64_t)srcloc );
TracyLfqCommitC;
}
tracy::GetProfiler().SendCallstack( depth );
return ctx;
}
TRACY_API TracyCZoneCtx ___tracy_emit_zone_begin_alloc( uint64_t srcloc, int active )
{
___tracy_c_zone_context ctx;
#ifdef TRACY_ON_DEMAND
ctx.active = active && tracy::GetProfiler().IsConnected();
#else
ctx.active = active;
#endif
if( !ctx.active )
{
tracy::tracy_free( (void*)srcloc );
return ctx;
}
const auto id = tracy::GetProfiler().GetNextZoneId();
ctx.id = id;
#ifndef TRACY_NO_VERIFY
{
TracyLfqPrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, id );
TracyLfqCommitC;
}
#endif
{
TracyLfqPrepareC( tracy::QueueType::ZoneBeginAllocSrcLoc );
tracy::MemWrite( &item->zoneBegin.time, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->zoneBegin.srcloc, srcloc );
TracyLfqCommitC;
}
return ctx;
}
TRACY_API TracyCZoneCtx ___tracy_emit_zone_begin_alloc_callstack( uint64_t srcloc, int depth, int active )
{
___tracy_c_zone_context ctx;
#ifdef TRACY_ON_DEMAND
ctx.active = active && tracy::GetProfiler().IsConnected();
#else
ctx.active = active;
#endif
if( !ctx.active )
{
tracy::tracy_free( (void*)srcloc );
return ctx;
}
const auto id = tracy::GetProfiler().GetNextZoneId();
ctx.id = id;
#ifndef TRACY_NO_VERIFY
{
TracyLfqPrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, id );
TracyLfqCommitC;
}
#endif
{
TracyLfqPrepareC( tracy::QueueType::ZoneBeginAllocSrcLocCallstack );
tracy::MemWrite( &item->zoneBegin.time, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->zoneBegin.srcloc, srcloc );
TracyLfqCommitC;
}
tracy::GetProfiler().SendCallstack( depth );
return ctx;
}
TRACY_API void ___tracy_emit_zone_end( TracyCZoneCtx ctx )
{
if( !ctx.active ) return;
#ifndef TRACY_NO_VERIFY
{
TracyLfqPrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, ctx.id );
TracyLfqCommitC;
}
#endif
{
TracyLfqPrepareC( tracy::QueueType::ZoneEnd );
tracy::MemWrite( &item->zoneEnd.time, tracy::Profiler::GetTime() );
TracyLfqCommitC;
}
}
TRACY_API void ___tracy_emit_zone_text( TracyCZoneCtx ctx, const char* txt, size_t size )
{
if( !ctx.active ) return;
auto ptr = (char*)tracy::tracy_malloc( size+1 );
memcpy( ptr, txt, size );
ptr[size] = '\0';
#ifndef TRACY_NO_VERIFY
{
TracyLfqPrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, ctx.id );
TracyLfqCommitC;
}
#endif
{
TracyLfqPrepareC( tracy::QueueType::ZoneText );
tracy::MemWrite( &item->zoneText.text, (uint64_t)ptr );
TracyLfqCommitC;
}
}
TRACY_API void ___tracy_emit_zone_name( TracyCZoneCtx ctx, const char* txt, size_t size )
{
if( !ctx.active ) return;
auto ptr = (char*)tracy::tracy_malloc( size+1 );
memcpy( ptr, txt, size );
ptr[size] = '\0';
#ifndef TRACY_NO_VERIFY
{
TracyLfqPrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, ctx.id );
TracyLfqCommitC;
}
#endif
{
TracyLfqPrepareC( tracy::QueueType::ZoneName );
tracy::MemWrite( &item->zoneText.text, (uint64_t)ptr );
TracyLfqCommitC;
}
}
TRACY_API void ___tracy_emit_memory_alloc( const void* ptr, size_t size ) { tracy::Profiler::MemAlloc( ptr, size ); }
TRACY_API void ___tracy_emit_memory_alloc_callstack( const void* ptr, size_t size, int depth ) { tracy::Profiler::MemAllocCallstack( ptr, size, depth ); }
TRACY_API void ___tracy_emit_memory_free( const void* ptr ) { tracy::Profiler::MemFree( ptr ); }
TRACY_API void ___tracy_emit_memory_free_callstack( const void* ptr, int depth ) { tracy::Profiler::MemFreeCallstack( ptr, depth ); }
TRACY_API void ___tracy_emit_frame_mark( const char* name ) { tracy::Profiler::SendFrameMark( name ); }
TRACY_API void ___tracy_emit_frame_mark_start( const char* name ) { tracy::Profiler::SendFrameMark( name, tracy::QueueType::FrameMarkMsgStart ); }
TRACY_API void ___tracy_emit_frame_mark_end( const char* name ) { tracy::Profiler::SendFrameMark( name, tracy::QueueType::FrameMarkMsgEnd ); }
TRACY_API void ___tracy_emit_frame_image( const void* image, uint16_t w, uint16_t h, uint8_t offset, int flip ) { tracy::Profiler::SendFrameImage( image, w, h, offset, flip ); }
TRACY_API void ___tracy_emit_plot( const char* name, double val ) { tracy::Profiler::PlotData( name, val ); }
TRACY_API void ___tracy_emit_message( const char* txt, size_t size, int callstack ) { tracy::Profiler::Message( txt, size, callstack ); }
TRACY_API void ___tracy_emit_messageL( const char* txt, int callstack ) { tracy::Profiler::Message( txt, callstack ); }
TRACY_API void ___tracy_emit_messageC( const char* txt, size_t size, uint32_t color, int callstack ) { tracy::Profiler::MessageColor( txt, size, color, callstack ); }
TRACY_API void ___tracy_emit_messageLC( const char* txt, uint32_t color, int callstack ) { tracy::Profiler::MessageColor( txt, color, callstack ); }
TRACY_API void ___tracy_emit_message_appinfo( const char* txt, size_t size ) { tracy::Profiler::MessageAppInfo( txt, size ); }
TRACY_API uint64_t ___tracy_alloc_srcloc( uint32_t line, const char* source, const char* function ) { return tracy::Profiler::AllocSourceLocation( line, source, function ); }
TRACY_API uint64_t ___tracy_alloc_srcloc_name( uint32_t line, const char* source, const char* function, const char* name, size_t nameSz ) { return tracy::Profiler::AllocSourceLocation( line, source, function, name, nameSz ); }
#ifdef __cplusplus
}
#endif
#endif