mirror of
https://github.com/wolfpld/tracy.git
synced 2024-11-14 04:01:48 +00:00
1324 lines
48 KiB
C++
1324 lines
48 KiB
C++
#include "TracyEtc1.hpp"
|
|
|
|
#include <array>
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
typedef std::array<uint16_t, 4> v4i;
|
|
|
|
#if defined __AVX__ && !defined __SSE4_1__
|
|
# define __SSE4_1__
|
|
#endif
|
|
|
|
#ifdef __AVX2__
|
|
|
|
#ifdef _MSC_VER
|
|
# include <intrin.h>
|
|
# include <Windows.h>
|
|
# define _bswap(x) _byteswap_ulong(x)
|
|
# define VS_VECTORCALL _vectorcall
|
|
#else
|
|
# include <x86intrin.h>
|
|
# pragma GCC push_options
|
|
# pragma GCC target ("avx2,fma,bmi2")
|
|
# define VS_VECTORCALL
|
|
#endif
|
|
|
|
#ifndef _bswap
|
|
# define _bswap(x) __builtin_bswap32(x)
|
|
#endif
|
|
|
|
namespace tracy
|
|
{
|
|
|
|
const __m128i g_table128_SIMD[2] =
|
|
{
|
|
_mm_setr_epi16( 2*128, 5*128, 9*128, 13*128, 18*128, 24*128, 33*128, 47*128),
|
|
_mm_setr_epi16( 8*128, 17*128, 29*128, 42*128, 60*128, 80*128, 106*128, 183*128)
|
|
};
|
|
|
|
#ifdef _MSC_VER
|
|
static inline unsigned long _bit_scan_forward( unsigned long mask )
|
|
{
|
|
unsigned long ret;
|
|
_BitScanForward( &ret, mask );
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static __m256i VS_VECTORCALL Sum4_AVX2( const uint8_t* data) noexcept
|
|
{
|
|
__m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0);
|
|
__m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1);
|
|
__m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2);
|
|
__m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3);
|
|
|
|
__m128i dm0 = _mm_and_si128(d0, _mm_set1_epi32(0x00FFFFFF));
|
|
__m128i dm1 = _mm_and_si128(d1, _mm_set1_epi32(0x00FFFFFF));
|
|
__m128i dm2 = _mm_and_si128(d2, _mm_set1_epi32(0x00FFFFFF));
|
|
__m128i dm3 = _mm_and_si128(d3, _mm_set1_epi32(0x00FFFFFF));
|
|
|
|
__m256i t0 = _mm256_cvtepu8_epi16(dm0);
|
|
__m256i t1 = _mm256_cvtepu8_epi16(dm1);
|
|
__m256i t2 = _mm256_cvtepu8_epi16(dm2);
|
|
__m256i t3 = _mm256_cvtepu8_epi16(dm3);
|
|
|
|
__m256i sum0 = _mm256_add_epi16(t0, t1);
|
|
__m256i sum1 = _mm256_add_epi16(t2, t3);
|
|
|
|
__m256i s0 = _mm256_permute2x128_si256(sum0, sum1, (0) | (3 << 4)); // 0, 0, 3, 3
|
|
__m256i s1 = _mm256_permute2x128_si256(sum0, sum1, (1) | (2 << 4)); // 1, 1, 2, 2
|
|
|
|
__m256i s2 = _mm256_permute4x64_epi64(s0, _MM_SHUFFLE(1, 3, 0, 2));
|
|
__m256i s3 = _mm256_permute4x64_epi64(s0, _MM_SHUFFLE(0, 2, 1, 3));
|
|
__m256i s4 = _mm256_permute4x64_epi64(s1, _MM_SHUFFLE(3, 1, 0, 2));
|
|
__m256i s5 = _mm256_permute4x64_epi64(s1, _MM_SHUFFLE(2, 0, 1, 3));
|
|
|
|
__m256i sum5 = _mm256_add_epi16(s2, s3); // 3, 0, 3, 0
|
|
__m256i sum6 = _mm256_add_epi16(s4, s5); // 2, 1, 1, 2
|
|
return _mm256_add_epi16(sum5, sum6); // 3+2, 0+1, 3+1, 3+2
|
|
}
|
|
|
|
__m256i VS_VECTORCALL Average_AVX2( const __m256i data) noexcept
|
|
{
|
|
__m256i a = _mm256_add_epi16(data, _mm256_set1_epi16(4));
|
|
|
|
return _mm256_srli_epi16(a, 3);
|
|
}
|
|
|
|
static __m128i VS_VECTORCALL CalcErrorBlock_AVX2( const __m256i data, const v4i a[8]) noexcept
|
|
{
|
|
//
|
|
__m256i a0 = _mm256_load_si256((__m256i*)a[0].data());
|
|
__m256i a1 = _mm256_load_si256((__m256i*)a[4].data());
|
|
|
|
// err = 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) );
|
|
__m256i a4 = _mm256_madd_epi16(a0, a0);
|
|
__m256i a5 = _mm256_madd_epi16(a1, a1);
|
|
|
|
__m256i a6 = _mm256_hadd_epi32(a4, a5);
|
|
__m256i a7 = _mm256_slli_epi32(a6, 3);
|
|
|
|
__m256i a8 = _mm256_add_epi32(a7, _mm256_set1_epi32(0x3FFFFFFF)); // Big value to prevent negative values, but small enough to prevent overflow
|
|
|
|
// average is not swapped
|
|
// err -= block[0] * 2 * average[0];
|
|
// err -= block[1] * 2 * average[1];
|
|
// err -= block[2] * 2 * average[2];
|
|
__m256i a2 = _mm256_slli_epi16(a0, 1);
|
|
__m256i a3 = _mm256_slli_epi16(a1, 1);
|
|
__m256i b0 = _mm256_madd_epi16(a2, data);
|
|
__m256i b1 = _mm256_madd_epi16(a3, data);
|
|
|
|
__m256i b2 = _mm256_hadd_epi32(b0, b1);
|
|
__m256i b3 = _mm256_sub_epi32(a8, b2);
|
|
__m256i b4 = _mm256_hadd_epi32(b3, b3);
|
|
|
|
__m256i b5 = _mm256_permutevar8x32_epi32(b4, _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0));
|
|
|
|
return _mm256_castsi256_si128(b5);
|
|
}
|
|
|
|
static void VS_VECTORCALL ProcessAverages_AVX2(const __m256i d, v4i a[8] ) noexcept
|
|
{
|
|
__m256i t = _mm256_add_epi16(_mm256_mullo_epi16(d, _mm256_set1_epi16(31)), _mm256_set1_epi16(128));
|
|
|
|
__m256i c = _mm256_srli_epi16(_mm256_add_epi16(t, _mm256_srli_epi16(t, 8)), 8);
|
|
|
|
__m256i c1 = _mm256_shuffle_epi32(c, _MM_SHUFFLE(3, 2, 3, 2));
|
|
__m256i diff = _mm256_sub_epi16(c, c1);
|
|
diff = _mm256_max_epi16(diff, _mm256_set1_epi16(-4));
|
|
diff = _mm256_min_epi16(diff, _mm256_set1_epi16(3));
|
|
|
|
__m256i co = _mm256_add_epi16(c1, diff);
|
|
|
|
c = _mm256_blend_epi16(co, c, 0xF0);
|
|
|
|
__m256i a0 = _mm256_or_si256(_mm256_slli_epi16(c, 3), _mm256_srli_epi16(c, 2));
|
|
|
|
_mm256_store_si256((__m256i*)a[4].data(), a0);
|
|
|
|
__m256i t0 = _mm256_add_epi16(_mm256_mullo_epi16(d, _mm256_set1_epi16(15)), _mm256_set1_epi16(128));
|
|
__m256i t1 = _mm256_srli_epi16(_mm256_add_epi16(t0, _mm256_srli_epi16(t0, 8)), 8);
|
|
|
|
__m256i t2 = _mm256_or_si256(t1, _mm256_slli_epi16(t1, 4));
|
|
|
|
_mm256_store_si256((__m256i*)a[0].data(), t2);
|
|
}
|
|
|
|
static uint64_t VS_VECTORCALL EncodeAverages_AVX2( const v4i a[8], size_t idx ) noexcept
|
|
{
|
|
uint64_t d = ( idx << 24 );
|
|
size_t base = idx << 1;
|
|
|
|
__m128i a0 = _mm_load_si128((const __m128i*)a[base].data());
|
|
|
|
__m128i r0, r1;
|
|
|
|
if( ( idx & 0x2 ) == 0 )
|
|
{
|
|
r0 = _mm_srli_epi16(a0, 4);
|
|
|
|
__m128i a1 = _mm_unpackhi_epi64(r0, r0);
|
|
r1 = _mm_slli_epi16(a1, 4);
|
|
}
|
|
else
|
|
{
|
|
__m128i a1 = _mm_and_si128(a0, _mm_set1_epi16(-8));
|
|
|
|
r0 = _mm_unpackhi_epi64(a1, a1);
|
|
__m128i a2 = _mm_sub_epi16(a1, r0);
|
|
__m128i a3 = _mm_srai_epi16(a2, 3);
|
|
r1 = _mm_and_si128(a3, _mm_set1_epi16(0x07));
|
|
}
|
|
|
|
__m128i r2 = _mm_or_si128(r0, r1);
|
|
// do missing swap for average values
|
|
__m128i r3 = _mm_shufflelo_epi16(r2, _MM_SHUFFLE(3, 0, 1, 2));
|
|
__m128i r4 = _mm_packus_epi16(r3, _mm_setzero_si128());
|
|
d |= _mm_cvtsi128_si32(r4);
|
|
|
|
return d;
|
|
}
|
|
|
|
static uint64_t VS_VECTORCALL CheckSolid_AVX2( const uint8_t* src ) noexcept
|
|
{
|
|
__m256i d0 = _mm256_loadu_si256(((__m256i*)src) + 0);
|
|
__m256i d1 = _mm256_loadu_si256(((__m256i*)src) + 1);
|
|
|
|
__m256i c = _mm256_broadcastd_epi32(_mm256_castsi256_si128(d0));
|
|
|
|
__m256i c0 = _mm256_cmpeq_epi8(d0, c);
|
|
__m256i c1 = _mm256_cmpeq_epi8(d1, c);
|
|
|
|
__m256i m = _mm256_and_si256(c0, c1);
|
|
|
|
if (!_mm256_testc_si256(m, _mm256_set1_epi32(-1)))
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return 0x02000000 |
|
|
( (unsigned int)( src[0] & 0xF8 ) << 16 ) |
|
|
( (unsigned int)( src[1] & 0xF8 ) << 8 ) |
|
|
( (unsigned int)( src[2] & 0xF8 ) );
|
|
}
|
|
|
|
static __m128i VS_VECTORCALL PrepareAverages_AVX2( v4i a[8], const uint8_t* src) noexcept
|
|
{
|
|
__m256i sum4 = Sum4_AVX2( src );
|
|
|
|
ProcessAverages_AVX2(Average_AVX2( sum4 ), a );
|
|
|
|
return CalcErrorBlock_AVX2( sum4, a);
|
|
}
|
|
|
|
static void VS_VECTORCALL FindBestFit_4x2_AVX2( uint32_t terr[2][8], uint32_t tsel[8], v4i a[8], const uint32_t offset, const uint8_t* data) noexcept
|
|
{
|
|
__m256i sel0 = _mm256_setzero_si256();
|
|
__m256i sel1 = _mm256_setzero_si256();
|
|
|
|
for (unsigned int j = 0; j < 2; ++j)
|
|
{
|
|
unsigned int bid = offset + 1 - j;
|
|
|
|
__m256i squareErrorSum = _mm256_setzero_si256();
|
|
|
|
__m128i a0 = _mm_loadl_epi64((const __m128i*)a[bid].data());
|
|
__m256i a1 = _mm256_broadcastq_epi64(a0);
|
|
|
|
// Processing one full row each iteration
|
|
for (size_t i = 0; i < 8; i += 4)
|
|
{
|
|
__m128i rgb = _mm_loadu_si128((const __m128i*)(data + i * 4));
|
|
|
|
__m256i rgb16 = _mm256_cvtepu8_epi16(rgb);
|
|
__m256i d = _mm256_sub_epi16(a1, rgb16);
|
|
|
|
// The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16
|
|
// This produces slightly different results, but is significant faster
|
|
__m256i pixel0 = _mm256_madd_epi16(d, _mm256_set_epi16(0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14));
|
|
__m256i pixel1 = _mm256_packs_epi32(pixel0, pixel0);
|
|
__m256i pixel2 = _mm256_hadd_epi16(pixel1, pixel1);
|
|
__m128i pixel3 = _mm256_castsi256_si128(pixel2);
|
|
|
|
__m128i pix0 = _mm_broadcastw_epi16(pixel3);
|
|
__m128i pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16));
|
|
__m256i pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1);
|
|
|
|
// Processing first two pixels of the row
|
|
{
|
|
__m256i pix = _mm256_abs_epi16(pixel);
|
|
|
|
// Taking the absolute value is way faster. The values are only used to sort, so the result will be the same.
|
|
// Since the selector table is symmetrical, we need to calculate the difference only for half of the entries.
|
|
__m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0])));
|
|
__m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1])));
|
|
|
|
__m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1));
|
|
__m256i minError = _mm256_min_epi16(error0, error1);
|
|
|
|
// Exploiting symmetry of the selector table and use the sign bit
|
|
// This produces slightly different results, but is significant faster
|
|
__m256i minIndex1 = _mm256_srli_epi16(pixel, 15);
|
|
|
|
// Interleaving values so madd instruction can be used
|
|
__m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0));
|
|
__m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2));
|
|
|
|
__m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi);
|
|
// Squaring the minimum error to produce correct values when adding
|
|
__m256i squareError = _mm256_madd_epi16(minError2, minError2);
|
|
|
|
squareErrorSum = _mm256_add_epi32(squareErrorSum, squareError);
|
|
|
|
// Packing selector bits
|
|
__m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i + j * 8));
|
|
__m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i + j * 8));
|
|
|
|
sel0 = _mm256_or_si256(sel0, minIndexLo2);
|
|
sel1 = _mm256_or_si256(sel1, minIndexHi2);
|
|
}
|
|
|
|
pixel3 = _mm256_extracti128_si256(pixel2, 1);
|
|
pix0 = _mm_broadcastw_epi16(pixel3);
|
|
pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16));
|
|
pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1);
|
|
|
|
// Processing second two pixels of the row
|
|
{
|
|
__m256i pix = _mm256_abs_epi16(pixel);
|
|
|
|
// Taking the absolute value is way faster. The values are only used to sort, so the result will be the same.
|
|
// Since the selector table is symmetrical, we need to calculate the difference only for half of the entries.
|
|
__m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0])));
|
|
__m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1])));
|
|
|
|
__m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1));
|
|
__m256i minError = _mm256_min_epi16(error0, error1);
|
|
|
|
// Exploiting symmetry of the selector table and use the sign bit
|
|
__m256i minIndex1 = _mm256_srli_epi16(pixel, 15);
|
|
|
|
// Interleaving values so madd instruction can be used
|
|
__m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0));
|
|
__m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2));
|
|
|
|
__m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi);
|
|
// Squaring the minimum error to produce correct values when adding
|
|
__m256i squareError = _mm256_madd_epi16(minError2, minError2);
|
|
|
|
squareErrorSum = _mm256_add_epi32(squareErrorSum, squareError);
|
|
|
|
// Packing selector bits
|
|
__m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i + j * 8));
|
|
__m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i + j * 8));
|
|
__m256i minIndexLo3 = _mm256_slli_epi16(minIndexLo2, 2);
|
|
__m256i minIndexHi3 = _mm256_slli_epi16(minIndexHi2, 2);
|
|
|
|
sel0 = _mm256_or_si256(sel0, minIndexLo3);
|
|
sel1 = _mm256_or_si256(sel1, minIndexHi3);
|
|
}
|
|
}
|
|
|
|
data += 8 * 4;
|
|
|
|
_mm256_store_si256((__m256i*)terr[1 - j], squareErrorSum);
|
|
}
|
|
|
|
// Interleave selector bits
|
|
__m256i minIndexLo0 = _mm256_unpacklo_epi16(sel0, sel1);
|
|
__m256i minIndexHi0 = _mm256_unpackhi_epi16(sel0, sel1);
|
|
|
|
__m256i minIndexLo1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (0) | (2 << 4));
|
|
__m256i minIndexHi1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (1) | (3 << 4));
|
|
|
|
__m256i minIndexHi2 = _mm256_slli_epi32(minIndexHi1, 1);
|
|
|
|
__m256i sel = _mm256_or_si256(minIndexLo1, minIndexHi2);
|
|
|
|
_mm256_store_si256((__m256i*)tsel, sel);
|
|
}
|
|
|
|
static void VS_VECTORCALL FindBestFit_2x4_AVX2( uint32_t terr[2][8], uint32_t tsel[8], v4i a[8], const uint32_t offset, const uint8_t* data) noexcept
|
|
{
|
|
__m256i sel0 = _mm256_setzero_si256();
|
|
__m256i sel1 = _mm256_setzero_si256();
|
|
|
|
__m256i squareErrorSum0 = _mm256_setzero_si256();
|
|
__m256i squareErrorSum1 = _mm256_setzero_si256();
|
|
|
|
__m128i a0 = _mm_loadl_epi64((const __m128i*)a[offset + 1].data());
|
|
__m128i a1 = _mm_loadl_epi64((const __m128i*)a[offset + 0].data());
|
|
|
|
__m128i a2 = _mm_broadcastq_epi64(a0);
|
|
__m128i a3 = _mm_broadcastq_epi64(a1);
|
|
__m256i a4 = _mm256_insertf128_si256(_mm256_castsi128_si256(a2), a3, 1);
|
|
|
|
// Processing one full row each iteration
|
|
for (size_t i = 0; i < 16; i += 4)
|
|
{
|
|
__m128i rgb = _mm_loadu_si128((const __m128i*)(data + i * 4));
|
|
|
|
__m256i rgb16 = _mm256_cvtepu8_epi16(rgb);
|
|
__m256i d = _mm256_sub_epi16(a4, rgb16);
|
|
|
|
// The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16
|
|
// This produces slightly different results, but is significant faster
|
|
__m256i pixel0 = _mm256_madd_epi16(d, _mm256_set_epi16(0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14));
|
|
__m256i pixel1 = _mm256_packs_epi32(pixel0, pixel0);
|
|
__m256i pixel2 = _mm256_hadd_epi16(pixel1, pixel1);
|
|
__m128i pixel3 = _mm256_castsi256_si128(pixel2);
|
|
|
|
__m128i pix0 = _mm_broadcastw_epi16(pixel3);
|
|
__m128i pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16));
|
|
__m256i pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1);
|
|
|
|
// Processing first two pixels of the row
|
|
{
|
|
__m256i pix = _mm256_abs_epi16(pixel);
|
|
|
|
// Taking the absolute value is way faster. The values are only used to sort, so the result will be the same.
|
|
// Since the selector table is symmetrical, we need to calculate the difference only for half of the entries.
|
|
__m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0])));
|
|
__m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1])));
|
|
|
|
__m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1));
|
|
__m256i minError = _mm256_min_epi16(error0, error1);
|
|
|
|
// Exploiting symmetry of the selector table and use the sign bit
|
|
__m256i minIndex1 = _mm256_srli_epi16(pixel, 15);
|
|
|
|
// Interleaving values so madd instruction can be used
|
|
__m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0));
|
|
__m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2));
|
|
|
|
__m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi);
|
|
// Squaring the minimum error to produce correct values when adding
|
|
__m256i squareError = _mm256_madd_epi16(minError2, minError2);
|
|
|
|
squareErrorSum0 = _mm256_add_epi32(squareErrorSum0, squareError);
|
|
|
|
// Packing selector bits
|
|
__m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i));
|
|
__m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i));
|
|
|
|
sel0 = _mm256_or_si256(sel0, minIndexLo2);
|
|
sel1 = _mm256_or_si256(sel1, minIndexHi2);
|
|
}
|
|
|
|
pixel3 = _mm256_extracti128_si256(pixel2, 1);
|
|
pix0 = _mm_broadcastw_epi16(pixel3);
|
|
pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16));
|
|
pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1);
|
|
|
|
// Processing second two pixels of the row
|
|
{
|
|
__m256i pix = _mm256_abs_epi16(pixel);
|
|
|
|
// Taking the absolute value is way faster. The values are only used to sort, so the result will be the same.
|
|
// Since the selector table is symmetrical, we need to calculate the difference only for half of the entries.
|
|
__m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0])));
|
|
__m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1])));
|
|
|
|
__m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1));
|
|
__m256i minError = _mm256_min_epi16(error0, error1);
|
|
|
|
// Exploiting symmetry of the selector table and use the sign bit
|
|
__m256i minIndex1 = _mm256_srli_epi16(pixel, 15);
|
|
|
|
// Interleaving values so madd instruction can be used
|
|
__m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0));
|
|
__m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2));
|
|
|
|
__m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi);
|
|
// Squaring the minimum error to produce correct values when adding
|
|
__m256i squareError = _mm256_madd_epi16(minError2, minError2);
|
|
|
|
squareErrorSum1 = _mm256_add_epi32(squareErrorSum1, squareError);
|
|
|
|
// Packing selector bits
|
|
__m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i));
|
|
__m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i));
|
|
__m256i minIndexLo3 = _mm256_slli_epi16(minIndexLo2, 2);
|
|
__m256i minIndexHi3 = _mm256_slli_epi16(minIndexHi2, 2);
|
|
|
|
sel0 = _mm256_or_si256(sel0, minIndexLo3);
|
|
sel1 = _mm256_or_si256(sel1, minIndexHi3);
|
|
}
|
|
}
|
|
|
|
_mm256_store_si256((__m256i*)terr[1], squareErrorSum0);
|
|
_mm256_store_si256((__m256i*)terr[0], squareErrorSum1);
|
|
|
|
// Interleave selector bits
|
|
__m256i minIndexLo0 = _mm256_unpacklo_epi16(sel0, sel1);
|
|
__m256i minIndexHi0 = _mm256_unpackhi_epi16(sel0, sel1);
|
|
|
|
__m256i minIndexLo1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (0) | (2 << 4));
|
|
__m256i minIndexHi1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (1) | (3 << 4));
|
|
|
|
__m256i minIndexHi2 = _mm256_slli_epi32(minIndexHi1, 1);
|
|
|
|
__m256i sel = _mm256_or_si256(minIndexLo1, minIndexHi2);
|
|
|
|
_mm256_store_si256((__m256i*)tsel, sel);
|
|
}
|
|
|
|
uint64_t VS_VECTORCALL EncodeSelectors_AVX2( uint64_t d, const uint32_t terr[2][8], const uint32_t tsel[8], const bool rotate) noexcept
|
|
{
|
|
size_t tidx[2];
|
|
|
|
// Get index of minimum error (terr[0] and terr[1])
|
|
__m256i err0 = _mm256_load_si256((const __m256i*)terr[0]);
|
|
__m256i err1 = _mm256_load_si256((const __m256i*)terr[1]);
|
|
|
|
__m256i errLo = _mm256_permute2x128_si256(err0, err1, (0) | (2 << 4));
|
|
__m256i errHi = _mm256_permute2x128_si256(err0, err1, (1) | (3 << 4));
|
|
|
|
__m256i errMin0 = _mm256_min_epu32(errLo, errHi);
|
|
|
|
__m256i errMin1 = _mm256_shuffle_epi32(errMin0, _MM_SHUFFLE(2, 3, 0, 1));
|
|
__m256i errMin2 = _mm256_min_epu32(errMin0, errMin1);
|
|
|
|
__m256i errMin3 = _mm256_shuffle_epi32(errMin2, _MM_SHUFFLE(1, 0, 3, 2));
|
|
__m256i errMin4 = _mm256_min_epu32(errMin3, errMin2);
|
|
|
|
__m256i errMin5 = _mm256_permute2x128_si256(errMin4, errMin4, (0) | (0 << 4));
|
|
__m256i errMin6 = _mm256_permute2x128_si256(errMin4, errMin4, (1) | (1 << 4));
|
|
|
|
__m256i errMask0 = _mm256_cmpeq_epi32(errMin5, err0);
|
|
__m256i errMask1 = _mm256_cmpeq_epi32(errMin6, err1);
|
|
|
|
uint32_t mask0 = _mm256_movemask_epi8(errMask0);
|
|
uint32_t mask1 = _mm256_movemask_epi8(errMask1);
|
|
|
|
tidx[0] = _bit_scan_forward(mask0) >> 2;
|
|
tidx[1] = _bit_scan_forward(mask1) >> 2;
|
|
|
|
d |= tidx[0] << 26;
|
|
d |= tidx[1] << 29;
|
|
|
|
unsigned int t0 = tsel[tidx[0]];
|
|
unsigned int t1 = tsel[tidx[1]];
|
|
|
|
if (!rotate)
|
|
{
|
|
t0 &= 0xFF00FF00;
|
|
t1 &= 0x00FF00FF;
|
|
}
|
|
else
|
|
{
|
|
t0 &= 0xCCCCCCCC;
|
|
t1 &= 0x33333333;
|
|
}
|
|
|
|
// Flip selectors from sign bit
|
|
unsigned int t2 = (t0 | t1) ^ 0xFFFF0000;
|
|
|
|
return d | static_cast<uint64_t>(_bswap(t2)) << 32;
|
|
}
|
|
|
|
static uint64_t ProcessRGB( const uint8_t* src )
|
|
{
|
|
uint64_t d = CheckSolid_AVX2( src );
|
|
if( d != 0 ) return d;
|
|
|
|
alignas(32) v4i a[8];
|
|
|
|
__m128i err0 = PrepareAverages_AVX2( a, src );
|
|
|
|
// Get index of minimum error (err0)
|
|
__m128i err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(2, 3, 0, 1));
|
|
__m128i errMin0 = _mm_min_epu32(err0, err1);
|
|
|
|
__m128i errMin1 = _mm_shuffle_epi32(errMin0, _MM_SHUFFLE(1, 0, 3, 2));
|
|
__m128i errMin2 = _mm_min_epu32(errMin1, errMin0);
|
|
|
|
__m128i errMask = _mm_cmpeq_epi32(errMin2, err0);
|
|
|
|
uint32_t mask = _mm_movemask_epi8(errMask);
|
|
|
|
uint32_t idx = _bit_scan_forward(mask) >> 2;
|
|
|
|
d |= EncodeAverages_AVX2( a, idx );
|
|
|
|
alignas(32) uint32_t terr[2][8] = {};
|
|
alignas(32) uint32_t tsel[8];
|
|
|
|
if ((idx == 0) || (idx == 2))
|
|
{
|
|
FindBestFit_4x2_AVX2( terr, tsel, a, idx * 2, src );
|
|
}
|
|
else
|
|
{
|
|
FindBestFit_2x4_AVX2( terr, tsel, a, idx * 2, src );
|
|
}
|
|
|
|
return EncodeSelectors_AVX2( d, terr, tsel, (idx % 2) == 1 );
|
|
}
|
|
|
|
#else
|
|
|
|
#ifdef __ARM_NEON
|
|
# include <arm_neon.h>
|
|
#endif
|
|
|
|
#ifdef __SSE4_1__
|
|
# ifdef _MSC_VER
|
|
# include <intrin.h>
|
|
# include <Windows.h>
|
|
# define _bswap(x) _byteswap_ulong(x)
|
|
# else
|
|
# include <x86intrin.h>
|
|
# endif
|
|
#else
|
|
# ifndef _MSC_VER
|
|
# ifdef __APPLE__
|
|
# include <libkern/OSByteOrder.h>
|
|
# ifndef _bswap
|
|
# define _bswap(x) OSSwapInt32(x)
|
|
# endif
|
|
# else
|
|
# include <byteswap.h>
|
|
# ifndef _bswap
|
|
# define _bswap(x) bswap_32(x)
|
|
# endif
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef _bswap
|
|
# define _bswap(x) __builtin_bswap32(x)
|
|
#endif
|
|
|
|
namespace tracy
|
|
{
|
|
|
|
const uint32_t g_avg2[16] = {
|
|
0x00,
|
|
0x11,
|
|
0x22,
|
|
0x33,
|
|
0x44,
|
|
0x55,
|
|
0x66,
|
|
0x77,
|
|
0x88,
|
|
0x99,
|
|
0xAA,
|
|
0xBB,
|
|
0xCC,
|
|
0xDD,
|
|
0xEE,
|
|
0xFF
|
|
};
|
|
|
|
const int64_t g_table256[8][4] = {
|
|
{ 2*256, 8*256, -2*256, -8*256 },
|
|
{ 5*256, 17*256, -5*256, -17*256 },
|
|
{ 9*256, 29*256, -9*256, -29*256 },
|
|
{ 13*256, 42*256, -13*256, -42*256 },
|
|
{ 18*256, 60*256, -18*256, -60*256 },
|
|
{ 24*256, 80*256, -24*256, -80*256 },
|
|
{ 33*256, 106*256, -33*256, -106*256 },
|
|
{ 47*256, 183*256, -47*256, -183*256 }
|
|
};
|
|
|
|
const uint32_t g_id[4][16] = {
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2 },
|
|
{ 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4 },
|
|
{ 7, 7, 6, 6, 7, 7, 6, 6, 7, 7, 6, 6, 7, 7, 6, 6 }
|
|
};
|
|
|
|
#ifdef __SSE4_1__
|
|
const __m128i g_table128_SIMD[2] =
|
|
{
|
|
_mm_setr_epi16( 2*128, 5*128, 9*128, 13*128, 18*128, 24*128, 33*128, 47*128),
|
|
_mm_setr_epi16( 8*128, 17*128, 29*128, 42*128, 60*128, 80*128, 106*128, 183*128)
|
|
};
|
|
#endif
|
|
|
|
#ifdef __ARM_NEON
|
|
const int16x8_t g_table128_NEON[2] =
|
|
{
|
|
{ 2*128, 5*128, 9*128, 13*128, 18*128, 24*128, 33*128, 47*128 },
|
|
{ 8*128, 17*128, 29*128, 42*128, 60*128, 80*128, 106*128, 183*128 }
|
|
};
|
|
#endif
|
|
|
|
template<class T>
|
|
static inline T sq( T val )
|
|
{
|
|
return val * val;
|
|
}
|
|
|
|
static inline int mul8bit( int a, int b )
|
|
{
|
|
int t = a*b + 128;
|
|
return ( t + ( t >> 8 ) ) >> 8;
|
|
}
|
|
|
|
template<class T>
|
|
static size_t GetLeastError( const T* err, size_t num )
|
|
{
|
|
size_t idx = 0;
|
|
for( size_t i=1; i<num; i++ )
|
|
{
|
|
if( err[i] < err[idx] )
|
|
{
|
|
idx = i;
|
|
}
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
static uint64_t FixByteOrder( uint64_t d )
|
|
{
|
|
return ( ( d & 0x00000000FFFFFFFF ) ) |
|
|
( ( d & 0xFF00000000000000 ) >> 24 ) |
|
|
( ( d & 0x000000FF00000000 ) << 24 ) |
|
|
( ( d & 0x00FF000000000000 ) >> 8 ) |
|
|
( ( d & 0x0000FF0000000000 ) << 8 );
|
|
}
|
|
|
|
template<class T, class S>
|
|
static uint64_t EncodeSelectors( uint64_t d, const T terr[2][8], const S tsel[16][8], const uint32_t* id )
|
|
{
|
|
size_t tidx[2];
|
|
tidx[0] = GetLeastError( terr[0], 8 );
|
|
tidx[1] = GetLeastError( terr[1], 8 );
|
|
|
|
d |= tidx[0] << 26;
|
|
d |= tidx[1] << 29;
|
|
for( int i=0; i<16; i++ )
|
|
{
|
|
uint64_t t = tsel[i][tidx[id[i]%2]];
|
|
d |= ( t & 0x1 ) << ( i + 32 );
|
|
d |= ( t & 0x2 ) << ( i + 47 );
|
|
}
|
|
|
|
return d;
|
|
}
|
|
|
|
static void Average( const uint8_t* data, v4i* a )
|
|
{
|
|
#ifdef __SSE4_1__
|
|
__m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0);
|
|
__m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1);
|
|
__m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2);
|
|
__m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3);
|
|
|
|
__m128i d0l = _mm_unpacklo_epi8(d0, _mm_setzero_si128());
|
|
__m128i d0h = _mm_unpackhi_epi8(d0, _mm_setzero_si128());
|
|
__m128i d1l = _mm_unpacklo_epi8(d1, _mm_setzero_si128());
|
|
__m128i d1h = _mm_unpackhi_epi8(d1, _mm_setzero_si128());
|
|
__m128i d2l = _mm_unpacklo_epi8(d2, _mm_setzero_si128());
|
|
__m128i d2h = _mm_unpackhi_epi8(d2, _mm_setzero_si128());
|
|
__m128i d3l = _mm_unpacklo_epi8(d3, _mm_setzero_si128());
|
|
__m128i d3h = _mm_unpackhi_epi8(d3, _mm_setzero_si128());
|
|
|
|
__m128i sum0 = _mm_add_epi16(d0l, d1l);
|
|
__m128i sum1 = _mm_add_epi16(d0h, d1h);
|
|
__m128i sum2 = _mm_add_epi16(d2l, d3l);
|
|
__m128i sum3 = _mm_add_epi16(d2h, d3h);
|
|
|
|
__m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128());
|
|
__m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128());
|
|
__m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128());
|
|
__m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128());
|
|
__m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128());
|
|
__m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128());
|
|
__m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128());
|
|
__m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128());
|
|
|
|
__m128i b0 = _mm_add_epi32(sum0l, sum0h);
|
|
__m128i b1 = _mm_add_epi32(sum1l, sum1h);
|
|
__m128i b2 = _mm_add_epi32(sum2l, sum2h);
|
|
__m128i b3 = _mm_add_epi32(sum3l, sum3h);
|
|
|
|
__m128i a0 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b2, b3), _mm_set1_epi32(4)), 3);
|
|
__m128i a1 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b1), _mm_set1_epi32(4)), 3);
|
|
__m128i a2 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b1, b3), _mm_set1_epi32(4)), 3);
|
|
__m128i a3 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b2), _mm_set1_epi32(4)), 3);
|
|
|
|
_mm_storeu_si128((__m128i*)&a[0], _mm_packus_epi32(_mm_shuffle_epi32(a0, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a1, _MM_SHUFFLE(3, 0, 1, 2))));
|
|
_mm_storeu_si128((__m128i*)&a[2], _mm_packus_epi32(_mm_shuffle_epi32(a2, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a3, _MM_SHUFFLE(3, 0, 1, 2))));
|
|
#elif defined __ARM_NEON
|
|
uint8x16x2_t t0 = vzipq_u8(vld1q_u8(data + 0), uint8x16_t());
|
|
uint8x16x2_t t1 = vzipq_u8(vld1q_u8(data + 16), uint8x16_t());
|
|
uint8x16x2_t t2 = vzipq_u8(vld1q_u8(data + 32), uint8x16_t());
|
|
uint8x16x2_t t3 = vzipq_u8(vld1q_u8(data + 48), uint8x16_t());
|
|
|
|
uint16x8x2_t d0 = { vreinterpretq_u16_u8(t0.val[0]), vreinterpretq_u16_u8(t0.val[1]) };
|
|
uint16x8x2_t d1 = { vreinterpretq_u16_u8(t1.val[0]), vreinterpretq_u16_u8(t1.val[1]) };
|
|
uint16x8x2_t d2 = { vreinterpretq_u16_u8(t2.val[0]), vreinterpretq_u16_u8(t2.val[1]) };
|
|
uint16x8x2_t d3 = { vreinterpretq_u16_u8(t3.val[0]), vreinterpretq_u16_u8(t3.val[1]) };
|
|
|
|
uint16x8x2_t s0 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[0] ), vreinterpretq_s16_u16( d1.val[0] ) ) ), uint16x8_t());
|
|
uint16x8x2_t s1 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[1] ), vreinterpretq_s16_u16( d1.val[1] ) ) ), uint16x8_t());
|
|
uint16x8x2_t s2 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[0] ), vreinterpretq_s16_u16( d3.val[0] ) ) ), uint16x8_t());
|
|
uint16x8x2_t s3 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[1] ), vreinterpretq_s16_u16( d3.val[1] ) ) ), uint16x8_t());
|
|
|
|
uint32x4x2_t sum0 = { vreinterpretq_u32_u16(s0.val[0]), vreinterpretq_u32_u16(s0.val[1]) };
|
|
uint32x4x2_t sum1 = { vreinterpretq_u32_u16(s1.val[0]), vreinterpretq_u32_u16(s1.val[1]) };
|
|
uint32x4x2_t sum2 = { vreinterpretq_u32_u16(s2.val[0]), vreinterpretq_u32_u16(s2.val[1]) };
|
|
uint32x4x2_t sum3 = { vreinterpretq_u32_u16(s3.val[0]), vreinterpretq_u32_u16(s3.val[1]) };
|
|
|
|
uint32x4_t b0 = vaddq_u32(sum0.val[0], sum0.val[1]);
|
|
uint32x4_t b1 = vaddq_u32(sum1.val[0], sum1.val[1]);
|
|
uint32x4_t b2 = vaddq_u32(sum2.val[0], sum2.val[1]);
|
|
uint32x4_t b3 = vaddq_u32(sum3.val[0], sum3.val[1]);
|
|
|
|
uint32x4_t a0 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b2, b3), vdupq_n_u32(4)), 3);
|
|
uint32x4_t a1 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b0, b1), vdupq_n_u32(4)), 3);
|
|
uint32x4_t a2 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b1, b3), vdupq_n_u32(4)), 3);
|
|
uint32x4_t a3 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b0, b2), vdupq_n_u32(4)), 3);
|
|
|
|
uint16x8_t o0 = vcombine_u16(vqmovun_s32(vreinterpretq_s32_u32( a0 )), vqmovun_s32(vreinterpretq_s32_u32( a1 )));
|
|
uint16x8_t o1 = vcombine_u16(vqmovun_s32(vreinterpretq_s32_u32( a2 )), vqmovun_s32(vreinterpretq_s32_u32( a3 )));
|
|
|
|
a[0] = v4i{o0[2], o0[1], o0[0], 0};
|
|
a[1] = v4i{o0[6], o0[5], o0[4], 0};
|
|
a[2] = v4i{o1[2], o1[1], o1[0], 0};
|
|
a[3] = v4i{o1[6], o1[5], o1[4], 0};
|
|
#else
|
|
uint32_t r[4];
|
|
uint32_t g[4];
|
|
uint32_t b[4];
|
|
|
|
memset(r, 0, sizeof(r));
|
|
memset(g, 0, sizeof(g));
|
|
memset(b, 0, sizeof(b));
|
|
|
|
for( int j=0; j<4; j++ )
|
|
{
|
|
for( int i=0; i<4; i++ )
|
|
{
|
|
int index = (j & 2) + (i >> 1);
|
|
b[index] += *data++;
|
|
g[index] += *data++;
|
|
r[index] += *data++;
|
|
data++;
|
|
}
|
|
}
|
|
|
|
a[0] = v4i{ uint16_t( (r[2] + r[3] + 4) / 8 ), uint16_t( (g[2] + g[3] + 4) / 8 ), uint16_t( (b[2] + b[3] + 4) / 8 ), 0};
|
|
a[1] = v4i{ uint16_t( (r[0] + r[1] + 4) / 8 ), uint16_t( (g[0] + g[1] + 4) / 8 ), uint16_t( (b[0] + b[1] + 4) / 8 ), 0};
|
|
a[2] = v4i{ uint16_t( (r[1] + r[3] + 4) / 8 ), uint16_t( (g[1] + g[3] + 4) / 8 ), uint16_t( (b[1] + b[3] + 4) / 8 ), 0};
|
|
a[3] = v4i{ uint16_t( (r[0] + r[2] + 4) / 8 ), uint16_t( (g[0] + g[2] + 4) / 8 ), uint16_t( (b[0] + b[2] + 4) / 8 ), 0};
|
|
#endif
|
|
}
|
|
|
|
static void CalcErrorBlock( const uint8_t* data, unsigned int err[4][4] )
|
|
{
|
|
#ifdef __SSE4_1__
|
|
__m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0);
|
|
__m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1);
|
|
__m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2);
|
|
__m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3);
|
|
|
|
__m128i dm0 = _mm_and_si128(d0, _mm_set1_epi32(0x00FFFFFF));
|
|
__m128i dm1 = _mm_and_si128(d1, _mm_set1_epi32(0x00FFFFFF));
|
|
__m128i dm2 = _mm_and_si128(d2, _mm_set1_epi32(0x00FFFFFF));
|
|
__m128i dm3 = _mm_and_si128(d3, _mm_set1_epi32(0x00FFFFFF));
|
|
|
|
__m128i d0l = _mm_unpacklo_epi8(dm0, _mm_setzero_si128());
|
|
__m128i d0h = _mm_unpackhi_epi8(dm0, _mm_setzero_si128());
|
|
__m128i d1l = _mm_unpacklo_epi8(dm1, _mm_setzero_si128());
|
|
__m128i d1h = _mm_unpackhi_epi8(dm1, _mm_setzero_si128());
|
|
__m128i d2l = _mm_unpacklo_epi8(dm2, _mm_setzero_si128());
|
|
__m128i d2h = _mm_unpackhi_epi8(dm2, _mm_setzero_si128());
|
|
__m128i d3l = _mm_unpacklo_epi8(dm3, _mm_setzero_si128());
|
|
__m128i d3h = _mm_unpackhi_epi8(dm3, _mm_setzero_si128());
|
|
|
|
__m128i sum0 = _mm_add_epi16(d0l, d1l);
|
|
__m128i sum1 = _mm_add_epi16(d0h, d1h);
|
|
__m128i sum2 = _mm_add_epi16(d2l, d3l);
|
|
__m128i sum3 = _mm_add_epi16(d2h, d3h);
|
|
|
|
__m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128());
|
|
__m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128());
|
|
__m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128());
|
|
__m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128());
|
|
__m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128());
|
|
__m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128());
|
|
__m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128());
|
|
__m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128());
|
|
|
|
__m128i b0 = _mm_add_epi32(sum0l, sum0h);
|
|
__m128i b1 = _mm_add_epi32(sum1l, sum1h);
|
|
__m128i b2 = _mm_add_epi32(sum2l, sum2h);
|
|
__m128i b3 = _mm_add_epi32(sum3l, sum3h);
|
|
|
|
__m128i a0 = _mm_add_epi32(b2, b3);
|
|
__m128i a1 = _mm_add_epi32(b0, b1);
|
|
__m128i a2 = _mm_add_epi32(b1, b3);
|
|
__m128i a3 = _mm_add_epi32(b0, b2);
|
|
|
|
_mm_storeu_si128((__m128i*)&err[0], a0);
|
|
_mm_storeu_si128((__m128i*)&err[1], a1);
|
|
_mm_storeu_si128((__m128i*)&err[2], a2);
|
|
_mm_storeu_si128((__m128i*)&err[3], a3);
|
|
#elif defined __ARM_NEON
|
|
uint8x16x2_t t0 = vzipq_u8(vld1q_u8(data + 0), uint8x16_t());
|
|
uint8x16x2_t t1 = vzipq_u8(vld1q_u8(data + 16), uint8x16_t());
|
|
uint8x16x2_t t2 = vzipq_u8(vld1q_u8(data + 32), uint8x16_t());
|
|
uint8x16x2_t t3 = vzipq_u8(vld1q_u8(data + 48), uint8x16_t());
|
|
|
|
uint16x8x2_t d0 = { vreinterpretq_u16_u8(t0.val[0]), vreinterpretq_u16_u8(t0.val[1]) };
|
|
uint16x8x2_t d1 = { vreinterpretq_u16_u8(t1.val[0]), vreinterpretq_u16_u8(t1.val[1]) };
|
|
uint16x8x2_t d2 = { vreinterpretq_u16_u8(t2.val[0]), vreinterpretq_u16_u8(t2.val[1]) };
|
|
uint16x8x2_t d3 = { vreinterpretq_u16_u8(t3.val[0]), vreinterpretq_u16_u8(t3.val[1]) };
|
|
|
|
uint16x8x2_t s0 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[0] ), vreinterpretq_s16_u16( d1.val[0] ))), uint16x8_t());
|
|
uint16x8x2_t s1 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[1] ), vreinterpretq_s16_u16( d1.val[1] ))), uint16x8_t());
|
|
uint16x8x2_t s2 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[0] ), vreinterpretq_s16_u16( d3.val[0] ))), uint16x8_t());
|
|
uint16x8x2_t s3 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[1] ), vreinterpretq_s16_u16( d3.val[1] ))), uint16x8_t());
|
|
|
|
uint32x4x2_t sum0 = { vreinterpretq_u32_u16(s0.val[0]), vreinterpretq_u32_u16(s0.val[1]) };
|
|
uint32x4x2_t sum1 = { vreinterpretq_u32_u16(s1.val[0]), vreinterpretq_u32_u16(s1.val[1]) };
|
|
uint32x4x2_t sum2 = { vreinterpretq_u32_u16(s2.val[0]), vreinterpretq_u32_u16(s2.val[1]) };
|
|
uint32x4x2_t sum3 = { vreinterpretq_u32_u16(s3.val[0]), vreinterpretq_u32_u16(s3.val[1]) };
|
|
|
|
uint32x4_t b0 = vaddq_u32(sum0.val[0], sum0.val[1]);
|
|
uint32x4_t b1 = vaddq_u32(sum1.val[0], sum1.val[1]);
|
|
uint32x4_t b2 = vaddq_u32(sum2.val[0], sum2.val[1]);
|
|
uint32x4_t b3 = vaddq_u32(sum3.val[0], sum3.val[1]);
|
|
|
|
uint32x4_t a0 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b2, b3) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) );
|
|
uint32x4_t a1 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b0, b1) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) );
|
|
uint32x4_t a2 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b1, b3) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) );
|
|
uint32x4_t a3 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b0, b2) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) );
|
|
|
|
vst1q_u32(err[0], a0);
|
|
vst1q_u32(err[1], a1);
|
|
vst1q_u32(err[2], a2);
|
|
vst1q_u32(err[3], a3);
|
|
#else
|
|
unsigned int terr[4][4];
|
|
|
|
memset(terr, 0, 16 * sizeof(unsigned int));
|
|
|
|
for( int j=0; j<4; j++ )
|
|
{
|
|
for( int i=0; i<4; i++ )
|
|
{
|
|
int index = (j & 2) + (i >> 1);
|
|
unsigned int d = *data++;
|
|
terr[index][0] += d;
|
|
d = *data++;
|
|
terr[index][1] += d;
|
|
d = *data++;
|
|
terr[index][2] += d;
|
|
data++;
|
|
}
|
|
}
|
|
|
|
for( int i=0; i<3; i++ )
|
|
{
|
|
err[0][i] = terr[2][i] + terr[3][i];
|
|
err[1][i] = terr[0][i] + terr[1][i];
|
|
err[2][i] = terr[1][i] + terr[3][i];
|
|
err[3][i] = terr[0][i] + terr[2][i];
|
|
}
|
|
for( int i=0; i<4; i++ )
|
|
{
|
|
err[i][3] = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static unsigned int CalcError( const unsigned int block[4], const v4i& average )
|
|
{
|
|
unsigned int err = 0x3FFFFFFF; // Big value to prevent negative values, but small enough to prevent overflow
|
|
err -= block[0] * 2 * average[2];
|
|
err -= block[1] * 2 * average[1];
|
|
err -= block[2] * 2 * average[0];
|
|
err += 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) );
|
|
return err;
|
|
}
|
|
|
|
void ProcessAverages( v4i* a )
|
|
{
|
|
#ifdef __SSE4_1__
|
|
for( int i=0; i<2; i++ )
|
|
{
|
|
__m128i d = _mm_loadu_si128((__m128i*)a[i*2].data());
|
|
|
|
__m128i t = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(31)), _mm_set1_epi16(128));
|
|
|
|
__m128i c = _mm_srli_epi16(_mm_add_epi16(t, _mm_srli_epi16(t, 8)), 8);
|
|
|
|
__m128i c1 = _mm_shuffle_epi32(c, _MM_SHUFFLE(3, 2, 3, 2));
|
|
__m128i diff = _mm_sub_epi16(c, c1);
|
|
diff = _mm_max_epi16(diff, _mm_set1_epi16(-4));
|
|
diff = _mm_min_epi16(diff, _mm_set1_epi16(3));
|
|
|
|
__m128i co = _mm_add_epi16(c1, diff);
|
|
|
|
c = _mm_blend_epi16(co, c, 0xF0);
|
|
|
|
__m128i a0 = _mm_or_si128(_mm_slli_epi16(c, 3), _mm_srli_epi16(c, 2));
|
|
|
|
_mm_storeu_si128((__m128i*)a[4+i*2].data(), a0);
|
|
}
|
|
|
|
for( int i=0; i<2; i++ )
|
|
{
|
|
__m128i d = _mm_loadu_si128((__m128i*)a[i*2].data());
|
|
|
|
__m128i t0 = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(15)), _mm_set1_epi16(128));
|
|
__m128i t1 = _mm_srli_epi16(_mm_add_epi16(t0, _mm_srli_epi16(t0, 8)), 8);
|
|
|
|
__m128i t2 = _mm_or_si128(t1, _mm_slli_epi16(t1, 4));
|
|
|
|
_mm_storeu_si128((__m128i*)a[i*2].data(), t2);
|
|
}
|
|
#elif defined __ARM_NEON
|
|
for( int i=0; i<2; i++ )
|
|
{
|
|
int16x8_t d = vld1q_s16((int16_t*)&a[i*2]);
|
|
int16x8_t t = vaddq_s16(vmulq_s16(d, vdupq_n_s16(31)), vdupq_n_s16(128));
|
|
int16x8_t c = vshrq_n_s16(vaddq_s16(t, vshrq_n_s16(t, 8)), 8);
|
|
|
|
int16x8_t c1 = vcombine_s16(vget_high_s16(c), vget_high_s16(c));
|
|
int16x8_t diff = vsubq_s16(c, c1);
|
|
diff = vmaxq_s16(diff, vdupq_n_s16(-4));
|
|
diff = vminq_s16(diff, vdupq_n_s16(3));
|
|
|
|
int16x8_t co = vaddq_s16(c1, diff);
|
|
|
|
c = vcombine_s16(vget_low_s16(co), vget_high_s16(c));
|
|
|
|
int16x8_t a0 = vorrq_s16(vshlq_n_s16(c, 3), vshrq_n_s16(c, 2));
|
|
|
|
vst1q_s16((int16_t*)&a[4+i*2], a0);
|
|
}
|
|
|
|
for( int i=0; i<2; i++ )
|
|
{
|
|
int16x8_t d = vld1q_s16((int16_t*)&a[i*2]);
|
|
|
|
int16x8_t t0 = vaddq_s16(vmulq_s16(d, vdupq_n_s16(15)), vdupq_n_s16(128));
|
|
int16x8_t t1 = vshrq_n_s16(vaddq_s16(t0, vshrq_n_s16(t0, 8)), 8);
|
|
|
|
int16x8_t t2 = vorrq_s16(t1, vshlq_n_s16(t1, 4));
|
|
|
|
vst1q_s16((int16_t*)&a[i*2], t2);
|
|
}
|
|
#else
|
|
for( int i=0; i<2; i++ )
|
|
{
|
|
for( int j=0; j<3; j++ )
|
|
{
|
|
int32_t c1 = mul8bit( a[i*2+1][j], 31 );
|
|
int32_t c2 = mul8bit( a[i*2][j], 31 );
|
|
|
|
int32_t diff = c2 - c1;
|
|
if( diff > 3 ) diff = 3;
|
|
else if( diff < -4 ) diff = -4;
|
|
|
|
int32_t co = c1 + diff;
|
|
|
|
a[5+i*2][j] = ( c1 << 3 ) | ( c1 >> 2 );
|
|
a[4+i*2][j] = ( co << 3 ) | ( co >> 2 );
|
|
}
|
|
}
|
|
|
|
for( int i=0; i<4; i++ )
|
|
{
|
|
a[i][0] = g_avg2[mul8bit( a[i][0], 15 )];
|
|
a[i][1] = g_avg2[mul8bit( a[i][1], 15 )];
|
|
a[i][2] = g_avg2[mul8bit( a[i][2], 15 )];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void EncodeAverages( uint64_t& _d, const v4i* a, size_t idx )
|
|
{
|
|
auto d = _d;
|
|
d |= ( idx << 24 );
|
|
size_t base = idx << 1;
|
|
|
|
if( ( idx & 0x2 ) == 0 )
|
|
{
|
|
for( int i=0; i<3; i++ )
|
|
{
|
|
d |= uint64_t( a[base+0][i] >> 4 ) << ( i*8 );
|
|
d |= uint64_t( a[base+1][i] >> 4 ) << ( i*8 + 4 );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( int i=0; i<3; i++ )
|
|
{
|
|
d |= uint64_t( a[base+1][i] & 0xF8 ) << ( i*8 );
|
|
int32_t c = ( ( a[base+0][i] & 0xF8 ) - ( a[base+1][i] & 0xF8 ) ) >> 3;
|
|
c &= ~0xFFFFFFF8;
|
|
d |= ((uint64_t)c) << ( i*8 );
|
|
}
|
|
}
|
|
_d = d;
|
|
}
|
|
|
|
static uint64_t CheckSolid( const uint8_t* src )
|
|
{
|
|
#ifdef __SSE4_1__
|
|
__m128i d0 = _mm_loadu_si128(((__m128i*)src) + 0);
|
|
__m128i d1 = _mm_loadu_si128(((__m128i*)src) + 1);
|
|
__m128i d2 = _mm_loadu_si128(((__m128i*)src) + 2);
|
|
__m128i d3 = _mm_loadu_si128(((__m128i*)src) + 3);
|
|
|
|
__m128i c = _mm_shuffle_epi32(d0, _MM_SHUFFLE(0, 0, 0, 0));
|
|
|
|
__m128i c0 = _mm_cmpeq_epi8(d0, c);
|
|
__m128i c1 = _mm_cmpeq_epi8(d1, c);
|
|
__m128i c2 = _mm_cmpeq_epi8(d2, c);
|
|
__m128i c3 = _mm_cmpeq_epi8(d3, c);
|
|
|
|
__m128i m0 = _mm_and_si128(c0, c1);
|
|
__m128i m1 = _mm_and_si128(c2, c3);
|
|
__m128i m = _mm_and_si128(m0, m1);
|
|
|
|
if (!_mm_testc_si128(m, _mm_set1_epi32(-1)))
|
|
{
|
|
return 0;
|
|
}
|
|
#elif defined __ARM_NEON
|
|
int32x4_t d0 = vld1q_s32((int32_t*)src + 0);
|
|
int32x4_t d1 = vld1q_s32((int32_t*)src + 4);
|
|
int32x4_t d2 = vld1q_s32((int32_t*)src + 8);
|
|
int32x4_t d3 = vld1q_s32((int32_t*)src + 12);
|
|
|
|
int32x4_t c = vdupq_n_s32(d0[0]);
|
|
|
|
int32x4_t c0 = vreinterpretq_s32_u32(vceqq_s32(d0, c));
|
|
int32x4_t c1 = vreinterpretq_s32_u32(vceqq_s32(d1, c));
|
|
int32x4_t c2 = vreinterpretq_s32_u32(vceqq_s32(d2, c));
|
|
int32x4_t c3 = vreinterpretq_s32_u32(vceqq_s32(d3, c));
|
|
|
|
int32x4_t m0 = vandq_s32(c0, c1);
|
|
int32x4_t m1 = vandq_s32(c2, c3);
|
|
int64x2_t m = vreinterpretq_s64_s32(vandq_s32(m0, m1));
|
|
|
|
if (m[0] != -1 || m[1] != -1)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
const uint8_t* ptr = src + 4;
|
|
for( int i=1; i<16; i++ )
|
|
{
|
|
if( memcmp( src, ptr, 4 ) != 0 )
|
|
{
|
|
return 0;
|
|
}
|
|
ptr += 4;
|
|
}
|
|
#endif
|
|
return 0x02000000 |
|
|
( (unsigned int)( src[0] & 0xF8 ) << 16 ) |
|
|
( (unsigned int)( src[1] & 0xF8 ) << 8 ) |
|
|
( (unsigned int)( src[2] & 0xF8 ) );
|
|
}
|
|
|
|
static void PrepareAverages( v4i a[8], const uint8_t* src, unsigned int err[4] )
|
|
{
|
|
Average( src, a );
|
|
ProcessAverages( a );
|
|
|
|
unsigned int errblock[4][4];
|
|
CalcErrorBlock( src, errblock );
|
|
|
|
for( int i=0; i<4; i++ )
|
|
{
|
|
err[i/2] += CalcError( errblock[i], a[i] );
|
|
err[2+i/2] += CalcError( errblock[i], a[i+4] );
|
|
}
|
|
}
|
|
|
|
#if defined __SSE4_1__ || defined __ARM_NEON
|
|
// Non-reference implementation, but faster. Produces same results as the AVX2 version
|
|
static void FindBestFit( uint32_t terr[2][8], uint16_t tsel[16][8], v4i a[8], const uint32_t* id, const uint8_t* data )
|
|
{
|
|
for( size_t i=0; i<16; i++ )
|
|
{
|
|
uint16_t* sel = tsel[i];
|
|
unsigned int bid = id[i];
|
|
uint32_t* ter = terr[bid%2];
|
|
|
|
uint8_t b = *data++;
|
|
uint8_t g = *data++;
|
|
uint8_t r = *data++;
|
|
data++;
|
|
|
|
int dr = a[bid][0] - r;
|
|
int dg = a[bid][1] - g;
|
|
int db = a[bid][2] - b;
|
|
|
|
#ifdef __SSE4_1__
|
|
// The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16
|
|
// This produces slightly different results, but is significant faster
|
|
__m128i pixel = _mm_set1_epi16(dr * 38 + dg * 76 + db * 14);
|
|
__m128i pix = _mm_abs_epi16(pixel);
|
|
|
|
// Taking the absolute value is way faster. The values are only used to sort, so the result will be the same.
|
|
// Since the selector table is symmetrical, we need to calculate the difference only for half of the entries.
|
|
__m128i error0 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[0]));
|
|
__m128i error1 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[1]));
|
|
|
|
__m128i index = _mm_and_si128(_mm_cmplt_epi16(error1, error0), _mm_set1_epi16(1));
|
|
__m128i minError = _mm_min_epi16(error0, error1);
|
|
|
|
// Exploiting symmetry of the selector table and use the sign bit
|
|
// This produces slightly different results, but is needed to produce same results as AVX2 implementation
|
|
__m128i indexBit = _mm_andnot_si128(_mm_srli_epi16(pixel, 15), _mm_set1_epi8(-1));
|
|
__m128i minIndex = _mm_or_si128(index, _mm_add_epi16(indexBit, indexBit));
|
|
|
|
// Squaring the minimum error to produce correct values when adding
|
|
__m128i squareErrorLo = _mm_mullo_epi16(minError, minError);
|
|
__m128i squareErrorHi = _mm_mulhi_epi16(minError, minError);
|
|
|
|
__m128i squareErrorLow = _mm_unpacklo_epi16(squareErrorLo, squareErrorHi);
|
|
__m128i squareErrorHigh = _mm_unpackhi_epi16(squareErrorLo, squareErrorHi);
|
|
|
|
squareErrorLow = _mm_add_epi32(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 0));
|
|
_mm_storeu_si128(((__m128i*)ter) + 0, squareErrorLow);
|
|
squareErrorHigh = _mm_add_epi32(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 1));
|
|
_mm_storeu_si128(((__m128i*)ter) + 1, squareErrorHigh);
|
|
|
|
_mm_storeu_si128((__m128i*)sel, minIndex);
|
|
#else
|
|
int16x8_t pixel = vdupq_n_s16( dr * 38 + dg * 76 + db * 14 );
|
|
int16x8_t pix = vabsq_s16( pixel );
|
|
|
|
int16x8_t error0 = vabsq_s16( vsubq_s16( pix, g_table128_NEON[0] ) );
|
|
int16x8_t error1 = vabsq_s16( vsubq_s16( pix, g_table128_NEON[1] ) );
|
|
|
|
int16x8_t index = vandq_s16( vreinterpretq_s16_u16( vcltq_s16( error1, error0 ) ), vdupq_n_s16( 1 ) );
|
|
int16x8_t minError = vminq_s16( error0, error1 );
|
|
|
|
int16x8_t indexBit = vandq_s16( vmvnq_s16( vshrq_n_s16( pixel, 15 ) ), vdupq_n_s16( -1 ) );
|
|
int16x8_t minIndex = vorrq_s16( index, vaddq_s16( indexBit, indexBit ) );
|
|
|
|
int16x4_t minErrorLow = vget_low_s16( minError );
|
|
int16x4_t minErrorHigh = vget_high_s16( minError );
|
|
|
|
int32x4_t squareErrorLow = vmull_s16( minErrorLow, minErrorLow );
|
|
int32x4_t squareErrorHigh = vmull_s16( minErrorHigh, minErrorHigh );
|
|
|
|
int32x4_t squareErrorSumLow = vaddq_s32( squareErrorLow, vld1q_s32( (int32_t*)ter ) );
|
|
int32x4_t squareErrorSumHigh = vaddq_s32( squareErrorHigh, vld1q_s32( (int32_t*)ter + 4 ) );
|
|
|
|
vst1q_s32( (int32_t*)ter, squareErrorSumLow );
|
|
vst1q_s32( (int32_t*)ter + 4, squareErrorSumHigh );
|
|
|
|
vst1q_s16( (int16_t*)sel, minIndex );
|
|
#endif
|
|
}
|
|
}
|
|
#else
|
|
static void FindBestFit( uint64_t terr[2][8], uint16_t tsel[16][8], v4i a[8], const uint32_t* id, const uint8_t* data )
|
|
{
|
|
for( size_t i=0; i<16; i++ )
|
|
{
|
|
uint16_t* sel = tsel[i];
|
|
unsigned int bid = id[i];
|
|
uint64_t* ter = terr[bid%2];
|
|
|
|
uint8_t b = *data++;
|
|
uint8_t g = *data++;
|
|
uint8_t r = *data++;
|
|
data++;
|
|
|
|
int dr = a[bid][0] - r;
|
|
int dg = a[bid][1] - g;
|
|
int db = a[bid][2] - b;
|
|
|
|
int pix = dr * 77 + dg * 151 + db * 28;
|
|
|
|
for( int t=0; t<8; t++ )
|
|
{
|
|
const int64_t* tab = g_table256[t];
|
|
unsigned int idx = 0;
|
|
uint64_t err = sq( tab[0] + pix );
|
|
for( int j=1; j<4; j++ )
|
|
{
|
|
uint64_t local = sq( tab[j] + pix );
|
|
if( local < err )
|
|
{
|
|
err = local;
|
|
idx = j;
|
|
}
|
|
}
|
|
*sel++ = idx;
|
|
*ter++ += err;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static uint64_t ProcessRGB( const uint8_t* src )
|
|
{
|
|
uint64_t d = CheckSolid( src );
|
|
if( d != 0 ) return d;
|
|
|
|
v4i a[8];
|
|
unsigned int err[4] = {};
|
|
PrepareAverages( a, src, err );
|
|
size_t idx = GetLeastError( err, 4 );
|
|
EncodeAverages( d, a, idx );
|
|
|
|
#if defined __SSE4_1__ || defined __ARM_NEON
|
|
uint32_t terr[2][8] = {};
|
|
#else
|
|
uint64_t terr[2][8] = {};
|
|
#endif
|
|
uint16_t tsel[16][8];
|
|
auto id = g_id[idx];
|
|
FindBestFit( terr, tsel, a, id, src );
|
|
|
|
return FixByteOrder( EncodeSelectors( d, terr, tsel, id ) );
|
|
}
|
|
|
|
#endif
|
|
|
|
void CompressImageEtc1( const char* src, char* dst, int w, int h )
|
|
{
|
|
assert( (w % 4) == 0 && (h % 4) == 0 );
|
|
|
|
uint32_t buf[4*4];
|
|
int i = 0;
|
|
|
|
auto ptr = dst;
|
|
auto blocks = w * h / 16;
|
|
do
|
|
{
|
|
auto tmp = (char*)buf;
|
|
for( int x=0; x<4; x++ )
|
|
{
|
|
memcpy( tmp, src, 4 );
|
|
memcpy( tmp + 4, src + w * 4, 4 );
|
|
memcpy( tmp + 8, src + w * 8, 4 );
|
|
memcpy( tmp + 12, src + w * 12, 4 );
|
|
src += 4;
|
|
tmp += 16;
|
|
}
|
|
if( ++i == w/4 )
|
|
{
|
|
src += w * 3 * 4;
|
|
i = 0;
|
|
}
|
|
|
|
const auto c = ProcessRGB( (uint8_t*)buf );
|
|
memcpy( ptr, &c, sizeof( uint64_t ) );
|
|
ptr += sizeof( uint64_t );
|
|
}
|
|
while( --blocks );
|
|
}
|
|
|
|
}
|